
Brazilian Journal of Physics, vol. 28, no. 1, March, 1998 35

One And The Same Route: Two Outstanding

Electrodynamics

Antonio Accioly(1)� and Hatsumi Mukai(2)

(1) Instituto de F��sica Te�orica,

Universidade Estadual Paulista,

Rua Pamplona,145, 01405-900 S~ao Paulo, SP, Brazil

(2) Departamento de F��sica,

Funda�c~ao Universidade Estadual de Maring�a,

Av. Colombo 5790, 87020-900 Maring�a, Pr, Brazil

Received August 27, 1997

We show that the same route that leads to Maxwell's electrodynamics leads also to Podol-
sky's electrodynamics, provided we start from Podolsky's electrostatic force law instead of
the usual Coulomb's law.

I. Introduction

On the second edition of Jackson's seminal book on

classical electrodynamics[1], there is a section named

\On the Question of Obtaining the Magnetic Field,

Magnetic Force, and the Maxwell Equations from

Coulomb's Law and Special Relativity", where it is

shown in detail that any attempt to derive Maxwell

equations from Coulomb's law of electrostatics and the

laws of special relativity ends in failure unless one makes

use of additional assumptions. What hypotheses are

these? In an ingenious paper, Kobe[2] gave the answer:

all one needs to arrive at Maxwell equations is

(i) Coulomb's law;

(ii) the principle of superposition;

(iii) the assumption that electric charge is a conserved

scalar (which amounts to assuming the indepen-

dence of the observed charge of a particle on its

speed[3]);

(iv) the requirement of form invariance of the elec-

trostatic �eld equations under Lorentz transfor-

mations, i.e. the electrostatic �eld equations are

thought as covariant space-space components of

covariant �eld equations.

Soon after Kobe's paper, Neuenschwander and

Turner[4] obtained Maxwell equations by generalizing

the laws of magnetostatics, which follow from the Biot-

Savart law and magnetostatics, to be consistent with

special relativity.

The preceding considerations leads us to the inter-

esting question: what would happen if we followed the

same route as Kobe did, using an electrostatic force

law other than the usual Coulomb's one? We shall

show that if we start from the force law proposed by

Podolsky[5], i.e.,

F(r) =
QQ0

4�

�
1� e�r=a

r2
�

e�r=a

ra

�
r

r
; (1)

where a is a positive parameter with dimension of

length, Q and Q0 are the charges at r and r = 0, re-

spectively, and F(r) is the force on the particle with

charge Q due to the particle with charge Q0 - and if we

follow the steps previously outlined, we arrive at the

outstanding electrodynamics derived by Podolsky[5] in

the early 40s. In other words, we shall show that the

same route that leads to Maxwell equations leads also

to Podolsky equations. A notable feature of Podolsky's
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generalized electrodynamics is that it is free of those in-

�nities which are usually associated with a point source.

For instance, (1) approaches a �nite value QQ0

8�a2 as r ap-

proaches zero. Thus, unlike Coulomb's law, Podolsky's

electrostatic force law is �nite in the whole space.

In Sec. II we obtain the equations that make up

Podolsky's electrostatics. In Sec. III we arrive at

Podolsky's �eld equations by generalizing the equations

of Sec. II, so that they are form invariant under Lorentz

transformations. For consistency, we show in Sec. IV

that (1) is indeed the electrostatic force law related to

Podolsky's theory. The conclusions are presented in

Sec. V.

Natural units (~ = c = 1) are used throughout. As

far as the electromagnetic theories are concerned, we

will use the Heaviside-Lorentz units with c = 1.

II. Podolsky's electrostatics

As is well-known, the force on a text charge is propor-

tional to its charge, all other properties of the force be-

ing assigned to the electric �eld E(r), which is de�ned

by

F = QE(r) ;

where F is force on the charge Q situated at r and E(r)

is the electric �eld at the position of this charge due

to all other charges. (The source charge's coordinates

will be distinguished from those of the �eld point, by

a prime.) Accordingly, the electric �eld due to a point

charge Q0 situated at r0 is given by

E(r) =
Q0

4�

�
1� e�R=a

R2
�

e�R=a

Ra

�
R

R
; (2)

where R = r � r0. Note that this �eld is �nite in the

whole space. By the principle of superposition the elec-

tric �eld produced by the charge distribution �(r0) is

E(r) =

Z
d3r0

�(r0)

4�

�
1� e�R=a

R2
�

e�R=a

Ra

�
R

R
; (3)

where the integration is carried out over all space. (�

must of course vanish at su�cient large r, making the

volume of integration less than in�nity.)

The preceding expression for the electric �eld aris-

ing from a charge distribution may be easily expressed

as a gradient of a scalar integral as follows

E(r) = �

Z
d3r0

�(r0)

4�
r

�
1� e�R=a

R

�
: (4)

Sincer acts only on the unprimed coordinates, we may

take it outside the integral (4) to obtain

E(r) = �r

�Z
d3r0

�(r0)

4�

1� e�R=a

R

�
: (5)

Taking into account that the curl of any gradient

vanishes, we have immediately

r�E = 0 ; (6)

which shows that Podolsky's electrostatic �eld, like

Maxwell's one, is conservative. If the divergence of (3)

is taken, the result is

c

r �E(r) =

Z
d3r0

�(r0)

4�
r �

��
1� e�R=a

R2
�

e�R=a

Ra

�
R

R

�

=

Z
d3r0

�(r0)

4�

e�R=a

Ra2
; (7)

where use has been made of the identity

r � (	A) = r	 �A+ 	r �A :

Now, taking the Laplacian of (7), and using the identity (see appendix)

r
2 e

�r=a

R
=

e�r=a

Ra2
� 4��3(R) ;
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yields

r
2 [r �E(r)] =

Z
d3r0

�(r0)

4�a2
r

2

�
e�R=a

R

�

=
1

a2

Z
d3r0

�(r0)

4�

e�R=a

Ra2
�

Z
d3r0

�(r0)

a2
�3(r� r0)

=
1

a2
[r �E(r)� �(r)] :

So, �
1� a2r2

�
r �E(r) = �(r) : (8)

d

Equations (6) and (8) are the fundamental laws of

Podolsky's electrostatics. We will digress slightly at

this stage to analyze an interesting feature of Podol-

sky's electrostatics. In this vein, we compute the ux

of the electrostatic �eld across a spherical surface of

radius R with a charge Q at its center. Using (2) we

arrive at the result

I
E � dS = Q

�
1�

�
1 +

R

a

�
e�R=a

�
; (9)

which tells us that

I
E � dS =

�
0; R� a ;
Q; R� a :

Therefore, a sphere of radius R � a, unlike what

happens in Maxwell's theory, shields its exterior from

the �eld due to a charge placed at its center. We

remark that in Maxwell's electrostatics a closed hol-

low conductor shields its interior from �elds due to

charges outside, but does not shield its interior from

the �eld due to charges placed inside it[6]. Note, how-

ever, that in order not to conict with well established

results of quantum electrodynamics, the parameter a

must be small. Incidentally, it was shown recently

that this parameter is of the order of magnitude of

the Compton wavelength of the neutral vector boson

z, �(z) � 2:16� 10�16cm, which mediates the uni�ed

and electromagnetic interactions[7]. After this paren-

thesis, let us return to our main subject. Equations (6)

and (8) are now ready to be generalized using special

relativity and the hypotheses that electric charge is a

conserved scalar. We shall do that in the next section.

III. Podolsky's �eld equations

To begin with let us establish some conventions and

notations to be used from now on. We use the metric

tensor

��� = ��� =

0
BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCA ;

with Greek indices running over 0; 1; 2; 3. Roman in-

dices - i; j; etc, - denote only the three spatial com-

ponents. Repeated indices are summed in all cases.

The space-time four vectors (contravariant vectors) are

x� = (t;x), and the covariant vectors, as a conse-

quences are x� = (t;�x). The four-velocities are found,

according to

u� =
dx�

d�
=  (1;v) ;

u� =  (1;�v) ;

where � is the proper time (d�2 = dt2 � dx2), and 

denotes dt=d� = (1� v2)�1=2.

Let us then generalize (6) so that it satis�es the

requirement of form invariance under Lorentz transfor-

mations. To do that, we write the mentioned equation

in terms of the Levi-Civita density "nml, which equals

+1(�1) if n;m; l is an even(odd) permutation of 1; 2; 3,

and vanishes if two indices are equal. The curl equation

becomes

"jkl@kEl = 0 : (10)
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It we de�ne the quantities

F 0i = �F0i = Ei = �Ei ; (11)

(10) can be rewritten as

"jkl@kF0l = 0 :

We imagine now the curl law to be the space-space com-

ponents of a manifestly covariant �eld equation (invari-

ance under Lorentz transformations). As a result, we

get

"����@�F�� = 0 ; (12)

where "���� is a completely antisymmetric tensor of

rank four with "0123 = +1.

Of course, this generalization introduces the com-

ponents F00; Fl0, and Flk, for which at this point we

lack a physical interpretation. Note that the F0i are

not necessarily static anymore.

On the other hand, as is well-known, the charge den-

sity � is de�ned as the charge per unit of volume, which

has as a consequence that the charge dq in an element of

volume d3x is dq = �d3x. Since dq is a Lorentz scalar[3],

� transforms as the time-component of a four-vector,

namely, the time-component of the charge-current four-

vector j� = (�; j). The electric charge, in turn, is con-

served locally[3], which implies that it obeys a continu-

ity equation

@�j
� = 0 : (13)

(8) can now be rewritten as

�
1 + a2@i@

i
�
@jE

j = j0 ;

where @i � @=@xi and @i � @=@xi . Note that @i = �@i.

Using (11), yields

�
1 + a2@i@

i
�
@jF

0j = j0 :

In order that the left-hand side of the preceding equa-

tion transforms as the time-component of a four-vector,

we must write it as

�
1 + a22

�
@�F

0� = j0 ;

where

2 = @�@
�

= ���@�@�

= @2=@t2 �r2 :

The requirement of form invariance of this equation un-

der Lorentz transformations leads then to the following

result

�
1 + a22

�
@�F

�� = j� : (14)

Imagine now a particle of mass m and charge Q at rest

in a lab frame where there is an electrostatic �eld E.

Newton's second law allows us to write

dp

dt
= QE : (15)

In terms of the proper time this becomes

dp

d�
= QE

= Qu0E ;

where u0 is the time part of the velocity four-vector u�.

For the component along de xi direction, we have

dpi

d�
= Qu0F

0i :

In order that the right-hand side of this equation trans-

forms like a space-component of a four-vector, it must

be rewritten as

dpi

d�
= Qu�F

�i ;

whose covariant generalization is

dp�

d�
= Qu�F

�� : (16)

If (16) is multiplied by p� = mu�, where m is the rest

mass, the result is

1

2

d

d�
(p�p

�) = Qmu�u�F
�� :

However,

p�p
� = m22(1� v2)

= m22=2

= m2 :
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Therefore, we come to the conclusion that

u�u�F
�� = 0 :

Using this result Kobe[2] and Neuenschwander and

Turner[3] showed that F�� is an antisymmetric tensor

(F�� = �F ��). Since F�� is an antisymmetric tensor

of second rank, it has only six independent components,

three of which have already been speci�ed. We name

therefore the remaining components

Bi =
1

2
�ilmFlm : (17)

Note that F kl = ��kljBj . Writing out the compo-

nents of (17) explicitly,

B1 = F23 = F 23 = �B1 ;

B2 = �F13 = �F 13 = �B2 ;

B3 = F12 = F 12 = �B3 :

Hence, a clever physicist who were only familiar with

Podolsky's electrostatics and special relativity could

predict the existence of the magnetic �eld B, which

naturally still lacks physical interpretation.

The content of (12) and (14) can now be seen. For

� = 0, (12) gives

r �B = 0 ; (18)

showing that there are no magnetic monopoles in

Podolsky's electrodynamics, while for � = i we obtain

r� E = �
@B

@t
; (19)

which says that time-varying magnetic �elds can be

produced be E �elds with circulation.

The components � = 0 and � = i of (14) give, re-

spectively,

(1 + a22)r �E = � ; (20)

(1 + a22)

�
r�B�

@E

@t

�
= j ; (21)

which are nothing but a generalization of Gauss and

Amp�ere- Maxwell laws in this order.

For � = i, (16) becomes

dp

dt
= Q (E+ v �B) ; (22)

containing the Lorentz force. For � = 0, (15) assumes

the form
dU

dt
= Qv �E ; (23)

where U = p0 is the particle's energy. Accordingly, our

smart physicist, who was able to predict theB �eld only

from its knowledge of electrostatics and special relativ-

ity, can now-by making judicious use of (22) and (23) -

observe, measure and distinguish the B �eld from the

E �eld of (15). The new �eld couples to moving electric

charge, does not act on a static charged particle, and,

unlike the electrostatic �eld, is capable only of changing

the particle's momentum direction.

Equations (18-21) make up Podolsky's higher-order

�eld equations. Of course, in the limit a = 0, all the

preceding arguments apply equally well to Maxwell's

theory.

Two comments �t in here:

(1) equation (14) is consistent with the continuity

equation (13). In fact, if the divergence of (14)

is taken, we obtain

�
1 + a22

�
@�@�F

�� = @�j
� :

Since F�� is an antisymmetric tensor @�@�F �� is

identically zero. On the other hand, according to

(14), @�j
� = 0. Thus, the equation in hand is

identically zero;

(2) as was recently shown[8], it is not necessary to

introduce a formula for the force density f� rep-

resenting the action of the �eld on a text particle.

We have only to assume that (�f�) is the sim-

plest contravariant vector constructed with the

current j� and a suitable derivative of the �eld

F�� . Applying this simplicity criterion to Podol-

sky's electrodynamics, we promptly obtain

f� = �F��j� ;

where, as we have already mentioned, j� = (�; j).

Therefore,

f0 = �F 0iji = E � j ;
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and

fk = �F k�j� = F 0kj0 + F ikji

= F 0kj0 + �kiljiBl = (�E + j�B)k :

Thus, the force density for Podolsky's electrody-

namics is the same as that for Maxwell's electro-

dynamics, namely, the well-known Lorentz force

density.

IV. Finding the force law for Podolsky's

electrostatics

We show now that (1) is indeed the force law for Podol-

sky's electrostatics. >From (5) it follows that

E = �rV ; (24)

where

V (r) �

Z
d3r0

�(r0)

4�

1� e�R=a

R
:

Eq. (8) can then be rewritten as

�
1� a2r2

�
r2V (r) = ��(r) :

For a charge Q at the origin of the radius vector this

equation reduces to

�
1� a2r2

�
r2V (r) = �Q�3(r) : (25)

We solve this equation using the Fourier transform

method. First we de�ne ~V (k) as follows:

V (r) =
1

(2�)3=2

Z
d3ke�ik�r ~V (k) ; (26)

~V (k) =
1

(2�)3=2

Z
d3reik�rV (r) ; (27)

where d3k and d3r, respectively, stands for volumes in

the three-dimensional k-space and the coordinate space.

If we substitute (26) into (25) and take into account

that

�3(r) =
1

(2�)3

Z
d3ke�ik�r ;

we promptly obtain

~V (k) =
Q

(2�)3=2
M2

k2(k2 +M2)
;

where M2 � 1=a2. So,

V (r) =
QM2

(2�)3

Z
d3k

e�ik�r

k2(k2 +M2)
:

Since the orientation of our coordinate system is arbi-

trary, we may choose the z-axis along r and obtain

c

V (r) =
QM2

(2�)3

Z
1

0

k2dk

Z +1

�1

e�ikrcos�

(k2 +M2)k2
d(cos�)

Z 2�

0

d� ;

d

where r = jrj, k = jkj, and (�; �) are conventional

spherical polar coordinates. As a consequence,

V (r =
QM2

(2�)2

Z +1

�1

sinkr

kr

dk

k2 +M2

=
QM2r

(2�)2

Z
1

�1

sinx

x

dx

x2 +M2r2
:

But,

1

x

1

x2 +M2r2
=

1

M2r2

�
1

x
�

x

x2 +M2r2

�
:

Therefore,

V (r) =
Q

(2�)2
r [I1 � I2] ;

where

I1 =

Z
1

�1

sinx

x
dx ; (28)

I2 =

Z
1

�1

xsinxdx

x2 +M2r2

= Im

Z
1

�1

xeixdx

x2 +M2r2
: (29)

Integral (28) may be found in any textbook on the the-

ory of functions of a complex variable[9]. It can also be
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carried out by means of a trivial trick[10]. Indeed, let

I(�) =

Z
1

0

e��xsinx

x
dx so that I1 = 2I(0)

dI(�)

d�
= �

Z
1

0

e��xsinxdx =
�1

1 + �2

I(�) = �

Z
d�

1 + �2
= C � tan�1�:

But I(1) = 0. Therefore C = �=2. I(�) = �
2�tan

�1�

and I1 = 2I(0) = �.

Integral (29) can be easily evaluated by the method

of contour integration[11]. Consider in this veinR


zeizdz
z2+M2r2 , where the contour of integration  was cho-

sen to be the real axis and a semicircle of in�nite radius

in the upper half plane. Along the real axis the integral

is I2. In the large semicircle in the upper half plane we

get zero, since exp(iz)! 0 for z ! i1.

The residue of

zeiz

z2 +M2r2
=

zeiz

2Mri

�
1

z �Mri
�

1

z +Mri

�

at z = Mri (which is the only pole that lies inside the

contour of integration) is e�Mr

2
. Hence,

I2 = Im(2�i
e�rM

2
) = �e�rM :

As a result,

V (r) =
Q

(2�)2r

�
� � �e�rM

�

=
Q

4�

1� e�r=a

r
:

Accordingly, the electric �eld due to a charge Q at the

origin is given by

E(r) = �rV

= �r

�
Q

4�

1� e�r=a

r

�

=
Q

4�

�
1� e�r=a

r2
�

e�r=a

ra

�
r

r
:

It follows then the force law for Podolsky's electrostat-

ics is

F(r) =
QQ0

4�

�
1� e�r=a

r2
� e�r=ara

�
r

r
;

which is nothing but the force law for which we were

looking (see Eq. (1)).

Recently an algorithm was devised which allows one

to obtain the energy and momentum related to a given

�eld in a simple way[8]. Using this prescription we can

show that in the framework of Podolsky's electrostatics

the energy is given by

E�eld =
1

2

Z
d3x

�
E2 + a2(r �E)2

�
:

Making use of the expression for the electrostatic �eld

we have just found, we promptly obtain

"�eld = Q2=2a ;

which tells us that the energy for the �eld of a point

charge has a �nite value in the whole space. This is

indeed a nice feature of Podolsky's generalized electro-

dynamics.

V. Final remarks

Despite the simplicity of its fundamental assumptions,

Podolsky's model has been little noticed. Currently

some of its aspects have been further studied in the

literature[7;8;12;13]. In particular, the classical self-force

acting on a point charge in Podolsky's model was eval-

uated and it was shown that in this model, unlike what

happens in Maxwell's electrodynamics, the electromag-

netic mass is �nite and enters the particle's equation of

motion in a form consistent with special relativity.

To conclude we call attention to the fact the same

assumptions that lead to Maxwell's equations lead also

to Podolsky's equations, provided we start from a gen-

eralization of the Coulomb's law instead of the usual

Coulomb's law. Yet, in spite of the great similarity be-

tween the two theories, Podolsky's generalized electro-

dynamics leads to results that are free of those in�nities

which are usually associated with a point source.
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Appendix: An important identity involving � functions

An useful identity involving � functions is

r
2 e

�R=a

R
=

e�R=a

a2R
� 4��3(r� r0) ;

where R = jr� r0j.

To prove this let us consider

Z
V

f(r0)r2

�
e�R=a

R

�
d3r0 :

If r is not in the region V over which we are integrating, it never coincides with r0, and it is easily veri�ed by direct

di�erentiation that r2 e�R=a

R
= e�R=a

a2R
. Any region V that contains r0 may be subdivided into a small sphere of

radius � centered on r surrounded by surface S and the remaining volume where r2 e�R=a

R = e�R=a

a2R . Hence,

Z
V

f(r0)r2

�
e�R=a

R

�
d3r0 =

Z
sphere

f(r0)r2

�
e�R=a

R

�
d3r0

+

Z
remaining

volume

f(r0)
e�R=a

a2R
d3r0 :

Now, according to the mean value theorem,

Z
sphere

f(r0)r2

�
e�R=a

R

�
d3r0 = f(�)

Z
sphere

r
2

�
e�R=a

R

�
d3r0 ;

where � is some point in the sphere. Applying the divergence theorem to the last integral, we obtain

Z
sphere

r � r

�
e�R=a

R

�
d3r0 =

Z
S

�
e�R=a

R2
+

e�R=a

Ra

�
R

R
� dS0 :

Note that rr = �rr0 . On the other hand,

Z
S

�
e�R=a

R2
+

e�R=a

Ra

�
R

R
� dS0 = �4�

�
e�R=a +

�e��=a

a

�
:

As � tends to 0, � must approach r, so that

Z
sphere

f(r0)r2

�
e�R=a

R

�
d3r0 = �4�f(r) :

Thus,

Z
d3r0 f(r0)r2 e

�R=a

R
= �4�f(r) +

Z
d3r0

e�R=a

a2R
f(r0)

=

Z
d3r0

�
e�R=a

a2R
� 4��3(r� r0)

�
f(r0) :
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