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We study the Ashkin-Teller model on a Cayley tree of �nite coordination z as a mapping
problem. The stability analysis of the �xed points is used to obtain set of phase diagrams
as a function of z. Our treatment reveals a rich variety of distinct topologies obtained for
these diagrams.

I. Introduction

The Ashkin-Teller model [1] may be considered as

two superposed Ising models which are coupled by a

four-spin interaction term [2]. The Hamiltonian is given

by

H = �J2
X
(ij)

(�i�j + �i�j)� J4
X
(ij)

�i�j�i�j ; (1)

where �i; �i are classical Ising spins variables taking

the values �1 on each lattice site, J2 (J4) denotes the

strenght of the two (four)-spin interactions, and (ij)

denotes a summation over all distincts pairs of nearest-

neighbor sites on a lattice.

This model has been studied on a square lattice and

the structure of its phase diagram is well understood on

the basis of exact results [3, 4]. Recently an analysis of

the dynamical aspects of this model on a square lattice

was reported [5]. The quantum Ashkin-Teller chain [6]

has also been investigated mainly with respect to its

conformal invariance aspects [7]. There were also some

attempts to relate the quantum Ashkin-Teller chain

to the Haldane conjecture [8] through an equivalence

with a spin�1=2 alternating Heisenberg chain [9, 10].

In three dimensions, however, our knowledge of the

phase diagrams relies on approximated techniques, in-

cluding mean-�eld calculations, renormalization group

treatments, series analysis and Monte Carlo method

[11, 12, 13]. The phase diagram thus obtained shows a

variety of multicritical points. However, these approx-

imated results are mainly concerned with the simple

cubic lattice. For other lattices, however, competition

between J2 and J4 may give rise to distinct phase dia-

grams depending on the lattice topology. We thus de-

cided to investigate this point using an approach that,

despite its simplicity, is able to account for the lattice

structure.

In this work we use an iterative procedure to deter-

mine the local properties of the Ashkin-Teller model on

a Cayley tree. We are mainly interested in the �xed

points of a three-dimensional mapping generated by

this scheme. For a Cayley tree of coordination z these

�xed points corresponds to the Bethe-Peierls approxi-

mation. The stability analysis of these �xed points are

then used to obtain the phase diagrams as a function

of the coordination number z.

This paper is organized as follow. In Section II

we formulate the Ashkin-Teller model on a Cayley tree

with arbitrary coordination number z. We derive the

basic equations for an exact three-dimensional map-

ping. In Section III we discuss the stability criteria
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for the �xed point solutions of the mapping along with

a presentation of the phase diagrams obtained accord-

ing to these criteria. Finally, in Section IV we present

some concluding remarks.

II. The Ashkin-Teller model on a cayley tree

The Cayley tree is a lattice with no closed loops

and a �xed coordination number z (Fig. 1 shows a

Cayley tree with z = 3 and four generations). The out-

ermost generation is considered as the �rst shell, the

next generation as the second shell and so on. Due to

its cycle-free structure it is possible to perform a partial

summation decimation over the spins on the outermost

generation. Then we can repeat this process on the next

generation. In this way we obtain recursive relations

between efective �elds acting on successive shells [14].

For instance, considering a site on the (` + 1){th shell

connected to r = z � 1 sites on the `{th shell we have

Figure 1. Three generations of a Cayley tree with coordi-
nation z = 3.

c

X
f�i;�ig

exp[(K2� +H1;`)
rX
i=1

�i + (K2� +H2;`)
rX

i=1

�i + (K4�� +H4;`)
rX
i=1

�i�i]

= 8r[cosh(K2� +H1;`) cosh(K2� +H2;`) cosh(K4�� +H4;`)

+ sinh(K2� +H1;`) sinh(K2� +H2;`) sinh(K4�� +H4;`)]
r (2)

where Ka = Ja=kBT (a = 2; 4), kB is the Boltzmann constant and T is the absolute temperature. The e�ective

�elds H1;`, H2;` and H4;` are generated by the decimation process. Eq. (2) can be written as a single-site e�ective

partition function

Z`+1(�; � ) = A exp[H1;`+1� +H2;`+1� +H4;`+1�� ]; (3)

where H1;`+1;H2;`+1 and H4;`+1 are the new e�ective �elds acting on the (`+ 1){th shell. From Eqns. (2) and (3)

it is straightforward to obtain the recursion relation between successive e�ective �elds. However, it is convenient to

introduce new variables de�ned by

m1;` =

P
f�;�=�1g �Z`(�; � )

Z`

; (4)

m2;` =

P
f�;�=�1g �Z`(�; � )

Z`

; (5)

q` =

P
f�;�=�1g ��Z`(�; � )

Z`

; (6)

where
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Z` = Z`(+1;+1) + Z`(+1;�1)

+ Z`(�1;+1) + Z`(�1;�1): (7)

These variables may be seen as local magnetization (m1 and m2) and polarization (q). The relation between these

parameters and the e�ective �elds can be easily obtained. For instance, on the (` + 1){th shell we have

m1;`+1 =
tanhH1;`+1 + tanhH2;`+1 tanhH4;`+1

D
; (8)

m2;`+1 =
tanhH2;`+1 + tanhH1;`+1 tanhH4;`+1

D
; (9)

q`+1 =
tanhH4;`+1 + tanhH1;`+1 tanhH2;`+1

D
; (10)

where

D = 1 + tanhH1;`+1 tanhH2;`+2 tanhH4;`+1 : (11)

On the other hand the e�ective �elds on the (` + 1){th shell may be expressed in terms of the local magnetization

on the preceeding shell by

H1;`+1 =
r

2
tanh�1

"
2�(m1;` � m2;`q`)

1 + �2m2
1;` � �2m2

2;` � 2q2`

#
; (12)

H2;`+1 =
r

2
tanh�1

"
2�(m2;` � m1;`q`)

1� �2m2
1;` + �2m2

2;` � 2q2`

#
; (13)

H4;`+1 =
r

2
tanh�1

"
2(q` � �2m1;`m2;`)

1� �2m2
1;` � �2m2

2;` + 2q2`

#
; (14)

where we have introduced the variables

� =
t2 + t2t4
1 + t22t4

;  =
t4 + t22
1 + t22t4

; (15)

and

ti = tanh(Ji=kBT ); (i = 2; 4): (16)

Eqns. (8) and (12) de�ne together a three-dimensional mapping. Given a set of parameters (temperature, coupling

constants and coordination number) and a set of boundary conditions (initial conditions), we iterate the mapping

and look for its �xed points, i.e., for points such that

(m1;`+1;m2;`+1; q`+1) = (m1;`;m2;`; q`) = (m�
1;m

�
2; q

�);

d

for some ` � L > 0. These �xed points, if they do ex-

ist, are then associated with the solutions deep within

the Cayley tree. It has been shown that these solutions

correspond to the so-called Bethe-Peierls approxima-

tion on a physical lattice with the same coordination

number [3].
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III. The phase diagrams

In this section we present our results for the phase

diagrams as the coordination number is varied. We will

use the stability analysis of the �xed points of the map-

ping to obtain the phase diagrams in the variables

� = kBT=J2(z � 1) and p = J4=J2: (17)

A �xed point is considered stable if all eigenvalues �i,

for i = 1; 2; 3, of the Jacobian matrix

M =

0
BBBBB@

@m1;`+1

@m1;`

@m1;`+1

@m2;`

@m1;`+1

@q`
@m2;`+1

@m1;`

@m2;`+1

@m2;`

@m1;`+1

@q`
@q`+1
@m1;`

@q`+1
@m2;`

@q`+1
@q`

1
CCCCCA (18)

evaluated at the �xed point are less than one in abso-

lute values. The stability boundary of a �xed point is

de�ned by

j�jmax = 1; (19)

for the largest eigenvalue in absolute value. Each �xed

point is associated with a thermodynamic phase and a

corresponding region of stability in the phase diagram.

It may happen that di�erent regions of stability over-

lap between themselves. In this case the phase which is

realized deep within the tree depends on the boundary

condition. Physically the overlap between regions of

stability indicates the existence of a �rst-order transi-

tion. It turns out that to determine the loci of the �rst-

order transitions we need a free energy functional as-

sociated with the corresponding �xed points. We have

not made any attempt to obtain such a functional since

we are interested only in the qualitative phase diagrams

that may result. However, we remark that a free en-

ergy functional could be obtained by standard methods

[3, 14, 16].

Paramagnetic �xed point

The paramagnetic (trivial) �xed point is given by

m�
1 = m�

2 = q� = 0 and it always exists for any value of

z, p, and �. Their stability boundaries can be obtained

analitically. Figs. 2 through 5 show these boundaries

as the lines L1, L2 and L5. Their equation are given by

p = �r� tanh�1
�
1 + rt21
r + t21

�
; for L1;

p = r� tanh�1
�
1� rt1
rt1 � t21

�
; for L2;

p = r� tanh�1
�
1� rt21
r � t21

�
; for L5:

For z = 3 and 4 the lines L1 and L2 merge together

at the multiphase point � = 0, p = �1 as seen in Figs.

2, 3. For z � 5 they still meet at p = �1 but with

� 6= 0. This common point is denoted by J on Figs.

4, 5. We note also that for any value of the coordina-

tion number the lines L2 and L5 meet together at the

four-state Potts point p = 1. Finally we mention that

L1 is the sole border between the paramagnetic and the

h�� iAF (see below) phases. Thus we conclude that the

transitions between these phases are always continuous,

irrespective of the coordination number.

Figure 2. Phase diagram on the Cayley tree with z = 3. In
the shaded area BCGB there exists two stable �xed points
corresponding to the paramagnetic and the Baxter phases,
whereas inside CDGC there are also two stable �xed points
associated with the h��i and the Baxter phases. We note
that B and D are tricritical points. This general behavior
remains valid on the next phase diagrams.

Non-trivial �xed points

Depending on the coordination number we can �nd

up to �ve distincts non-trivial �xed points. As noted

before [13], each of them corresponds to a di�erent

phase of the original model and are given by
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c

m�
1 = m�

2 = 0; q 6= 0 (Ising phase);

m�
1 = m�

2 6= 0; q 6= 0 (Baxter phase);

m�
1 6= 0;m�

2 = q = 0 (h�i phase);

m�
1 6= m�

2 6= 0; q 6= 0 (Asymmetric Baxter phase);

and a cycle two �xed point

(0; 0; q�)$ (0; 0;�q�) (h�� iAF phase):

d

The stability boundaries of these �xed points have

been determined numerically. Given a point (p; �) on

the phase diagram we choose an initial condition and

iterate the mapping. When the �xed point is attained

we then compute the eigenvalues of the stabilitymatrix.

For the h�� iAF we must take a product of two matrices,

one for (0; 0; q�) and another for (0; 0;�q�). The stabil-

ity criterion (19) still holds in this case. Let us discuss

some representative phase diagrams thus obtained.

Case z = 3 Fig. 2 shows the phase diagram for

z = 3. We note the existence of three phases besides

the already discussed paramagnetic phase. The h�� iAF

phase shares a common border L1 with the paramag-

netic one. Hence L1 is a continuous-transition line. The

Baxter phase is bordered from above by the lines L2, L3

and L4 along the points A, B, G, D and E. The h�� i

phase stability region is bordered by L4 (from point

C to E) and L5. There are two contiguous overlap-

ping regions. Inside the triangular shaped area BCGB

there are two kinds of stable �xed points correspond-

ing to the paramagnetic and Baxter phases. These

�xed points also correspond to Bethe lattice solutions

[3, 14]. In a standard procedure we compute a free en-

ergy density for each solution and decide which phase

is thermodynamically stable [13, 15, 16]. However, we

will refrain our analysis to the model on a Cayley tree

without refering to any free energy density. Hence, we

conclude that a �rst-order transition line, meeting at

point B with the continuous-transition line L2, is lo-

cated within this region. Hence B is a tricritical point.

Analogously, whithin the region CDGC there is a pres-

ence two stable �xed points associated with the Baxter

and h�� i phases. By the same token we conclude that

a �rst-order transition line between these phases ex-

ists inside the above mentioned region. Thus D is also

a tricritical point. Finally, there is a critical endpoint

somewhere along the line GC as two distinct �rst-order

transition lines meets a continous-transition line (L5).

From a qualitative point of view, the structure of the

phase diagram does not change as we vary the coordi-

nation number z, as long as we consider p > 0. In fact,

this picture already reproduce the well-known mean-

�eld results [11, 12, 13]. Therefore, we will focus on the

p < 0 side on the next diagrams.

Case z = 4 In addition to the phases already pre-

sented in the previous case, the h�i is also found as

shown in Fig. 3. This phase goes continuously into

the paramagnetic phase as we cross L2. However, in

crossing the line L6 it goes to the Baxter phase with

jumps on the order parameters m1, m2 and q. This sit-

uation is di�erent from what we have discussed so far

due to the absence of an overlap between the regions of

stability. Based on what was found previously for the

in�nite-coordination limit [13] we conclude that the line
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L6 is a �rst-order transition one and consequently I is

a bicritical point. We did not �nd any evidence of the

asymmetric Baxter phase.

Case z = 5 In this case we found the same phases

as for z = 4. However, there appears an overlap be-

tween the regions of stability of the phases h�� iAF and

h�i. This overlap is shown in Fig. 4 as a shaded region

between lines L7 and L8. Therefore, a �rst-order tran-

sition line between the corresponding phases lies within

the shaded area. Hence, J is another bicritical point.

Figure 3. For z = 4 there appears an additional phase h�i
for p < 0. The line L6 is a �rst-order transition one whereas
I is a bicritical point.

Case z = 16 This phase diagram is qualitatively

similar to the in�nite-coordination limit [13]. In ad-

dition to the phases previously found, the asymmet-

ric Baxter phase is also presented. This new phase is

bounded by the lines L6 and L9 shown in Fig. 5. We

notice that these lines do cross each other before reach-

ing the point I. Due to numerical roundo�s its very

di�cult to locate precisely the crossing point K for low

coordination numbers. In analogy with previous results

[13] we conclude that a new bicritical point is associ-

ated with the crossing point K. Its worth mentioning

that the asymmetric Baxter phase is already found for

z = 7. However, its stability region is too narrow within

the scale settled by the others phases.

Figure 4. Besides the caracterists of the previous case the
phase diagram for z = 5 shows another region between L7

and L8 where there exists both a stable cycle of period two
and a stable �xed point corresponding to the h��iAF and to
the h�i phases, respectively. There is a �rst-order transition
line bordering these phases that goes from the multiphase
point A to the bicritical point J .

Figure 5. In the z = 16 we can note the existence of a very
tiny region (BA) where the asymmetric Baxter phase sets
in. This phase is separated from the h�i and the Baxter
phase by continuous transition lines meeting at the com-
mon bicritical point K. This phase diagram has already the
same topology of the mean-�eld (in�nite coordination limit)
case.

IV. Conclusions

We have studied the Ashkin-Teller model on a

Cayley tree of coordination number z as a three-

dimensional mapping. The �xed points of this map-

ping corresponds to the solution on a Bethe lattice with

the same coordination number. Several phase diagrams

have been shown for representative values of z. These

phase diagrams may be seen as a mean-�eld-like ap-

proximation for Bravais lattices with the same coordi-

nation number. However, thanks to our knowledge of

the two-dimensional model on a square lattice [3], this
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approximation should be interpreted with some cau-

tion. For z = 3, which should correspond to an ap-

proximation to the square lattice, we �nd two tricritical

points and one critical endpoint that are not realized

on the square lattice. As another instance, for z = 6,

which is completely similar to the z = 5 case, there is

no distinction between the triangular and the simple

cubic lattices. In this case, we believe that our results

are a better guide to the simple cubic lattice due to its

higher dimensionality. Finally, its worth to notice that

the asymmetric Baxter phase is not presented for z = 6,

in desagreement with previous analysis [13].
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