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The dynamics of a �nite set of relevant observables, associated to a Hamiltonian of a three
level system is analized in connection with the quantum Zeno e�ect. Since we use the
Hamiltonian that completely describes the physical situation related to the experiment under
study (W.M. Itano et al, Phys. Rev. A41, 2295 (1990)), no reduction or collapse of the
wave function is required to describe the quantum Zeno e�ect.

I. Introduction

Some years ago, Misra and Sudarshan [1] introduced

a problem into quantum mechanics theory which was

called Zeno's paradox in quantum theory or simply

quantum Zeno e�ect. They claimed, based on the usual

quantum theory of measurement involving projection

operators, that an unstable particle which was continu-

ously observed to see whether it decayed would never be

found to decay. Later, several authors [2-8] studied the

problem and generalized the quantumZeno e�ect to the

inhibition of transitions or quantum jumps as the fre-

quency of observation or measurements increased. The

main feature of this e�ect lies on the fact that, appar-

ently, the consequences of repeated measurements on

a quantum system are not included in the Schr�odinger

equation.

Recently, renewed attention has been paid to this

problem since Itano, Heinzen, Bollinger and Wineland

[9] have informed they succeeded in observing this ef-

fect experimentally. Their experiment is, in fact, based

on an experiment previously proposed by Cook (see

Ref.(8)).

The experiment performed by Itano et al. involves

transitions between three levels of 9Be+ ions. The

transitions to be inhibited are transitions between the

ground state (level 1) and an excited metastable state

(level 2). The energy of the excited level 2 is higher

than that of level 1 by !2 which corresponds to radio

frequency. By sending an on-resonance rf �eld, they

create a coherent superposition state of levels 1 and 2

oscillating at the Rabi frequency 
. If this rf �eld is

applied during a time T = �=
 adjusted to make it an

on-resonance � pulse, this implies that after the time

T all the ions initially in the ground level 1 will be

brought into level 2. The state of this two-level sys-

tem can be measured by use of a third level with very

short lifetime (level 3, with energy higher than that of

the ground level by !3 > !2) which is connected by a

strongly allowed optical transition to level 1 and can

decay only to level 1. The state measurement is made

by applying a short on-resonance optical pulse (mea-

surement pulse) to transitions 1 $ 3. If the ion is in

state 1 at the start of this pulse, then it is quickly pro-

moted to level 3, and, since this excited level 3 has a

very short lifetime, the ion returns to level 1 after the

end of the measurement through spontaneous emission

of a photon. This photon in turn can be observed by


uorescence. On the other hand, if the ion is shelved
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in level 2 during this pulse, it is not available to un-

dergo the 
uorescence cycle 1$ 3, and no 
uorescence

occurs. Thus, a strong optical pulse applied to transi-

tion 1 $ 3 measures the state of the two-level system:


uorescence indicates the system was found in level 1,

and no 
uorescence indicates the system was found in

level 2. Moreover, the state of the system after the

measurement is in accordance with the result of the

measurement. Namely, if no 
uorescence is observed,

the system is left in level 2 after the measurement, and,

when 
uorescence is observed, either the electron is left

in level 1 or it returns to this level very quickly. There-

fore 1 $ 2 and 1 $ 3 transitions are allowed while

2$ 3 transitions are forbidden.

Brie
y summarizing the experiment by Itano et

al.[9] we can say that the measurement sequence for

the 1! 2 transition was as follows: They initially pre-

pared almost all the 9Be+ ions in level 1 and emptied

level 2. Then, they applied a rf on-resonance �-pulse for

T = 256 msec. This pulse would promote all ions from

level 1 into the excited level 2. During the rf pulse,

n optical pulses to transitions 1 $ 3, each of length

�p = 2:4 msec., were applied, where n was 1, 2, 4, 8,

16, 32, or 64. The delay from the beginning of the �rst

optical pulse was (T=n� 1.3)msec. The time between

the beginning of one optical pulse and the beginning of

the next one was T=n. They assumed that each optical

pulse produced a reduction of the wave function, and,

by means of the projector operator techniques, derived

the probability of �nding the ion in level 2 at time T to

be

P2(T ) =
1

2

h
1� cosn

��
n

�i
(1:1)

They found that the agreement with the experimental

results was quite good.

Shortly after, L.E. Ballantine [10] and T. Petrosky,

S. Tasaki and I. Prigogine [11] presented notes in which

they asserted that Itano et al's experimental results

could be recovered through conventional quantum me-

chanics without resorting to a repeated reduction or

collapse of the wave function. However, the article by

Ballantine (indeed a comment by the article on Itano

et al) in spite of describing the abovementioned exper-

iment without resorting to any wave function collapse,

did not mention any Hamiltonian that would describe

the physical system either. On the other hand, the

analysis by Petrosky et al. was made in terms of a

split Hamiltonian: a HamiltonianH governing the evo-

lution of the system between measurement pulses, and

a Hamiltonian H0 governing the evolution during the

measurement pulses. The wave function for the system

at time T = (n + 1)Tp + n�p; where Tp was the time

between measurements, was found, through a recursive

relation, to be

c

j (T ) >= [exp(�iHTp) exp(�iH
0�p)]

n exp(�iHTp)j (0) > : (1:2)

d

In fact, in their analysis, Petrosky et al [11] used several

approximations among which the most remarkable are

the Wigner Weisskopf method [12] for treating sponta-

neous emission, and the assumption that photons emit-

ted by successive pulses separated by a time larger than

the lifetime of level 3 are incoherent. Finally, their main

conclusion was that they could derive Eq.(1.1) of Itano

et al. [9] through a quantum mechanical description

without any appeal to repeated collapse of the wave

function.

The disadvantage of the approach of Ref. [11] lies

mainly on two facts: �rst, the authors did not actually

take into account the dynamical presence of the level 3

in the system except for the justi�cation to the using

of the Wigner Weisskopf method, and second, the dy-

namical evolution of the system in terms of the wave

function jy(t) > was obtained through a recursive re-

lation (see Eq.(1.2)), due to the discontinuity imposed

in the Hamiltonian which in fact led to the presence of

two di�erent Hamiltonians governing the evolution of

the system.

The intention of the present e�ort is to introduce a
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di�erent approach to this problem. Although we agree

on the main conclusion of Refs. [10] and [11] concerning

the fact that no reduction of the wave function is re-

quired in order to completely describe the quantum dy-

namics of the experiment by Itano et al.[9], we consider

that the pertinent quantum system can be described

completely by a single Hamiltonian, and that a better

description continuous in time can be given in terms

of the evolution of the expectation values of the rele-

vant operators associated to this Hamiltonian. At this

point , it is worth mentioning the fact that the dynam-

ics thus obtained fully describes the so called process of

decoherence (see Ref.[13] and references therein). This

process refers to a system that loses quantum coherence

(in this case the coherence between levels 1 and 2) due

to the quantal interaction with an enviroment (in this

case the electromagnetic �eld through its coupling with

level 3).

This paper is organized as follows: in Sec. II we

present an alternative description of the problem in

terms of a two level Hamiltonian and the relevant oper-

ators related to it, in order to introduce our approach

to the problem; in Sec. III we start from a three level

approach to reach the complete Hamiltonian of the sys-

tem, and obtain, after some approximations, the set of

evolution equations for the expectation values of the

relevant operators, which are numerically integrated to

yield the same results as in Eq.(1.1) but through an em-

bodying quantum dynamical procedure. Finally, in Sec.

IV, some conclusions concerning the so-called quantum

Zeno e�ect are

drawn.

II. Two level system description of the problem

The analysis made by Itano et al [9] and Cook [8]

in order to obtain the expression for the probability of

�nding an ion into level 1 or level 2, does not take into

account the presence of the level 3. This probability is

derived by considering the time evolution of the density

matrix r describing a two level system. These authors

claim that the consequence of the measurement pulse

is to project an ion into level 1 or level 2, thus destroy-

ing the superposition existing between these two states

(reduction of the wave function). This fact in turn cor-

responds to setting the coherences (�12 and �21) of the

density matrix to zero.

When one is dealing with a dynamical description

of a two level system achieved by the temporal evolu-

tion of the expectation values of the relevant operators

imposed by the dynamics, it is pertinent to �nd the

dynamical behaviour that proves to be tantamount to

that of setting the coherences of the density matrix to

zero.

A Hamiltonian describing the simplest interaction

of a two level system can be written as

Ĥ = 
12â1â
+

2 + 
�12â2â
+

1 (2:1)

where�h = 1:

It is easy to prove that, using the generalized Ehren-

fest theorem, [14] by de�ning the following set of rele-

vant operators

N̂1 = â+1 â1 (2:2a)

N̂2 = â+2 â2 (2:2b)

N̂12 = i(
12â1â
+

2 � 
�12â2â
+

1 (2:2c)

the temporal evolution of the expectation values of

these operators is governed by:

d < N̂1 >

dt
=< N̂12 > (2:3a)

d < N̂2 >

dt
=< N̂12 > (2:3b)

d < N̂12 >

dt
= 2j
12j

2(< N̂2 > � < N̂1 >) (2:3c)

Because of the very de�nition of these relevant op-

erators, N̂1 and N̂2 are the number of particles or popu-

lations of level 1 and 2, respectively, and N̂12 is related

to the current of particles between these two levels.

The set of equations (2.3) can be easily solved, and

if one sets the interaction constant 
12 appropriately,

one obtains, as expected, the Rabi oscillations between

levels 1 and 2.

In order to compare this approach to that used by

Itano et al [9] and Cook [8], it is convenient to normalize

the expectation value of the total number of particles of

the system to one, i.e. < N̂1 > + < N̂2 >= 1; so that

< N̂1 > and < N̂2 > thus represent the probabilities of

�nding the particle in level 1 or in level 2, respectively.
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The dynamical equivalent of setting the coherences

in the density matrix to zero in order to provide the

so-called collapse of the wave function due to the mea-

surement performed on the system, is found to be the

setting of the expectation value of the current of par-

ticles, i.e. < N̂12 > , to zero. In the case of the ex-

periment made by Itano et al [9] this can be achieved

modifying Eq.(2.3c) by letting < N̂12 > rapidly de-

cay during the pulse of measurement. In an attempt

to arti�cially reproduce the dynamical behaviour ex-

pected, we can modulate a strong exponential decay by

narrow gaussian functions. These gaussian functions

would be present only at the measurement pulses, and

their width (proportional to �) related to the length

of the measurement pulse. Thus, the Eq.(2.3c) would

turn into

d < N̂12 >

dt
= 2j
12j

2(< N̂2 > � < N̂1 >)

�
d < N̂12 >

�
=

 
NX
n=1

exp

(
�

�
t � nT

N
��

�2
�2

)!

(2:3d)

where N is the number of measurements made during

the period T . In order to reproduce the experimen-

tal results, we set T = 0:26 sec, � = 0:001 sec, and

� = 0:0013 sec, on the one hand, and letting 
12 = 6:14

sec�1, so as to adjust the � pulse (from analytical inte-

gration of Eqs.(2.3a-c). It is straightforward to see that

the oscillating Rabi frequency 
 of the system equals


 = 2j
12j and therefore, as a � pulse is characterized

by 
T = �, one is led to the previous value of 
12).

The time evolution of the number of particles of levels

1 and 2 for the particular case of N = 4, which were

obtained through numerical integration of Eqs. (2.3), is

shown in Fig. 1. We can see that the numerical results

are in complete agreement with the expected values (ei-

ther experimental or theoretical, according to Refs.[8]

and [9]). In Fig. 2 we depict the temporal evolution

of < N̂12 >, showing that the expectation value of the

current of particles between levels 1 and 2 goes to zero

in each pulse.

Figure 1. Temporal evolution of < N̂1 > and < N̂2 >
(namely, the expectation values of the number of parti-
cles of level 1 and 2) for a modi�ed two level system ac-
cording to Eqs.(II.3a-II.3c), with N=4. Final values of

< N̂1 >= 0:63631 and < N̂2 >= 0:36369:

Figure 2. Temporal evolution of < N̂12 > (namely the
expectation value of the current of particles between lev-
els 1 and 2) for a modi�ed two level system according to
Eqs.(II.3a-II.3c) and for the particular number of measure-
ment pulses N = 4:

III. Three level system description

When considering carefully the details of the experi-

ment proposed by Itano et al [8], it is necessary, in order

to try to obtain a complete dynamical description of the

quantum process involved, to include the third atomic

level.

Therefore, a three level system, in which there ex-

ists a constant interaction between the �rst and second

levels (namely the one provided by the � pulse), and a

strongly driven interaction between levels 1 and 3 exist-

ing only at very short periods (namely the measurement

pulses), can be written as



Brazilian Journal of Physics, vol. 27, no. 4, december, 1997 609

Ĥ0 = 
12â1â2 + 
�12a2a
+

1 + f(t)(
13â1â3 + 
�13a3a
+

1

(3:1a)

where we can de�ne f(t) as a succession of very nar-

row gaussian functions centred around the measure-

ment times. Thus,

f(t) =
NX
n=1

exp

(
�

�
t�nT
N��

�2
�2

)
(3:1b)

with N; T;�, and � de�ned as in Sec. II. At this stage,

it is pertinent to notice that we are particularly in-

terested in the dynamical evolution of the expectation

values of the operators:

Ô1 = â+1 â1 (3:2a)

Ô2 = â+2 â2 (3:2b)

Ô3 = â+3 â3 (3:2c)

since they represent the particle number operators of

levels 1, 2 and 3, respectively. As was mentioned be-

fore, the normalizing condition < Ô1 > + < Ô2 >

+ < Ô3 >= 1 turns these expectations values into the

probabilities of �nding the atom in level 1, 2 and 3, re-

spectively. In order to obtain the dynamical equations

for the expectation values of the operators (3.2a-c), this

set must be augmented to include the following relevant

operators:

Ô4 = i(
12â1â
+

2 � 
12â2â
+

1 ) (3:2d)

Ô5 = i(
13â1â
+

3 � 
13â3â
+

1 ) (3:2e)

Ô6 = 
13

�
12â2â

+

3
+ 
�13
12â3â

+

2
) (3:2f)

so as to close a semialgebra under commutation with

the Hamiltonian (3.1a), yielding

[Ĥ0; Ô1] = �iÔ4 � if(t)Ô5 (3:3a)

[Ĥ0; Ô2] = iÔ4 (3:3b)

[Ĥ0; Ô3] = if(t)Ô5 (3:3c)

[Ĥ0; Ô4] = i2j
12j
2(Ô1 � Ô2) � if(t)Ô6 (3:3d)

[Ĥ0; Ô5] = if(t)2j
13j
2(Ô1 � Ô3)� iÔ6 (3:3e)

[Ĥ0; Ô6] = ij
12j
2Ô5 + if(t)j
13j

2Ô4 (3:3f)

which in turn de�nes the following system of di�erential

equations for the expectation values of these operators:

d < Ô1 >

dt
=< Ô4 > +f(t) < Ô6 > (3:4a)

d < Ô2 >

dt
= � < Ô4 > (3:4b)

d < Ô3 >

dt
= �f(t) < Ô6 > (3:4c)

d < Ô4 >

dt
= �2j
12j

2(< Ô1 > � < Ô2 >)+f(t) < Ô6 >

(3:4d)

d < Ô5 >

dt
= �2j
13j

2(< Ô1 > � < Ô3 >)+ < Ô6 >

(3:4e)

d < Ô6 >

dt
= �j
12j

2 < Ô5 > �f(t)j
13j
2 < Ô4 >

(3:4f)

Due to the presence of the function f(t), this system

has time dependent coe�cients, which does not allow

for a direct analytical integration.

The new operators appearing in Eqs.(3.3a-f) in or-

der to close the semialgebra under commutation with

Ĥ0, deserve the following comment: < Ô4 > and

< Ô5 > are operators de�ning the current of parti-

cles between levels 1 and 2 and between levels 1 and

3, respectively. The interactions between these levels

were the ones included in the Hamiltonian (3.1a). On

the other hand, < Ô6 > represents a kind of \bridge"

interaction between levels 2 and 3 (notice the products


13

�
12 and 


�
13


�
12) that is imposed by the dynamics of

the problem, in spite of the fact that a direct inter-

action between these two levels is not included in the

Hamiltonian < Ô0 >.

Nevertheless, the Hamiltonian given by Eq.(3.1a)

does not yet take into account all the physical charac-

teristics involved in the experiment of Ref. (9), since it

does not include the spontaneous emission that occurs

when an atom decays from level 3 to level 1, owing to

the very short lifetime in the upper level. Thus, the

Hamiltonian should be modi�ed according to

Ĥ = Ĥ0 + Ĥ1 (3:5a)

with

Ĥ1 =
1X
k=1

f(!k � !3)b̂k + b̂k + (
kâ1â
+

3 ak + 
�k â3â
+

1 b̂
+

k

(3:5b)

where the rotation wave approximation is used.
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The Hamiltonian Ĥ1 will be considered a pertur-

bation to the Hamiltonian Ĥ0. The �rst of the two

summations in Ĥ0 accounts for the quantized electro-

magnetic �eld, while the second one describes the in-

teraction that allows for the destruction of a particle

in level 3, its creation in level 1 and the creation of a

photon in the electromagnetic �eld (plus H.C.).

The di�culty that arises when dealing with the

Hamiltonian given by Eqs. (3.5) is that it is no longer

possible to close a �nite semialgebra of operators un-

der commutation with the Hamiltonian starting from

the set given by (3.2a-c). This is due to the presence

of trilinear operator terms appearing in the last sum-

mation of Eq.(3.5b), whose e�ect is to introduce new

operators of higher order than trilinear. Therefore we

can ascertain that it is not possible to obtain an exact

analytical resolution of the dynamical equations for the

expectation values of the relevant operators related to

the Hamiltonian (3.5a).

Nevertheless, if the Hamiltonian Ĥ1 is taken as a

perturbation on Ĥ0, we can make some approximations

in order to transform the problem into a manageable

one.

To start with, it is easy to see that

[Ĥ; Ô1] = �iÔ4 � if(t)Ô5 +
1X
k=1

(Âk � Â+

k ) (3:6a)

[Ĥ; Ô2] = iÔ4 (3:6b)

[Ĥ; Ô3] = if(t)Ô5 +
1X
k=1

(Â+

k � Âk) (3:6c)

where we de�ne, following Ref.(15), the non-hermitian

Âk operator according to

Âk = 
kâ1â
+

3 b̂k : (3:7)

We are now interested in obtaining the temporal

evolution of the expectation value of Âk. In order to

do so, we compute

c

[Â; Âk] = �(!k � !3)Âk � j
kj
2Â3 � 
�12
kâ2â

+

3 b̂k

+f(t)
�13
k(â
+
1 â1 � â+3 â3)b̂k +

1X
k0=1


�k0
k(â
+
1 â1 � â+3 â3)b̂

+

k0 b̂k (3:8)

At this level, we neglect the third and fourth term in Eq.(3.8) due to the fact that they introduce interactions

between levels and the electromagnetic �eld that are not present in the Hamiltonian of the system, and also neglect

the last term for the same reason in addition to the so-called Born approximation [15-17] (which neglects corrections

that would introduce terms of equal or higher order than O(
2k)). Therefore, after these approximations, we obtain

d < Âk >

dt
= �i(!k � !3) < Âk > �ij
kj

2 < Ô3 > (3:9)

which can be formally integrated to yield

< Âk > (t) = �ij
kj
2 expf�i(!k � !3)tg

Z 1

0

expfi(!k � !3)t
0g < Ô3 > (t0)dt0 (3:10a)

and, by direct hermitean conjugation,

< Â+

k > (t) = ij
kj
2 expfi(!k � !3)tg

Z 1

0

expf�i(!k � !3)t
0g < Ô3 > (t0)dt0 (3:10b)

From Eq.(3.6a), we obtain

d < Ô1 >

dt
=< Ô4 > +f(t) < Ô5 > +i

1X
k=1

(< Âk > � < Â+

k >) (3:11a)

Replacing Eqs.(3.10a,b) into Eq.(3.11a) yields
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d < Ô1 >

dt
=< Ô4 > +f(t) < Ô5 > +i

1X
k=1

2j
kj
2

Z 1

0

cos(!k � !3)(t � t0) < Ô3 > (t0)dt0 (3:11b)

d

If we now use the Markov approximation [15-17] (as-

suming that the decay time of the atomic system is

much longer than !�1
3
), we can replace by < Ô3 > (t0)

by < Ô3 > (t) inside the integral and let the upper

limit go to in�nity. Then, if we perform the change of

variables � = t�t0 and de�ne Ik =
R1
0

cos(!k�!3)�d� ,

we �nally obtain

d < Ô1 >

dt
=< Ô4 > +f(t) < Ô5 > +� < Ô3 >

(3:12a)

where

� =

jX
inftyk=12j
kj

2Ik : (3:12b)

Now, it is straightforward to verify that, following

the same procedure as above, one obtains:

d < Ô3 >

dt
= �f(t) < Ô5 > +� < Ô3 > (3:13)

Therefore, we have shown so far that the perturba-

tive treatment of Ĥ1 allows for the dynamical descrip-

tion of the spontaneous decay between levels 3 and 1.

We will now examine further the consequences of this

perturbation on the rest of the evolution equations for

the expectation values of the relevant operators, namely

Eqs.(34d-f).

First, we have to compute the following commuta-

tors:

c

[Â; Ô4] = i2j
12j
2(Ô1 � Ô2) � if(t)Ô6 (3:14a)

[Â; Ô5] = i2j
13j
2(Ô1 � Ô3) � iÔ6 + i

1X
k=1

f(B̂k � Ĉk) + (B̂+

k � Ĉ+

k )g (3:14b)

[Â; Ô6] = ij
12j
2Ô5 + if(t)j
13j

2Ô4 +
1X
k=1

(D̂+

k � D̂k) (3:14b)

where the following non hermitian operators have come up

B̂k = 
k

�
13b̂ka

+

1 â1 (3:15a)

Ĉk = 
k

�
13b̂kâ

+

3 â3 (3:15b)

D̂k = 
k

�
13
12b̂kâ

+

2 â1 (3:15c)

Therefore, it is now necessary to calculate the temporal evolution of the expectation values of the operators

given by Eqs.(3.15a-c).

Thus, we compute

[Ĥ; B̂k] = �(!k � !3)B̂k � if(t)
k

�
13b̂kÔ5 + 
k


�
13
12b̂kâ

+

2 â1

�
k

�
12
13b̂kâ

+

1 â2 � j
kj
2
�13â

+

1 â
+

1 â1

+
1X

k0=1

(
k0
k
13b̂k0 b̂kâ
+

3 â1 � 
�k0
k

�
13b̂kb̂

+

k0 â
+

1 ) (3:16a)
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At this point, we will neglect the last �ve terms in

Eq.(3.16a) under the following approximations: a) all

of these terms represent interactions between the atom

levels and the electromagnetic �eld not belonging to

the model adopted for the system we want to describe,

and b) the last three terms contribute with corrections

introducing terms of equal or higher order than O(
2k)

(the Born approximation, see Refs. (15), (16) and (17)),

on the other. It should also be noticed that, in spite

of the fact that the third term equals D̂k, it is all the

same neglected at this level since it is a correction to the

evolution of B̂k and not to the evolution of the relevant

operators (see Eq.(3.14c)).

Therefore we can write

[Ĥ; B̂k] = �(!k � !3)B̂k � i�̂k(t)Ô5 (3:16b)

where we have de�ned the following non hermitian

time-dependent operator

�̂k(f) = f(t)
k

�
13b̂k : (3:17)

Thus, if one makes the approximations that have

just been described, it can also be easily proven that

[Ĥ; Ĉk] = �(!k � !3)Ĉk +�i�̂k(t)Ô5 (3:18)

Therefore, in order to complete the equation of mo-

tion for < Ô5 >, we have to calculate the temporal

evolution of < B̂k � Ĉk > (t) (see Eq.(3.14b)). From

Eqs.(3.16b) and (3.18), we can write

d < B̂k � Ĉk >

dt
= 2 < �̂k(t) >< Ô5 > (3:19)

where we have explicitly uncorrelated operators �̂k(t)

and Ô5. Then, we obtain

< B̂k � Ĉk > (t) = 2

Z t

0

< �̂k(t
0) >< Ô5 > (t0)dt0

(3:20a)

Finally, using the Markov approximation [15-17]

into the integral in Eq.(3.20a), this equation turns into

< B̂k � Ĉk > (t) =< Ô5 > (t)

Z 1

0

< �̂k(t
0) > dt0

(3:20b)

and also, by taking the hermitian conjugate, we can

write

< B̂+

k � Ĉ+

k > (t) = 2 < Ô5 > (t)

Z 1

0

< �̂+k (t
0) > dt0

(3:20c)

Thus, replacing Eqs.(3.20b,c) into Eq.(3.14b), we �-

nally arrive at the equation of motion

c

d < Ô5 >

dt
= �2f(t)j
13j

2(< Ô1 > � < Ô3 >)+ < Ô6 > �� < Ô5 > (3:21)

where

� =
1X
k=1

2

Z 1

0

(< �̂k(t
0) > + < �̂+k (t

0) >)dt0 (3:22)

d

can be regarded as a parameter which depends, among

other things, on the number of measurement pulses N

through f(t) (see Eq.(3.1b)).

Therefore, the last thing that is left to study in order

to complete the present analysis is the temporal evolu-

tion of the expectation value of D̂k so as to evaluate

the perturbation introduced to the equation of motion

for < Ô6 > (see Eqs.(3.14c) and (3.15c)). Thus, we

compute

c

[Ĥ; D̂k] = �(�̂k(t) + �̂+k (t))Ô6 + (�̂k(t) + �̂+k (t))
13

�
12â2â

+

3 + �̂+k (t)

�
13
12â3â2 � (!k � !3)D̂k: (3:23a)
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We now make a drastic approximation as we will

neglect the last three terms in Eq.(3.23a), on the basis

of the following criteria: �rst, Ô6 is an operator im-

posed by the dynamics of the problem to �rst order

(see Eqs.(3.3d-f)) but describing an interaction which

is not present by itself in the Hamiltonian of the sys-

tem; second, the appearance of operators D̂k (or D̂+

k )

is a consequence of the perturbative Hamiltonian on

the dynamics of Ô6 (see Eq.(3.14c)). So, we neglect

these last three terms in a truncation of the successive

approximations just described.

Therefore, we can write

[Ĥ; D̂k] = �(�̂k(t) + �̂+k (t))Ô6 (3:23b)

obtaining

d < D̂k >

dt
= �i < �̂k(t) + �̂+k (t) >< Ô6 > (3:24)

where we have also explicitly uncorrelated operators

�̂k(t), �̂
+

k (t) and Ô6. By using the Markov approxima-

tion [15-17] on integrating Eq.(3.24), we see that

< D̂k > (t) = �i < Ô6 > (t)

Z 1

0

< �̂k(t
0)+ �̂+k (t

0) > dt0

(3:25a)

and, consequently,

< D̂+

k > (t) = i < Ô6 > (t)

Z 1

0

< �̂k(t
0) + �̂+k (t

0) > dt0

(3:25b)

Finally, using Eqs.(3.25a-b) and (3.14c), we arrive at

the equation of motion for < Ô6 >:

c

d < Ô6 >

dt
= �j
12j

2 < Ô5 > �f(t)j
13j
2 < Ô4 > �� < Ô6 > (3:26)

where � is given by Eq.(3.22).

Summarizing, we have obtained, under the above mentioned approximations, that the Hamiltonian Ĥ (Eq.(3.5a))

leads, for the expectation values of the relevant operators described by Eqs.(3.2a-f), to the following set of di�erential

equations

d < Ô1 >

dt
=< Ô4 > +f(t) < Ô5 > �� < Ô3 > (3:27a)

d < Ô2 >

dt
= � < Ô4 > (3:27b)

d < Ô3 >

dt
= �f(t) < Ô5 > �� < Ô3 > (3:27c)

d < Ô4 >

dt
= �2j
12j

2(< Ô1 > � < Ô2 >) + f(t) < Ô6 > (3:27d)

d < Ô5 >

dt
= �2f(t)j
13j

2(< Ô1 > � < Ô3 >)+ < Ô6 > �� < Ô5 > (3:27e)

d < Ô6 >

dt
= �j
12j

2 < Ô5 > �f(t)j
13j
2 < Ô4 > �� < Ô6 > (3:27f)

d

where � and � are de�ned according to Eqs.(3.12b) and

(3.22). It is important to notice that, recourse to these

equations, a depends on the electromagnetic �eld and

its coupling constants to the atom, and b depends not

only on the electromagnetic �eld and its coupling to the

atom but also on the function f(t) which modulates the

measurement pulses.

On inspecting the system (3.27) we can immediately

see that it is a system of linear di�erential equations

but with time dependent coe�cients. Due to the com-

plexity of these time dependent coe�cients, the inte-

gration of (3.27) can only be achieved numerically. In
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order to see the features of this model, in Figs. (3-

17) we depict the dynamical evolution of the operators

< Ô1 >, < Ô2 > , < Ô3 > and < Ô4 > obtained by

numerical integration of the system (3.27) through the

Runge-Kutta method, for N = 1, 2, 4, 8, 16, 32 and

64, respectively (N , as de�ned before, is the number

of measurement pulses). The number of measurement

pulses was chosen so as to compare our results with the

experiment proposed in Ref.(9). In order to reproduce

the strong spontaneous decay from level 3 to level 1, we

set � = 2000 sec�1, except for the Figs. (15) and (16)

where we set � = 8000 sec�1 due to the high frequency

to the measurement pulses. So as to clarify this point,

we reproduce in Figs. (17) and (18) the same physical

situation as in Figs. (7) and (8) but with the value � =

20000 sec�1 obtaining the same �nal results for < Ô1 >

and < Ô2 >. Depending on the number of measure-

ment pulses, the value of � was adjusted in order to

provide the expected dynamical behaviour of < Ô4 >.

In spite of the fact that in all cases the agreement with

the expected results was quite good, we have to no-

tice that the �rst measurement pulse does not yield for

< Ô4 > such a good approach to zero as in the follow-

ing pulses. Finally, we have chosen 
13 = (800000)1=2

sec�1, related to the strong optical transition 1! 3.

Figure 3. Temporal evolution of < Ô1 >, (a) < Ô2 > and

< Ô1 > (c) (namely, the expectation values of the number
of particles of level 1, 2 and 3) for the particular values of
� = 2000 sec�1, �=20 sec�1 and number of measurement
pulses N = 1 (see Eqs.(3.27a-3.27f). Final values of < Ô1 >

=0.00122 and < Ô2 > =0.99878.

Figure 4. Temporal evolution of < Ô4 > (namely, the ex-
pectation value of the current of particles between level 1
and 2) for the particular values �=2000 sec�1, �=20 sec�1

and number of measurement pulses N=1.

Figure 5. Temporal evolution of the operators < Ô1 >

(a), < Ô2 > (b) and < Ô3 > (c) (namely, the expectation
values of the number of particles of level 1, 2 and 3) for
� = 2000 sec�1 and � = 35 sec�1, and number of measure-
ment pulses N = 2: Final values of < Ô1 >=0.49903 and
< Ô2 > =0.50090.

Figure 6. Temporal evolution of < Ô4 > (namely, the ex-
pectation value of the current of particles between level 1
and 2) for � = 2000 sec�1 and � = 35 sec�1 and the number
of measurement pulses N = 2.
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Figure 7. Temporal evolution of < Ô1 > (a) , < Ô2 > (b)

and < Ô3 > (c) (namely, the expectation values of the num-
ber of particles of level 1, 2 and 3) for the particular values
for � = 2000 sec�1, � = 67:5 sec�1 and number of measure-
ment pulses N = 4. Final values of < Ô1 >=0.62791 and
< Ô2 >=0.37200.

Figure 8. Temporal evolution of < Ô4 > (namely, the ex-
pectation value of the current of particles between level 1
and 2) for the particular values for � = 2000 sec�1 and �

= 67.5 sec�1, and number of measurement pulses N = 4.

Figure 9. Temporal evolution of < Ô1 > (a), < Ô2 > (b)

and < Ô3 > (c) (namely, the expectation values of the num-
ber of particles of level 1, 2 and 3) for the particular values
for � =2000 sec�1, � = 100 sec�1, and number of measure-
ment pulses N = 8. Final values of < Ô1 >=0.77979 and
< Ô2 > =0.22010.

Figure 10. Temporal evolution of < Ô4 > (namely, the ex-
pectation value of the current of particles between level 1
and 2) for the particular values � = 2000 sec�1 and �=100
sec�1, N = 8.

Figure 11. Temporal evolution of < Ô1 > (a), < Ô2 > (b)

and < Ô3 > (c) (namely, the expectation values of the num-
ber of particles of level 1, 2 and 3) for the particular values
for � =2000 sec�1, � =160 sec�1, N = 16. Final values of
< Ô1 >=0.88720 and < Ô1 >=0.11268.

Figure 12. Temporal evolution of < Ô4 > (namely, the ex-
pectation value of the current of particles between level 1
and 2) for the particular values � = 2000 sec�1 and � = 160
sec�1, N = 16.
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Figure 13. Temporal evolution of < Ô1 > (a), < Ô2 >

(b) and < Ô3 > (c) (namely, the expectation values of the
number of particles of level 1, 2 and 3) for the particular
values � =2000 sec�1, � =255 sec�1, N = 32. Final values
of < Ô1 >=0.95173 and < Ô2 > =0.04815.

Figure 14. Temporal evolution of < Ô4 > (namely, the ex-
pectation value of the current of particles between level 1
and 2) for the particular values � = 2000 sec�1 and � =255
sec�1, N = 32.

Figure 15. Temporal evolution of < Ô1 > (a), < Ô2 > (b)

and < Ô3 > (c) (namely, the expectation values of the num-
ber of particles of level 1, 2 and 3) for the particular values
for � =8000 sec�1, � =442 sec�1, N = 64. Final values of
< Ô1 >=0.98508 and < Ô2 >=0.01494.

Figure 16. Temporal evolution of < Ô4 > (namely, the ex-
pectation value of the current of particles between level 1
and 2) for the particular values � =8000 sec�1 and � =442
sec�1, N = 64.

Figure 17. Temporal evolution of < Ô1 > (a), < Ô2 > (b)

and < Ô3 > (c) (namely, the expectation values of the num-
ber of particles of level 1, 2 and 3) for the particular value
of � = 20000 sec�1 and same physical situation as in Fig.
7. Final values of < Ô1 >=0.62348 and < Ô2 >=0.37165.

Figure 18. Temporal evolution of < Ô4 > (namely, the ex-
pectation value of the current of particles between level 1
and 2) for the particular value of � = 20000 sec�1 and same
physical situation as in Fig. 8.
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IV. Conclusions

The advantage of the approach developed in this pa-

per is by itself obvious: we have found a �nite set of

relevant observables, namely fÔ1; Ô2; Ô3; Ô4; Ô5; Ô6; g

that completely describes the evolution of the quantum

system described by the Hamiltonian (3.5) through the

di�erential equations (3.27). The introduction of the

last terms in Eqs.(3.27a,c,e,f) is a direct consequence of

the presence of Ĥ1 in the Hamiltonian of the system (see

Eqs.(3.5) and Eqs.(3.4)). The validity of the approxi-

mations that were made in order to reach this �nal set of

equations is justi�ed by the success of these equations in

reproducing the expected results. As mentioned before,

the parameter � (see Eq.(3.12b)) depends basically on

the strength of the coupling between the electromag-

netic �eld and the atom and allows for the spontaneous

decay from level 3 to level 1. On the other hand, the

parameter � (see Eqs. (3.17) and (3.22)) also depends

on the number of measurement pulses through the func-

tion f(t). It is interesting to notice that the presence

of the last terms in Eqs.(3.27e,f), namely the ones with

the factor �, allows for the required fact that the ex-

pectation value of the operator related to the current

of particles between levels 1 and 2, i.e. < Ô4 >, goes to

zero after each measurement pulse. It is worth stress-

ing the fact that this dynamical behaviour is not ob-

tained by arti�cially manipulating the corresponding

evolution equation (3.27d), as it has been done in Sec.

II for the two level approach to the problem. Moreover,

the presence or not of Ĥ1 in the Hamiltonian does not

modify the evolution equation for (c.f. Eq.(3.4d) and

Eq. (3.27d)). This di�erent dynamical behaviour is

therefore strictly related to the appearance of the last

two terms in the evolution equations for < Ô5 > and

< Ô6 > (c.f. Eqs.(3.4e,f) and Eqs.(3.27e,f)).

Finally, we can conclude that the set of di�eren-

tial equations (3.27), concerning the temporal evolution

of the expectation values of the relevant operators be-

longing to the dynamics of the Hamiltonian (3.5), fully

reproduces the experimental results of the experiment

by Itano et al. It should be noticed that we have not

made use of any reduction or collapse of the wave func-

tion of the system, since the proper Hamiltonian com-

pletely describing the physical situation related to the

experiment under study is used. Regarding this partic-

ular point, our work is in accordance with Refs.[18] and

[19], although di�erent methods were employed. More-

over. we could conclude that our quantum dynamical

treatment is essentially indicating that the experiment

of Itano et al [9] constitutes a concrete experimental

example of the decoherence process fully described by

V. Zurek (Ref.[13]). The environment (in this case the

electromagnetic �eld) would be playing the role of the

observer as it monitors the system, causing the deco-

herence between levels 1 and 2. The relevant aspect

lies on the fact that this decoherence process comes out

as a consequence of the complete quantum dynamical

description of the system.
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