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The �eld equations of Mo�at's nonsymmetric gravitational �eld are derived when electro-
magnetic �elds are present, by adopting a non-minimal coupling which ensures the validity
of the equivalence principle. The static, spherically symmetric solution of the �eld of a
charged point particle is obtained.

I. Introduction

Soon after establishing his nonsymmetrical gravita-

tional theory (NGT), Mo�at[1] studied the gravitational

�eld produced by an electric charge[2] adopting a mini-

mal coupling of the electromagnetic �eld to gravitation.

Later, Will[3] showed that such a coupling violates the

weak equivalence principle (WEP) because it predicts

that the test body gravitational acceleration depends

upon its internal electrostatic structure. Then, by writ-

ing a more general and suitable coupling, Mann et al.[4]

were able to maintain the validity of the WEP. Here

we wish to study �rst the consequences of this more

general coupling on the electromagnetic �eld equations

and corresponding energy-momentum tensor. This we

do in Sect. II. In Sect. III we go back to the original

problem of the �eld produced by an electric charge in

the new scheme.

II. The electromagnetic action

Mann et al. give the electromagnetic action

as Iem = � 1
16�

R
d4x
p�gfg��g��[ZF��F�� + (1 �

Z)F��F�� + Y F��F��], where, as usual F�� = A�;� �
A�;� is the electromagnetic �eld tensor. The matrix

g�� is the inverse of the nonsymmetric gravitational

�eld g�� de�ned by g��g�� = g��g�� = ��� . Z and Y

are constants while f is a scalar function whose value

is unity when the antisymmetric part of g�� vanishes,

g[��] ! o, implying that f is a function of
p�g=p�

where g = detg�� and  is the determinant of the sym-

metric part,  = detg(��). When f = 1, Z = 1 and

Y = 0 one recovers the minimally coupled action used

by Mo�at [2], which according to Will [3] leads to a

violation of the WEP. Mann et. al. showed that this

could be avoided with the choice Z � 1 = Y and

f =

p�gp� (2:1)

In this way, the action for a spherically symmetric �eld

becomes the action of the TH�� formalism[5], except

for a term, quadractic in the scalar product of the mag-

netic �eld and the o� diagonal component g[oi], which

makes no contribution to the acceleration of the body

to electrostatic order[3].

The resulting action is then
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c

Iem =

Z
d4x
p�gLem (2:2)

where

Lem =
�1
16�

fg��g�� [ZF��F�� + (1� Z) (F��F�� + F��F��)] ; (2:3a)

which can also be written as

Lem = � 1

16�
fF��F��

h
g(��)g(��) + (2Z � 1)gFro[��]g[��] + (1 � Z)g[��]g[��]

�
; (2:3b)

where f is given by (2.1). We have then one parameter left, Z, but as we shall see the �eld of a spherically symmetric

charge turns out to be independent of Z. Varying the Lagrangian density with respect to g�� one obtains

�
�p�gLem� =

p�g
2

�g��E�� (2:4)

where

E�� =
1

4�
[1
8
(fg�� � 2

@f

@g��
)g��g��( (ZF��F�� + (1� Z)(F��F�� + F��F��))

�fg��((ZF��F�� + (1� Z)(F��F�� + F��F��))] (2:5)

is the energy-momentum tensor of the electromagnetic �eld. This is a traceless tensor, g��E�� = 0, since we have

the relation

g��
@f

@g��
= 0: (2:6)

This can be proved by direct calculation from the relations g�1 = "���g
�og�1g2g�3 and �1 =

"���g
(�o)g(�1)g(2)g(�3).

Next we consider the variation with respect to A� of the �eld plus interaction Lagrangian, $em = �p�gJ�A�. We

get

@� [
p�gf(g(��)g(��) + (2Z � 1)g[��]g[��] + (1� Z)g[��]g[��])F��] = �4�p�gJ�; (2:7)

which is the inhomogeneous Maxwell equation in the presence of the nonsymmetric �eld. The homogeneous equation

is, from F�� = A�;� �A�;� ,

F��;� + F��;� + F��;� = 0; (2:8)

which can be indicated by F[��;�] = 0.

III. The �eld of a charged particle

The gravitational vacuum �eld equations of the NGT are[2]

g��;� � g���
�
�� � g���

�
�� = 0; (3:1)

(
p�gg[��]);� = 0; (3:2)

R(��)(�) = 8�E(��); (3:3)

R[��;�](�) = 8�E[��;�]; (3:4)

where

R��(�) = ����;� �
1

2
(��(��);� + ��(��);�)� �����

�
�� + �����

�

(��); (3:5)
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For a static, spherically symmetric �eld g�� , in spheri-

cal polar coordinates, has the form

g00 = (r) ; g11 = ��(r);

g22 = �r2 ; g33 = �r2sin2�;

g01 = �w(r) = �g10; (3:6)

and all other components equal to zero.

From (3.6) the inverse matrix non-zero elements are

g00 =
�

� � w2
; g11 = � 

� � w2
;

g22 = � 1

r2
; g33 = � 1

r2sin2�
;

g01 =
w

� �w2
= �g10: (3:7)

The solution of (3.2) is wr2(� �w2)
�

1

2 = `2, where

`2, which is called i`2 in Ref.[2] but `2 later in Ref.[6],

is a constant, the conserved fermionic charge. Then,

w2 = �
`4

`4 + r4
: (3:8)

As g = (w2��)r4sin2� and  = ��r4sin2�, we get
from (2.1),

f =

s
1� w2

�
=

s
1� g01g10

g00g11
: (3:9)

The electric �eld is E(r) = F01. Then, outside the

source, Eq.(2.7) yield, for � = 0,

@r

�
r2Ep
�

�
= 0; (3:10)

independently of Z. Upon integration

E =
Q

r2
p
�; (3:11)

where the constant of integration has been put equal

to the charge of the particle to reproduce the usual

Reissner-Nordstr�om [7] result when `2 = 0 which im-

plies, from the equation (3.18) below, � = 1. From

(2.5) and (3.11) we obtain the following non-zero com-

ponents of E��:

4�E00 =
1

2

Q2

r4
q

1� w2

�

�
1 +

w2

�

�
(3:12)

E11 = ��


E00 (3:13)

4�E22 =
Q2

2r2
1q

1� w2

�

(3:14)

E33 = sin2� E22 (3:15)

4�E[01] =
Q2

r4 wp
1�w2

�

: (3:16)

The energy-momentum tensor is independent of Z and,

therefore, the same will occur for the gravitational �eld

equations. From now on the calculation proceeds as

in Ref.[2]. A calculation of R�� has been presented

before[6]. Since the only non-zero component of R[��]

is R[10], Eq.(3.4) is identically satis�ed. As in [2] we

obtain, from ��1R00 + �1R11 = 0,

�
0

�
+


0


+

4

r

`4

`4 + r4
= 0; (3:17)

which integrates to

� =
l4 + r4

r4
; (3:18)

where the constant of integration has been chosen in

such a way that � becomes equal to the Reissner-

Nordstr�om value, one, when `2 = 0.

From (3.8) and (3.18) we obtain

w =
`2

r2
: (3:19)

The R22 equation gives

c

(
r

�
)
0 � 1 +

r

2�

 
�

0

�
+


0


+

4`4

r(`4 + r4

!
= �Q2

r2
1�

1� w2

�

� 1

2

: (3:20)

d
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This di�ers from the corresponding equation of Ref.[2]

by the presence of the inverse square-root factor in the

right-hand side. Using (3.8) and (3.17), Eq.(3.20) yields

the following equation for �,

� r
�

�0

� 1 = �Q2 (r
4 + `4)

1

2

r4
: (3:21)

Choosing the constant of integration in such a way that

the Reissner-Nordstr�om result is obtained when `2 = 0,

we get

1

�
= 1� 2m

r
� Q2

r
f(r); (3:22)

where

f(r) =

Z
(`4 + r4)

1

2

r4
dr: (3:23)

Then, from (3.18) we get

 = (1 +
`4

r4
)(1� 2m

r
� Q2

r
f(r)): (3:24)

For large values of r, r� `, we have f(r) !�r�1 and

the solutions (3.22) and (3.24) go into the one obtained

in Ref.[2]. For small values of r, f(r) ! �`2r�3 and,

therefore,

1

�
= 1� 2m

r
+

Q2`2

3r4
; (3:25a)

 = (1 +
`4

r4
)(1� 2m

r
+

Q2`2

3r4
): (r� `) (3:25b)

The electric �eld is, from (3.11) and (3.18),

E =
Q

r2

�
1 +

`4

r4

�1

2

(3:26)

For large values of r the electric �eld becomes the usual

Coulomb �eld but for small values of r it increases as

r�4.

IV. Conclusions

By adopting a non-minimal coupling that ensures

the validity of the equivalence principle [4] we have

derived the �eld equations of Mo�at's [1,6] nonsym-

metric gravitational �eld when electromagnetic �elds

are present. The above mentioned non-minimal cou-

pling contains one free parameter, Z. However, we have

shown that for a static spherically symmetric �eld the

electromagnetic equation is idependent of Z and, as the

electromagnetic energy-momentum tensor also does not

depend on Z the same will occur for the gravitational

�eld equations. The solution of the �eld equations for

the case of charged point particle is obtained. Apart

from de strong deviation of the metric tensor from the

usual Reissner-Nordstr�om (R -N) solution, the electric

�eld departs strongly from the Coulomb �eld value ob-

tained in the R-N case, to reach it approaches only at

large distances. At small distances it behaves as r�4.
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