
Brazilian Journal of Physics, vol. 27, no. 4, december, 1997 585

A Thermo-Hydrodynamic Theory Based on

Informational Statistical Thermodynamics

J. Galv~ao Ramos and �Aurea R. Vasconcellos

Instituto de F��sica `Gleb Wataghin',

Universidade Estadual de Campinas, Unicamp

13083-970 Campinas, S~ao Paulo, Brazil

and

Leopoldo S. Garcia-Colin

Departamento de F��sica,

Universidad Aut�onoma Metropolitana

Apartado Postal 55-534; 09340 { Mexico, DF, Mexico,

and El Colegio Nacional, Luiz Gonz�alez Obregon 23,

06240 { Mexico, DF, Mexico

In commemoration of Roberto Luzzi's 60th birthday

Received April 15, 1997

We consider the hydrodynamic description of a uid of particles in the context of the classical
approach to the Nonequilibrium Statistical Operator Method. It is based on the information
entropy ensemble of Predictive Statistical Mechanics, and its accompanying Informational
Statistical Thermodynamics. We start with a description of the macroscopic state of the sys-
tem in terms of single- and two-particle reduced dynamic density functions in phase space,
and the accompanying Lagrange multipliers (intensive nonequilibrium thermodynamic vari-
ables) that the method introduces. In terms of this basic set of dynamical variables we
derive the equations of evolution for the mass, momentum, and energy densities, as well a
the continuity equation for the informational entropy. It is shown how these equations are
to be restricted in order to recover the results of classical hydrodynamics (based on linear
irreversible thermodynamics), as well as a Gibbs relation de�ning local equilibrium. The
di�erences between the generalized formalism and this classical limiting case are discussed.

I. Introduction

Equilibrium Statistical Mechanics is well known to

provide microscopic foundations to equilibrium Ther-

modynamics and so it is expected that Nonequilib-

rium Statistical Mechanics should play the same role

in the case of the Thermodynamics of irreversible pro-

cesses. This is the case not only in the linear regime

(the so called Onsager's regime) but also in the non-

linear regime. The latter one is today of great interest

because of the implicit possibility to describe complex

behavior in dynamical systems. That is, dealing with

an unexpected, rich, and, in a certain sense, surpris-

ing behavior of the system, that is completely absent in

the linear regime. This question is encompassed in the

emerging theory of complexity [1, 2]. The role of irre-

versible dissipative evolution in open nonlinear systems

away from equilibrium leading to complex behavior of

a self-organized, coherent, and functional character was

pointed out since the middle of this century by Ilya

Prigogine and the Brussels' School, and the concept

of (self-organized-synergetic) dissipative structures was

introduced, a pioneering concept in the theory of com-

plexity (see for example references [3-9]).
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Linear nonequilibrium thermodynamics and statis-

tical mechanics received a great deal of attention from

the decade of the thirties onwards. It was mainly based

on the transport theory originated in Boltzmann's work

during last century, being largely used in solid state the-

ory in conjunction with a quasi-particle approach (e.g.

see reference [10]), having its culmination in the decade

of the �fties with the uctuation-dissipation theorem;

Kubo's transport theory; and the method of the double-

time thermodynamic Green functions devised by Bo-

goliubov and Tyablikov (e.g. Ch. III in reference [11]).

Clearly, to a certain extent due to the increasing

pressure put forward by recent noticeable developments

of experimental techniques and technological advances

in the area of physical-chemistry, as well as in biology,

(see for example reference [12]) scienti�c research in the

nonlinear regime expanded considerably. It is worth

mentioning the statement of Ryogo Kubo in the open-

ing address of the Oji Seminar [13] in 1978: \Statistical

Mechanics of nonlinear nonequilibrium phenomena is

just in its infancy [and] further progress can only be

hoped by close cooperation with experiment." Since

then some progress has been achieved.

We recall that the purpose of Statistical Mechanics

of systems away from equilibrium is to determine their

thermodynamic properties and the evolution in time of

macroscopic observables of such systems in terms of the

dynamical laws which govern the motion of their con-

stitutive elements. The analysis of nonequilibrium sys-

tems presents far greater di�culties than those faced in

the theory of equilibrium systems. This is mainly due

to the fact that a non-equilibrium state is not uniquely

de�ned and thus a more detailed discussion is neces-

sary to determine the temporal dependence of measur-

able properties, and to calculate the time- and space-

dependent transport coe�cients associated with the ir-

reversible processes that take place in these systems.

It has been stated [14] that the basic goals of nonequi-

librium statistical mechanics are: (i) to derive trans-

port equations and to understand their structure; (ii)

to understand how the approach to equilibrium occurs

in closed and open systems; (iii) to study the properties

of steady states; and (iv) to calculate the instantaneous

values and the temporal evolution of the physical quan-

tities which specify the macroscopic state of the system.

Nonequilibrium statistical mechanics has typically

followed two directions: (1) The kinetic theory of di-

lute gases, where starting with a few, albeit drastic,

hypotheses one obtains a description of how these sys-

tems evolve and approach equilibrium. The best exam-

ple is Boltzmann's celebrated transport theory and H-

theorem. An extension of these ideas to dense systems

follows several paths like, for example, the construction

of a generalized theory of kinetic equations [15], and the

equations of the BBGKY hierarchy [16]; (2) A general-

ization of the Brownian motion, where the complicated

dynamic equations { the generalized Newton-Langevin

equations { that follow from the laws of Mechanics are

accompanied by statistical assumptions. Belonging to

this approach are, for example the linear response the-

ory in which the transport coe�cients functions are

given by the correlation functions due to Mori, Green,

and Kubo [17] and the master equation method [18],

�rst suggested by Pauli and later developed by van

Kampen and others.

The approaches used to develop a theory encom-

passing the programme described by items (i) to (iv)

stated above have been classi�ed by Zwanzig [14] as:

(a) Intuitive techniques; (b) Techniques based on the

generalization of the kinetic theory of gases; (c) Tech-

niques based on the theory of stochastic processes; (d)

Expansions from an initial equilibrium ensemble; (e)

Generalization of Gibbs' ensemble algorithm.

Within the last class of possibilities, namely item

(e), the so called Nonequilibrium Statistical Operator

Method (NSOM) is considered [14] to have an appealing

structure and seems to be a very e�ective technique to

deal with a large class of experimental situations. This

formalism has been formulated by several authors, ei-

ther using heuristic arguments [11,19-22] or projection

operator techniques [23, 24]. These approaches can be

brought together under a unifying variational method

[25, 26], which appears to be encompassed in Jaynes'

Predictive Statistical Physics [27] based on Bayesian in-

ference techniques and the method of maximization of

informational entropy (MaxEnt) [28]. We will call this

formalism the MaxEnt-NSOM.

As mentioned above, the MaxEnt-NSOM seems to

provide a formalism of very large scope to deal with

dynamical systems arbitrarily away from equilibrium,

for which it yields a generalized response function and

scattering theories [25], as well as a nonlinear quantum

transport theory of wide scope in applications [25, 29].

On the side of phenomenological nonequilibrium

thermodynamics, it can be said that the problem has

remained more or less stagnant as an open subject be-

yond the Onsager's regime, referred to as classical ir-

reversible thermodynamics (CIT) or linear irreversible
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thermodynamics LIT [30]. CIT is known to have draw-

backs at the practical and conceptual levels [31]. New

approaches are available to go beyond the domain of va-

lidity of CIT; two of them are Rational Thermodynam-

ics, and Extended Irreversible Thermodynamics (EIT),

the �rst one pioneered by Truesdell [32] and the second

by M�uller, Nettleton and others [31,33-39]. It has been

shown that EIT admits kinetic foundations on the basis

of Grad's moments approach to Boltzmann transport

theory [37] and also in terms of the use of the maximum

entropy formalism to obtain time-evolution equations

for the steady-state conduction of heat in dense uids

[38], and a generalized Grad-type formalism with al-

tered thermodynamic forces [37]. [See however Garcia-

Colin and Veloso where the original Onsager formalism

is shown to stem from Grad's method [37]]. These re-

sults can be encompassed and extended in the realm

of MaxEnt-NSOM to provide what can be called an

Informational Statistical Thermodynamics (IST) [40].

We notice that IST contains a generalization of Gibbs

equation, Prigogine's minimumentropy production law

(in the linear regime), and in the nonlinear regime

Glansdor�-Prigogine universal criterion for evolution

and (in)stability criterion [25], as well as generalized

Maxwell-Cattaneo-Vernotte-like equations nonlocal in

space and time and nolinear in the uxes [41]. Further,

a generalized Boltzmann formalism within the classi-

cal approach to the MaxEnt-NSOM has been described

elsewhere [42]. It is therefore a natural extension of our

work to consider the construction of a MaxEnt-NSOM

hydrodynamic theory, what we attempt in this paper.

For a long time (classical) hydrodynamics has been

based on CIT. As noted above CIT has shortcomings,

that lead to the failure for an appropriate description

of experiment at high frequencies and/or short wave-

lengths. This classical hydrodynamics yields equations

of the so called Newton-Navier-Stokes-Fourier type, ba-

sically the conservation laws of mass and energy, com-

plemented with auxiliary relations, namely the linear

constitutive equations { that are simply proportional-

ity relations between uxes and forces. The latter are

here de�ned as the gradients of concentration and tem-

perature, that lead to Fick and Fourier di�usion laws

respectively. Another di�culty inherent to classical hy-

drodynamics obtained through CIT arises from the fact

that such linear laws lead to parabolic partial di�eren-

tial equations of evolution that contain the uncomfort-

able fact of propagation of the corresponding perturba-

tion with in�nite velocity.

Several attempts have been made in order to im-

prove upon this situation (see for example references

[43-47]). Recently, new approaches have been intro-

duced to supersede CIT, like those of references [35]

and [48]. These formalisms allow to explore the ther-

modynamic implications and consequences of the �rst

deviations of the constitutive equations with respect to

the classical ones at moderately high frequencies and

long wavelengths. Microscopic approaches have also

been used based upon the idea of retaining the form

of the Navier-Stokes equations, namely the conserva-

tion laws and constitutive equations, but the transport

coe�cients depend on nonlocal in space and retarda-

tion e�ects. This is referred to as generalized hydrody-

namics [49]. Microscopically this scheme stems out of

Mori's formalism [50] in which the generalized Newton-

Langevin equations obtained through a Fourier-Laplace

transform of reduced versions of Liouville's equation

leads to the formula for the dynamic structure factor,

fundamental in the interpretation of scattering experi-

ments [43, 49, 51]. Other kinetic approaches have been

used to obtain a nonlocal generalized hydrodynamics

with memory, one in the form of a dynamical general-

ization of the Ornstein-Zernike theory on the basis of

the nonequilibrium statistical operator method [52, 53],

and another based on Grad's moments approach[54].

In spite of the limitations associated to classical hy-

drodynamics, one can recognize that the Navier-Stokes

equations constitute a set of equations which allow for

a satisfactory description of a large variety of exper-

imental situations concerning the space and temporal

behavior of a uid. However, besides the limitations

referred to above, certain problems remain associated

with the derivation of these equations from �rst princi-

ples, that is from Hamilton's equations describing the

behavior of atoms and molecules in the classical case.

This is of relevance in the sense that the absence of a

satisfactory solution of this question impairs the gain of

insight in the search for microscopic-dynamic descrip-

tions beyond the domain of their validity [55]. Conse-

quently, we address here this point, that is, starting at

the classical level with IST we recover as a particular

case the limit of classical hydrodynamics bringing into

evidence the restrictions that need be imposed on the

more general theory.

Resorting to the classical approach to the MaxEnt-

NSOM, and its accompanying IST, briey reviewed in

section II, we introduce a truncated description for

the macroscopic state of the system in terms of the
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single{ and two-particle distribution functions, and the

accompanying Lagrange multipliers (intensive nonequi-

librium thermodynamic variables) that the variational

approach to the method de�nes. In terms of these dis-

tributions we write the equations of evolution for the

mass, momentum, energy and entropy densities. This

is done in section III, where it is shown how these

equations are to be restricted in order to recover clas-

sical hydrodynamics and a Gibbs relation de�ning lo-

cal equilibrium. The e�ect of the deviations from this

limiting case are pointed out. In last section IV we

summarize the results and comment upon them.

II. The nonequilibrium statistical distribution

The �rst, and fundamental, step in NSOM is the

choice of the basic set of variables deemed appropriate

for the characterization of the macroscopic state of the

system. This involves a contracted description in terms

of, say, the dynamical quantities P1 (�) ; P2 (�) ; :::;

Pn (�), where � is a point in phase space characterizing

the state of the system at the microscopic mechanical

level. The NSOM statistical distribution is a functional

of this set of quantities, to be called % (fPj (�)g j t), or,

for short, % (� j t). The macroscopic state is character-

ized by a point in a thermodynamic state space, com-

posed, at time t, of the set of macrovariables Q1 (t) ;

Q2 (t) ;... Qn (t), which are the average values of the

Pj, i.e. Qj (t) = Tr fPj% (�; t)g. The choice of the ba-

sic variables is assisted by Bogoliubov's procedure of

contraction of description based on a hierarchy of re-

laxation times [56], and { related to it { the ideas set

forward, among others, by Mori [17], Zubarev [11], and

Peletminskii [21, 22]. Here one introduces a separation

of the total Hamiltonian into two parts, namely

H = Ho +H0; (1)

where Ho is a \relevant" (or secular) part composed of

the kinetic energies of the free subsystems and some of

the interactions, namely those strong enough to have

associated very short relaxation times (meaning those

much smaller than the characteristic time scale of the

experiment), and possessing certain symmetry proper-

ties. The other term, H0, contains the interactions re-

lated to long-time relaxation mechanisms. The symme-

try characteristics of the strong interactions depend on

the problem under consideration: The required symme-

try { to be called Zubarev-Peletminskii symmetry con-

dition { is that

fPj ;Hog =
nX

k=1

�jkPk; (2)

where the left hand side stands for Poisson's bracket

and �jk are c-numbers determined by Ho. It should

be noticed that quantities Pj can be dependent on the

space variable (densities), and in the classical descrip-

tion also on a momentum variable, namely, in general

Pj(~r; ~pj�); in such case the quantities � also involve

di�erential operators, as it is the case treated in next

section.

Equation (2) provides a closure condition for the

choice of the basic set of variables in a step by step

procedure: First the secular part Ho is adequately cho-

sen in each particular problem under consideration.

Second, one introduces a few dynamical variables P

deemed relevant for the description of the system under

observation, and next Poisson's brackets with Ho are

calculated. The dynamical variables { di�erent from

those already introduced { that appear in the linear

combination on the right of Eq. (2) are incorporated to

the basic set; the procedure is repeated until a closure

is attained. The �rst two references [40] relate this pro-

cedure to the question of choice of the basic variables in

phenomenological irreversible thermodynamics, and an

example is discussed. In practice one usually requires

the introduction of an appropriate truncation along the

chain in the procedure just described, hence resorting

to approximations. It ought to be noticed that Eq.

(2) also encompasses the case of quantities P such that

have associated null coe�cients �, namely, the case of

constants of motion under the dynamics generated by

Ho. Accordingly they are as expected, acceptable basic

variables, and Ho itself falls under this condition.

Assuming that the basic set fPj (�)g is given, the

nonequilibrium statistical distribution (NSD) is con-

structed, within the context of Jaynes' Predictive Sta-

tistical Mechanics [27], using the principle of maximiza-

tion of statistical-informational entropy, with memory

and an ad hoc hypothesis [25, 42]. This is done �rst

introducing Gibbs (�ne-grained) statistical entropy

SG (t) = �

Z
d�% (� j t) ln% (� j t) ; (3)

with % de�ned in the interval (to; t), where to is the ini-

tial time of preparation of the sample and t the time

when a measurement is performed, and normalized at

all times, i.e. Z
d�% (� j t0) = 1 ; (4)

for to � t0 � t . Next, Gibbs entropy of Eq. (3) is

maximized subjected to the constraints
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c

Qj (~r; ~p; t
0) =

Z
d�% (� j t0)Pj (~r; ~p j �) ; j = 1; 2; ::::; n ; (5)

again for to � t0 � t . Using Lagrange's method, and making a particular ad hoc hypothesis on the form of the

Lagrange multipliers that the method introduces [25, 42], we obtain that

%w (� j t) = exp

8<
:

tZ
to

dt0 w (t; t0) ln% (� j t0; t0 � t)

9=
; ; (6)

where the auxiliary NSD % given by

% (� j t1; t2) = exp

8<
:�� (t1) �

nX
j=1

Z
d3r

Z
d3p Fj (~r; ~p; t1)Pj (~r; ~p j �; t2)

9=
; ; (7)

has been introduced (see an alternative discussion of the process in [26]). In Eq. (7), t1 refers to the time

dependence of the intensive thermodynamic variables (arising from the Lagrange multipliers) � and Fj and t2 to

the time dependence of quantities governed by Hamilton equations of motion. In Eq. (6) w (t; t0) is a weight

function with well de�ned properties [25, 42] that allows (1) to introduce the set of variables Fj (t) that have the

role of intensive variables thermodynamically conjugated to variables Qj in order to generate a complete connection

with phenomenological irreversible thermodynamics, and (2) to �x an initial condition from which the irreversible

evolution of the macrostate of the system proceeds. Finally, since %w and % de�ne at each time t the same macrostate,

we have that

Qj (~r; ~p; t) =

Z
d� %w (� j t)Pj (~r; ~p j t) =

Z
d� % (� j t; 0)Pj (~r; ~p j �) ; (8)

which ensures the normalization of % once %w is normalized, namely

� (t) = ln

Z
d� exp

8<
:�

nX
j=1

Z
d3r

Z
d3p Fj (~r; ~p; t1)Pj (~r; ~p j �)

9=
; (9)

and, together with itens (1) and (2) above, de�ne the Lagrange multipliers Fj as intensive nonequilibrium thermo-

dynamic variables conjugated to the basic ones. Further, taking the logarithm in Eq. (6) and integrating by parts

in time, we �nd that

ln %" (� j t) = ln % (� j t; 0)�

�

tZ
�1

dt0 e"(t
0
�t) d

dt0
ln% (� j t0; t0 � t) ; (10)

where have explicitly used Zubarev's approach to NSOM (and we call %" the corresponding NSD), that is, taking

w (t; t0) = " e"(t
0�t), to ! �1, and " goes to zero after the trace operation in the calculation of averages has been

performed [11]. Clearly, Eq. (10) tells us that the initial (at to !�1) condition is

%" (� j to) = % (� j to; 0) ; (11)

from which the irreversible evolution of the macrostate of the system [57] follows because of the properties of

the weight function w. This fact implies a condition that mimics Prigogine's principle of dynamic condition for

dissipativity [58].
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Equation (10) allows to write the NSD as a sum of two terms, namely

%" (� j t) = % (� j t; 0) + %0" (� j t) ; (12)

where % is given in Eq. (7) and

%0" (� j t) =
1X
k=1

1

k!

2
4 tZ
�1

dt0 e"(t
0�t)b� (� j t0; t0 � t)

3
5
k

% (� j t; 0) ; (13)

with

b� (� j t0; t0 � t) = �
d

dt0
ln% (� j t0; t0 � t) : (14)

Equation (12) indicates that the NSD is composed of an instantaneous (\frozen\ or coarse-grained) generalized

Gibbsian distribution % , which also de�nes the instantaneous values of the averages of the basic variables, [Cf. Eq.

(8)], plus a deviation that accounts for the microscopic processes that produce dissipative e�ects in the system [57].

The MaxEnt-NSD thus obtained can be shown to satisfy a Liouville equation with a so called Boltzmann-

Prigogine symmetry, namely the presence of in�nitesimal sources that breaks its otherwise time-reversal symmetry,

i.e. �
@

@t
+ iL

�
ln%" (� j t) = R" (t) ln%" (� j t) ; (15)

where

R" (t) ln %" (� j t) = �" [ln %" (� j t) � ln % (� j t; 0)] ; (16)

and L is the Liouville operator that governs the systems' dynamics. We stress that the weight function w is taken

as going to zero ("! +0) after the operation of average is performed [25], that is, the NSOM implies in calculations

of quasi-averages in Bogoliubov's sense [59]. In the present case Bogoliubov's procedure breaks the time-reversal

symmetry of Liouville equation by disregarding the sub-group of advanced solutions.

Di�erentiation in time of Eqs. (8) leads to the evolution equations

@

@t
Qj (~r; ~p; t) =

Z
d� fPj (~r; ~p j �) ;H (�)g %" (� j t) : (17)

Using Eqs. (1), (2) ,(8) and (12) we can write that,

@

@t
Qj (~r; ~p; t) = J

(0)
j (~r; ~p; t) + J

(1)
j (~r; ~p; t) + Jj (~r; ~p; t) ; (18)

where

J
(0)
j (~r; ~p; t) =

Z
d� fPj (~r; ~p j �) ;Ho (�)g% (� j t; 0) ; (19)

J
(1)
j (~r; ~p; t) =

Z
d� fPj (~r; ~p j �) ;H

0 (�)g % (� j t; 0) ; (20)

Jj (~r; ~p; t) =

Z
d� fPj (~r; ~p j �) ;H

0 (�)g %0" (� j t) : (21)

The collision integral Jj is shown to be associated to dissipative processes, which can alternatively be written

in the interesting form

Jj (~r; ~p; t) =

tZ
�1

dt0 e"(t
0�t) ffPj (~r; ~p j �) ;H

0 (�)g ; b� (� j t0; t0 � t) j tg (22)
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where b� is given by Eq. (14), and we have introduced the supercorrelation function for, say, any pair of quantities

A and B de�ned as

fA (�) ;B (�) j tg =

Z
d� A (�)Y" (�)B (�) % (� j t; 0) ; (23)

with

Y" (�) = 1 +
1X
k=1

1

k!

2
4 tZ
�1

dt0 e"(t
0�t)b� (� j t0; t0 � t)

3
5
k

: (24)

In Eq. (22) the collision integral is then given by a supercorrelation function involving the time evolution of the

basic quantity Pj with the part of the Hamiltonian associated to the slow relaxing processes and the quantity b�
whose average value is the MaxEnt-NSOM informational entropy production, also dependent on H0 [25, 57].

The collision integral of Eq. (21) becomes, because of its expression as given by Eq. (22) and the use of Eqs. (23)

and (24), a series of contributions of higher and higher order in the dissipation processes that develop in the system

(they consist of correlations over the auxiliary ensemble characterized by % involving higher and higher powers ofb�). Evidently, this collision integral is extremely di�cult to calculate; however, it can be brought in a form that

allows a more accessible and practical mathematical handling, namely [29]

Jj (~r; ~p; t) =
1X
n=2

J
(n)
j (~r; ~p; t) ; (25)

where the J
(n)
j are partial contributions that are instantaneous in time and organized in increasing order n in the

strengths of the interactions contained in H0. The lowest order, n = 2 only, is a local in time approximation referred

to as the quasi-linear theory of relaxation [60, 61]. These partial collision operators, which have an important role

in the de�nition of the MaxEnt-NSOM entropy production function, are composed of several terms consisting of (1)

the mechanical e�ects of collisions (in order n) averaged over the auxiliary coarse-grained ensemble, (2) terms that

account for the evolution of the thermodynamic state of the system, and (3), for n > 2, terms arising from memory

e�ects [29]. They are of ever larger complexity with increasing n, but a truncation procedure may be introduced in

the series of Eq. (25) up to a certain order n in the interaction.

The connection of the MaxEnt-NSOM with phenomenological irreversible thermodynamics [40, 57] is done

introducing the NSOM entropy, or coarse-grained entropy, namely

S (t) = �

Z
d� %" (� j t) ln % (� j t; 0) =

= � (t) +
nX
j=1

Z
d3r

Z
d3p Fj (~r; ~p; t)Qj (~r; ~p; t) ; (26)

which satis�es the Pfa�an form (generalized Gibbs relation)

dS (t) =
nX
j=1

Z
d3r

Z
d3p Fj (~r; ~p; t) dQj (~r; ~p; t) ; (27)

where

Fj (~r; ~p; t) = �S (t) =�Qj (~r; ~p; t) ; (28)

and we used that

Qj (~r; ~p; t) = ��� (t) =�Fj (~r; ~p; t) (29)

Equations (28) and (29) de�ne the previously mentioned conjugate property between the Q and F variables, being

the generalization of the results in equilibrium thermodynamics, namely, they are nonequilibrium equations of state.

Here � stands for functional derivative.
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The MaxEnt-NSOM entropy production is given by

� (t) =
dS (t)

dt
=

nX
j=1

Z
d3r

Z
d3p Fj (~r; ~p; t)

@

@t
Qj (~r; ~p; t) ; (30)

or, after introducing Eq. (18) we �nd that

� (t) =
nX
j=1

Z
d3r

Z
d3p Fj (~r; ~p; t)Jj (~r; ~p; t) ; (31)

where use was made of the fact that

nX
j=1

Z
d3r

Z
d3p Fj (~r; ~p; t)

h
J
(0)
j (~r; ~p; t) + J

(1)
j (~r; ~p; t)

i
= 0 ; (32)

which implies that dissipative e�ects are accounted for in the collision integral J , and, therefore, by the contribution

%0" to the NSD %" of Eq. (12) [57].

Having thus briey reviewed the fundamentals of the method we proceed next to its application to the derivation

of a hydrodynamic formalism.

III. A microscopic approach to classical hydrodynamics

Let us consider a uid of N interacting particles whose Hamiltonian is of the form of Eq. (1) with

Ho (�) =

Z
d3r

Z
d3p

p2

2m
n1 (~r; ~p j �) ; (33)

H0 (�) =

Z
d3r

Z
d3p w (~r)n1 (~r; ~p j �) +

+

Z
d3r

Z
d3p

Z
d3r0

Z
d3p0 V (j~r � ~r 0j)n2 (~r; ~p; ~r

0; ~p 0 j �) ; (34)

with Ho containing the kinetic energy and H0 the interaction with external systems, w, (sources and reservoirs), as

well as the interaction between particles through a central force potential V . Further, n1 and n2 are the one-particle

and two-particles dynamical reduced density functions, namely

n1 (~r; ~p j �) =
NX
j=1

� (~r � ~rj) � (~p� ~pj) ; (35)

n2 (~r; ~p; ~r
0; ~p0 j �) =

NX
k 6=j=1

� (~r � ~rj) � (~p� ~pj) � (~r � ~rk) � (~p� ~pk) (36)

where ~rj; ~pj , etc. are the coordinate and momentum of the j-th particle.

III.1 The MaxEnt-NSOM Description

For the NSOM-statistical description of this system we take as basic dynamical variables the set

fho (~r; ~p j �) ; n1 (~r; ~p j �) ; n2 (~r; ~p; ~r
0; ~p 0 j �)g (37)

that is, the kinetic energy

ho (~r; ~p j �) =
p2

2m
n1 (~r; ~p j �) (38)
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and n1 and n2 which are su�cient to write any relevant dynamical property of the system. The set of Eq. (37)

satis�es Zubarev-Peletminskii closure condition of Eq. (2) since

fho (~r; ~p j �) ;Ho (�)g = �
1

m

p2

2m
(~p � r)n1 (~r; ~p j �) ; (39)

fn1 (~r; ~p j �) ;Ho (�)g = �
1

m
(~p � r)n1 (~r; ~p j �) ; (40)

fn2 (~r; ~p; ~r
0; ~p 0 j �) ;Ho (�)g = �

1

m
(~p � r+ ~p 0 � r0)n2 (~r; ~p; ~r

0; ~p 0 j �) : (41)

Therefore, in terms of this basic set of variables the auxiliary (coarse-grained) nonequilibrium statistical distri-

bution for the system [cf. Eq.(7)] takes the form

% (� j t; 0) = exp

�
�� (t)�

Z
d3r

Z
d3p � (~r; t)

p2

2m
n1 (~r; ~p j �)�

�

Z
d3r

Z
d3p '1 (~r; ~p; t)n1 (~r; ~p j �)�

�

Z
d3r

Z
d3p

Z
d3r0

Z
d3p0'2 (~r; ~p; ~r

0; ~p 0; t)n2 (~r; ~p; ~r
0; ~p 0 j �)

�
(42)

where, we recall, � (t) ensures the normalization of this NSD, and �, '1, and '2 are the Lagrange multipliers (inten-

sive nonequilibrium thermodynamic variables) conjugated to the basic macrovariables, that the method introduces.

These parameters are to be identi�ed in the context of hydrodynamics later on. The basic set of macrovariables

(extensive nonequilibrium thermodynamic variables) are

"o (~r; ~p; t) = hho (~r; ~p j �) j ti ; (43)

f1 (~r; ~p; t) = hn1 (~r; ~p j �) j ti ; (44)

f2 (~r; ~p; ~r
0; ~p 0; t) = hn2 (~r; ~p; ~r

0; ~p 0 j �) j ti ; (45)

where for any basic variable Pj of Eq. (37)

hPj (�) j ti =

Z
d�Pj (�) % (� j t; 0) ; (46)

and we recall that these average values coincide with the average values taken with the �ne-grained distribution as

imposed by Eq. (8) [25, 26, 42, 57].

Let us next consider the equations of evolution for the basic variables, that is Eqs. (18)-(21). First it should be

noticed that ho is simply proportional to f1 and so we need to derive the equations for f1 and f2: Using eqs. (17)

and after some algebra we �nd that �
@

@t
+

1

m
~p � r+mF (~r) � r~p

�
f1 (~r; ~p; t) =

=

Z
d3r0

Z
d3p0rV (j~r � ~r 0j) � r~pf2 (~r; ~p; ~r

0; ~p 0; t)+

+ J1 (~r; ~p; t) ; (47)�
@

@t
+

1

m
(~p � r+ ~p 0 � r0) + fmF (~r) �rV (j~r � ~r 0j)g � r~p+
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+ fmF (~r 0)�r0V (j~r � ~r 0j)g � r~p 0 ] f2 (~r; ~p; ~r
0; ~p 0; t)

= eJ2 (~r; ~p; ~r
0; ~p 0; t) ; (48)

where we have written

m~F (~r) = �rw (~r) ; (49)

eJ2 (~r; ~p; ~r
0; ~p 0; t) =

Z
d3r1

Z
d3p1 [rV (j~r � ~r1j) � r~p +

+ r0V (j~r 0 � ~r1j) � r~p0 ]f3 (~r; ~p; ~r
0; ~p 0; ~r1; ~p1; t) ; (50)

and it is veri�ed that

~J1 (~r; ~p; t) = 0 ; (51)

and the three-particle density distribution function has been introduced, namely

f3 (~r; ~p; ~r
0; ~p0; ~r1; ~p1; t) =

Z
d� %w (� j t)n3 (~r; ~p; ~r

0; ~p 0; ~r1; ~p1 j �) ; (52)

d

Before proceeding further in the direction of build-

ing a hydrodynamic approach three facts concerning

the equations of evolution (47) and (48) must be empha-

sized. First they are not closed since they involve the

three-particle distribution function on the right hand

side of Eq. (48): If we incorporate n3 as a basic vari-

able it leads to an equation of evolution containing n4,

which in turn if incorporated as a basic variable implies

another equation for n5 and so on. Thus we would in-

troduce a kind of BBGKY hierarchy in the realm of

this statistical approach to irreversible thermodynam-

ics. This question will be presented in a future article.

Second, if in Eq. (48) we neglect the three-particle

correlations, namely, we disregard the right hand side,

and associated with this we take f2 as a weakly time-

varying function, solving the resulting equation for f2

and next replacing the solution in Eq. (48), followed

by a factorization of f2 in terms of products of f1

(Stosszahlanzatz), we recover the classical Boltzmann

equation and Boltzmann's H-theorem [42]. Third, once

the basic set of variables has been chosen, in this case,

n1 and n2, to close the system of coupled equations (47)

and (48) the method requires to express f3 and eJ2 in

terms of them. This can be done resorting, for exam-

ple, to a perturbation method for averages [22], as it

was illustrated in previous articles [40, 42]. Let us next

consider how to construct a hydrodynamic formalism

from Eqs. (47) and (48).

III.2 Classical Theory for a Microscopic Deriva-

tion of Balance Equations

Let us consider now the steps leading to the equa-

tions of hydrodynamics to compare them with the phe-

nomenological classical ones. For this purpose we in-

troduce: (i) the particle density

n (~r; t) =

Z
d3pf1 (~r; ~p; t) ; (53)

(ii) the mass density

g (~r; t) = m n (~r; t) ; (54)

(iii) the mean momentum density (in terms of a drift

velocity)

g (~r; t)~v (~r; t) =

Z
d3p ~p f1 (~r; ~p; t) = ~p (~r; t) ; (55)

(iv) the mean kinetic energy density

g (~r; t) "k (~r; t) =

Z
d3p [~p�m~v (~r; t)]

2
f1 (~r; ~p; t) ;

(56)

(v) the mean interparticle-potential energy density
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c

g (~r; t) "v (~r; t) =

=
1

2

Z
d3p

Z
d3r0

Z
d3p0 V (j~r � ~r 0j) f2 (~r; ~p; ~r

0; ~p 0; t) ; (57)

(vi) the internal energy density

u (~r; t) = "k (~r; t) + "v (~r; t) = h (~r; t) : (58)

Resorting to the use of Eqs. (47) and (48) and following standard procedures [18] we can derive the balance

equations for the quantities of Eqs. (54), (55) and (58), namely

@

@t
g (~r; t) + div [g (~r; t)~v (~r; t)] = 0 ; (59)

@

@t
[g (~r; t)~v (~r; t)] + div

h
g (~r; t)~v (~r; t) : ~v (~r; t) + eP (~r; t)

i
=

= g (~r; t) ~F (~r; t) ; (60)

@

@t
[g (~r; t)u (~r; t)] + div

h
g (~r; t)u (~r; t)~v (~r; t) + ~Iq (~r; t)

i
=

= eP (~r; t)� [r : ~v (~r; t)] +

+
1

2

Z
d3p

Z
d3r0

Z
d3p0V (j~r � ~r 0j) eJ2 (~r; ~p; ~r

0; ~p 0; t) ; (61)

where eP is the pressure tensor eP (~r; t) = ePK (~r; t) + ePV (~r; t) (62)

with

ePK (~r; t) =
1

m

Z
d3p [~p�m~v (~r; t)] : [~p�m~v (~r; t)] f1 (~r; ~p; t) ; (63)

ePV (~r; t) = �
1

2

1Z
0

d�

Z
d3p

Z
d3�

Z
d3p0

~� � ~�

�

dV (�)

d�
�

�f2
h
~r + (1� �) ~�; ~p; ~r � �~�; ~p 0; t

i
; (64)

and ~� = ~r � ~r 0; double dots stand for tensorial product of vectors and � for fully contracted product of tensors.

Moreover, we introduce the quantity

~Iq (~r; t) = ~IK (~r; t) + ~IV 1 (~r; t) + ~IV 2 (~r; t) ; (65)

interpreted as the heat ux, and where

~IK (~r; t) =
1

2m2

Z
d3p [~p�m~v (~r; t)]2 [~p�m~v (~r; t)] f1 (~r; ~p; t) ; (66)

~IV 1 (~r; t) =
1

2m

Z
d3p

Z
d3r0

Z
d3p0V (j~r � ~r 0j) [~p�m~v (~r; t)]�

�f2 (~r; ~p; ~r
0; ~p 0; t) (67)
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~IV 2 (~r; t) = �
1

4m

1Z
0

d�

Z
d3p

Z
d3�

Z
d3p0

~� � ~�

�
[~p �m~v (~r; t)]�

�
dV (�)

d�
f2

h
~r + (1� �) ~�; ~p; ~r � �~�; ~p 0; t

i
: (68)

We call the attention to the fact that the quantities above depend on f1 and f2, or, alternatively, on the

thermodynamic variables (Lagrange multipliers) '1 and '2. The results embedded in eqs. (59)-(68) are not new.

They were derived �rst by Kirkwood in 1946 [62] using a time smoothing approximation and later on, in 1951 by

Irving and Zwanzig [63]. Here we have followed very closely the procedure of ref. [18] to obtain these equations.

The main accomplishment of this treatment lies in the fact that our formalism not only allows for the derivation of

the hydrodynamic, or better, the conservation equations, but also yields the thermodynamical aspects consistent

with then. In fact we have an explicit form both for an entropy and an entropy production provided by the method

itself so we can now proceed to study these quantities. For this purpose we introduce a NSOM entropy density of

the form,

S (t) =

Z
d3r g (~r; t) s (~r; t) ; (69)

where �S is given by Eq. (26). Further, for the present case the NSOM-entropy production of Eq. (30) is given by

� (t) =

Z
d3r

Z
d3p

��
� (~r; t)

�
p2=2m

�
+ '1 (~r; ~p; t)

� @

@t
f1 (~r; ~p; t)+

+

Z
d3r

Z
d3p

Z
d3r0

Z
d3p0 '2 (~r; ~p; ~r

0; ~p0; t)
@

@t
f2 (~r; ~p; ~r

0; ~p0; t)

�
(70)

and also from eq. (69) we may compute �, namely,

� (t) =
d

dt

Z
d3r g (~r; t) s (~r; t) =

Z
d3r

@

@t
[ g (~r; t) s (~r; t)] : (71)

Hence,
@

@t
[ g (~r; t) s (~r; t)] =

Z
d3p

�
� (~r; t)

p2

2m
+ '1 (~r; ~p; t)

�
@

@t
f1 (~r; ~p; t)+

+

Z
d3p

Z
d3r0

Z
d3p0 '2 (~r; ~p; ~r

0; ~p 0; t)
@

@t
f2 (~r; ~p; ~r

0; ~p 0; t) ; (72)

with �, '1and '2 being the Lagrange parameters given by

�� (t) =�� (~r; t) = �

Z
d3p

p2

2m
f1 (~r; ~p; t) ; (73)

�� (t) =�'1 (~r; ~p; t) = �f1 (~r; ~p; t) ; (74)

�� (t) =�'2 (~r; ~p; ~r
0; ~p 0; t) = �f2 (~r; ~p; ~r

0; ~p 0; t) ; (75)

according to Eqs. (29). Let us also de�ne

� (t) = �

Z
d3r � (~r; t) 
 (~r; t) ; (76)

the meaning of 
 (~r; t) to be discussed below.

In terms of these quantities we can write

g (~r; t) s (~r; t) = �� (~r; t)
 (~r; t)+
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+

Z
d3p

��
� (~r; t)

�
p2=2m

�
+ '1 (~r; ~p; t)

�
f1 (~r; ~p; t)+

+

Z
d3r0

Z
d3p0 '2 (~r; ~p; ~r

0; ~p 0; t) f2 (~r; ~p; ~r
0; ~p 0; t)g (77)

which is the general expression for the NSOM entropy density in the uid. This result is important and interesting

enough by itself. Indeed it shows how one can obtain an explicit expression for the entropy consistent with the

conservation equations expressed in terms of the �rst two distribution functions.

We are now able to show that the NSOM conservation equations so far developed contain as a limiting case the

usual ones arising from the local equilibrium assumption. For that purpose we compare the entropy density, given

in the local equilibrium approximation of CIT, namely [18]

go (~r; t) so (~r; t) = �o (~r; t)
1

3
Tr ePo (~r; t) + �o (~r; t) go (~r; t) [uo (~r; t)� �o (~r; t)] ; (78)

with the entropy density given in Eq. (77). The lower index naught indicates the local equilibrium approximation

and �o is the chemical potential. We can thus see that if we write

'1 (~r; ~p; t) = '1;o (~r; ~p; t) + �'1 (~r; ~p; t) =

= �o (~r; t)

�
1

2
mv2o (~r; t)� ~p � ~vo (~r; t)� �o (~r; t) + w (~r; t)

�
+�'1 (~r; ~p; t) ; (79)

'2 (~r; ~p; ~r
0; ~p0; t) = '2o (~r; ~p; ~r

0; ~p 0; t) + �'2 (~r; ~p; ~r
0; ~p 0; t) =

=
1

4
[�o (~r; t)V (j~r � ~r 0j) + �o (~r

0; t)V (j~r 0 � ~rj)]+

+ �'2 (~r; ~p; ~r
0; ~p 0; t) ; (80)


 (~r; t) = 
o (~r; t) + �
 (~r; t) = �
1

3
Tr ePo (~r; t) + �
 (~r; t) ; (81)

and

f1 (~r; ~p; t) = f1;o (~r; ~p; t) + �f1 (~r; ~p; t) ; (82)

f2 (~r; ~p; ~r
0; ~p 0; t) = f2;o (~r; ~p; ~r

0; ~p 0; t) + �f2 (~r; ~p; ~r
0; ~p 0; t) ; (83)

with ePo and �o de�ned in terms of f1;o and f2;o, it follows that

g (~r; t) s (~r; t) = go (~r; t) so (~r; t) + ! (~r; t) ; (84)

where ! (~r; t) includes all the terms involving �'1; �'2; �
; �f1; and �f2: Eq. (81) de�nes the quantity 
 of

Eq. (76) as the usual contribution of local equilibrium thermodynamics plus the modi�cations arising out of the

extensions introduced by the present theory.

Consequently, the conservation equations, from the local equilibrium approximation of LIT, result from a very

particular choice of the Lagrange multipliers of MaxEnt-NSOM. Since classical hydrodynamics follows from these

conservation equations when coupled to the well known constitutive equations, we may conclude that the correction

terms involved in �f1, �f2 and similar quantities will lead to a more general version of hydrodynamics which will

demand constitutive laws di�erent from the linear ones. This subject is discussed in a forthcoming paper. Returning

to the original expression for the auxiliary (coarse grained) NSD of Eq. (42), the classical conservation equations

amounts then to the choice

%CHD (t; 0) = exp

�Z
d3r�o (~r; t)

1

3
Tr ePo (~r; t) �
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�

Z
d3r

Z
d3p �o (~r; t)

�
1

2m
[~p � ~vo (~r; t)]

2
+ �o (~r; t)� ! (~r; t)

�
n1 (~r; ~p j �)�

�
1

4

Z
d3r

Z
d3p

Z
d3r0

Z
d3p0 [�o (~r; t)V (j~r � ~r 0j)+

+�o (~r
0; t)V (j~r 0 � ~rj)]n2 (~r; ~p; ~r

0; ~p 0 j �)g (85)

which tantamounts to choosing as the basic set of variables the truncated one that correponds to the set of macrovari-

ables composed of

fn (~r; t) ; ~p (~r; t) ; h (~r; t)g (86)

that is, the density, momentum density, and energy density, respectively. The thermodynamically conjugated

variables have been indecated by ��o (~r; t)�o (~r; t) ; ��o (~r; t)~vo (~r; t) ; �o (~r; t) ; which can be associated to a

reciprocal local temperature �o; a local chemical potential �o; and a drift velocity ~vo:

Using Eqs. (81) and (82), Eq. (72) can be rewritten as,

@

@t
[ g (~r; t) s (~r; t)] + div

h
g (~r; t) s (~r; t)~v (~r; t) + � (~r; t) ~Iq (~r; t)

i
=

= ~Iq (~r; t) � r� (~r; t)� � (~r; t) eP (~r; t)� [r : ~v (~r; t)]+

+g (~r; t)u (~r; t)~v (~r; t) � r� (~r; t) + div [� (~r; t)p (~r; t)~v (~r; t)]+

+ div [� (~r; t)! (~r; t)~v (~r; t)] + !0 (~r; t) ; (87)

where

!0 (~r; t) =

Z
d3p �'1 (~r; ~p; t) f1 (~r; ~p; t) +

+

Z
d3p

Z
d3r0

Z
d3p0 f(1=4) [� (~r; t)V (j~r � ~r 0j)+

+� (~r0; t)V (j~r 0 � ~rj)]J 2 (~r; ~p; ~r
0; ~p 0; t)

	
�

�
@

@t
f2 (~r; ~p; ~r

0; ~p 0; t) ; (88)

p (~r; t) =
1

3
Tr eP (~r; t) ; (89)

and eJ2 is given by Eq. (50). But

div [� (~r; t)p (~r; t)~v (~r; t)] = � (~r; t) p (~r; t) div ~v (~r; t)�

� g (~r; t)u (~r; t)~v (~r; t) � r� (~r; t)� ~e (~r; t) � ~v (~r; t) ; (90)

with

~e (~r; t) =

Z
d3p fr�'1 (~r; ~p; t) f1 (~r; ~p; t)+

+

Z
d3r0

Z
d3p0 f(1=4) [� (~r; t)V (j~r � ~r 0j) + � (~r 0; t)V (j~r 0 � ~rj)]+

+�'2 (~r; ~p; ~r
0; ~p 0; t)g f2 (~r; ~p; ~r

0; ~p 0; t)g (91)

Using Eqs. (87), (88), (89), (90) and (91), we can write the following compact expression for the MaxEnt-NSOM

entropy balance equation
@

@t
[g (~r; t) s (~r; t)] + div~Is (~r; t) = �s (~r; t) + �� (~r; t) (92)
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where

~Is (~r; t) = g (~r; t) s (~r; t)~v (~r; t) + � (~r; t) ~Iq (~r; t) (93)

is the NSOM entropy ux, and on the right hand side of Eq. (92) we have

�s (~r; t) = ~Iq (~r; t) � r� (~r; t)� � (~r; t)
h eP (~r; t)� p (~r; t)e1i� [r : ~v (~r; t)] ; (94)

with e1 being the unit tensor, and

�� (~r; t) = div [ g (~r; t)! (~r; t)~v (~r; t)] + !0 (~r; t)� ~e (~r; t) � ~v (~r; t) ; (95)

which account for the MaxEnt-NSOM entropy production density.

d

Eq. (95) deserves a very special comment. In fact,

it expresses the general entropy production that in our

approach is consistent with the conservation equations,

Eqs. (59), (60) and (61), which clearly contain much

more information than those computed using only the

local equilibrium values of f1 and f2. This is a new

and interesting result. For if we want to compute hy-

drodynamic equations from Eqs. (59), (60) and (61)

we have to resort to constitutive equations that go be-

yond the linear regime. In this sense this paper sets the

microscopic basis for hydrodynamic equations that are

valid beyond LIT. The explicit form for these equations

and their generating constitutive laws is the subject of

a forthcoming paper. On the basis of the above para-

graph, if in all terms in Eq. (92) we introduce the quan-

tities corresponding to the limit of CIT [Cf. Eqs. (78),

(79), (80), (81), (82) and (83)], we obtain the particular

local equilibrium entropy balance equation which is the

one compatible with the equations of classical (CIT)

hydrodynamics, namely

@

@t
[ go (~r; t) so (~r; t)] + div ~Is;o (~r; t) = �s;o (~r; t) (96)

Here, we recall, index naught means averages performed

with the use of the NSD of Eq. (85). In that limit

�� (~r; t) = 0:

III.3 The Thermodynamic Parameters and a Lo-

cal Maxwellian Distribution

It should be noticed that the expressions derived

so far depend on both the extensive and intensive

macrovariables, Pj and Fj respectively, which are re-

lated by the nonequilibrium equations of state, Eqs.

(73), (74) and (75). We proceed next to make explicit

that dependence. First we start looking for expres-

sions for the partial distributions f1;o and f2;o of Eqs.

(82,83). For that purpose we note that the exponent

in the NSD of Eq. (42) can be separated in the part

that appears in the exponent of the CHD-NSD of Eq.

(85) (call it A) plus the rest (call it B). On the basis

of this separation we can apply the Heims-Jaynes per-

turbation expansion method for averages [64], to �nd

that

c

f1 (~r; ~p; t) = f1;o (~r; ~p; t) + �1;o (~r; ~p; t) ; (97)

f2 (~r; ~p; ~r
0; ~p 0; t) = f2;o (~r; ~p; ~r

0; ~p 0; t) + �2;o (~r; ~p; ~r
0; ~p 0; t) ; (98)

where �1;o and �2o are the expressions for the series in powers of the contribution

B = �
(~r; t)��� (~r; t)
p2

2m
��'1 (~r; ~p; t)n1 (~r; ~p j �) �

�

Z
d3r0

Z
d3p0 �'2 (~r; ~p; ~r

0; ~p 0; t)n2 (~r; ~p; ~r
0; ~p 0 j �) (99)
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to the NSD, which we omit to write down explicity for the sake of brevity.

Next, we introduce a Boltzmann-like approach, as the one described in reference [42], namely, we �rst put into

evidence in the form of a series expansion the e�ect of two-particle correlations, namely the part in the exponent

of the CHD-NSD that contains n2: Again we resort to Heims-Jaynes' method [64] to obtain that

f1;o (~r; ~p; t) = fo1;o (~r; ~p; t) + �1 (~r; ~p; t) ; (100)

f2;o (~r; ~p; ~r
0; ~p 0; t) = fo2;o (~r; ~p; ~r

0; ~p 0; t) + �2 (~r; ~p; ~r
0; ~p 0; t) ; (101)

where

fo1;o (~r; ~p; t) =

Z
d� %o (� j t) n1 (~r; ~p j �) ; (102)

and

%o (� j t) = exp

�
��o (t) �

Z
d3r

Z
d3p A (~r; ~p j �; t)

�
(103)

where

A (~r; ~p j �; t) = �o (~r; t)
h
(1=2m) [~p�m~v (~r; t)]2 � �o (~r; t) + ! (~r; t)

i
n1 (~r; ~p j �) (104)

with �o ensuring its normalization. In Eqs. (100-101) �1 and �2 are given in Eqs. (57a) and (55a) of reference

[42], and

! (~r; t) = ! (~r; t) +

Z
d3r0

Z
d3p0V (j~r � ~r 0j) fo1;o (~r

0; ~p 0; t) (105)

is an e�ective potential composed of the external potential and the (self-consistent) average molecular �eld potential

in this quasiparticle approximation. Performing the calculation in Eq. (102) we �nd that

fo1;o (~r; ~p; t) =
N

V
exp f�'o (t)� �o (~r; t) � (~r; ~p; t)g (106)

with

� (~r; ~p; t) = (1=2m) [~p �m~v (~r; t)]2 � �o (~r; t) + ! (~r; t) (107)

and where

'o (t) = ln

Z
d3r

Z
d3p exp f��o (~r; t) � (~r; ~p; t)g

is the normalization (to N/V) condition. Moreover, resorting to the obvious relationship,

no (~r; t) =

Z
d3p fo1;o (~r; ~p; t) ; (108)

we can write that

fo1;o (~r; ~p; t) = no (~r; t)

�
�o (~r; t)

2�m

�3=2
exp

�
�
�o (~r; t)

2m
[~p�m~v (~r; t)]

2
�
; (109)

which is a local-equilibrium Maxwell-Boltzmann distribution, where

no (~r; t) =
N

V

�
2�m

�o (~r; t)

�3=2
exp f�o (~r; t) [�o (~r; t)� ! (~r; t)]g ; (110)

and we interpret ��1o (~r; t) = kBTo (~r; t) as de�ning a local-nonequilibrium temperature, which according to the

theory [Cf. Eq. (78)] is given by
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�o (~r; t) = �so (~r; t) =��o (~r; t) : (111)

We may also verify that a local equipartition of energy

holds true, namely

1

m
go (~r; t) "k;o (~r; t) =

3

2
no (~r; t) kBTo (~r; t) : (112)

As a �nal note in this section we stress that, according

to Eqs. (97), (98), (100) and (101), we have that

f1;o (~r; ~p; t) = fo1;o (~r; ~p; t) + �1;o (~r; ~p; t) + �1 (~r; ~p; t) ;

(113)

f2 (~r; ~p; ~r
0; ~p 0; t) = fo1;o (~r; ~p; t) f

o
1;o (~r

0; ~p 0; t)+

+ �2;o (~r; ~p; ~r
0; ~p 0; t) + +�2 (~r; ~p; ~r

0; ~p 0; t) (114)

where �1 and �2 account for the e�ects of two-particle

correlations, while �1;o and �2;o are the terms that are

responsible for the contributions that broaden the local

equilibrium approximation.

IV. Concluding remarks

In the present paper we have derived a hydrody-

namic description of a uid of particles interacting

through a central force while under, in principle, general

nonequilibrium conditions. This was done in the spirit

of the IST based on the nonequilibrium statistical oper-

ator method, a formalismwhich appears as belonging to

the realm of Jaynes' Predictive Statistical Mechanics in-

volving Bayesian and maximum informational-entropy

methods. The description of the macroscopic state of

the system is done in terms of the single- and two-

particle reduced dynamic distribution functions, which,

in principle, allow to express any dynamic observable

of relevance in terms of them.

The equations of evolution for the nonequilibrium

averages of those quantities, namely, the density dis-

tribution functions, were obtained within the nonlinear

generalized transport theory that the MaxEnt-NSOM

provides. These equations were next used to obtain the

equations of evolution for the usual hydrodynamic vari-

ables, namely the particle density, momentum density,

and internal energy density. In that way there followed

their balance equations including dissipative sources.

We call the attention to the fact that these equations

involve the three-particle distribution function, which

if it is incorporated as a basic variable would lead us to

a generalization to arbitrary nonequilibrium condition

of the BBGKY hierarchy. To introduce only n1 and

n2 implies the need of a truncation procedure neces-

sary for the practical use of the method (as discussed

elsewhere [40]) in a way reminiscent of a truncation of

Grad's moments method. The balance equation for the

MaxEnt-NSOM entropy is obtained in its general form

for the chosen set of macrovariables, following from it

the expression for the NSOM-entropy ux and NSOM-

entropy production.

At this point, once in possession of the general ex-

pressions we have derived, within the framework of IST,

we have made contact with classical conservation equa-

tions based on CIT. We showed that in fact a particu-

lar choice of the MaxEnt-NSOM Lagrange multipliers,

what is equivalent to a NSOM approach that includes

as basic variables only the particle density, momentum

density, and energy density, leads to the well known

results of classical hydrodynamics, mainly to Gibbs re-

lation de�ning local equilibrium [Cf. Eqs. (78) and

(85)].

Hence, on the one hand, this proves that essentially

classical hydrodynamics is contained in IST as a lim-

iting case, and on the other that the method provides

a way to go beyond the limitations of CIT. The pro-

cedure developed in section III evidences the contribu-

tions that are beyond the local equilibriumand other re-

strictions imposed in CIT [Cf. Eqs. (97-98)]. Of course

in Eqs. (97-98) it is necessary to determine what �'1

and �'2 are. One way to do that is to introduce the

uxes, that is, all higher order uxes are to be incorpo-

rated to the basic set of variables to be used to describe

the macroscopic state of the system and its evolution in

arbitrarily far away from equilibrium conditions. This

includes nonlocality and retro-e�ects, thus allowing to

deal with short wavelength and high frequency phe-

nomena in a generalized extended hydrodynamics in,

eventually, far-from-equilibrium conditions. Also, the

constitutive equations of classical hydrodynamics (that

lead to the uncomfortable question of propagation of

thermal perturbations at in�nite speed) become gen-

eralized equations which in restricted conditions (�rst
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order extension of CIT) are of the hyperbolic type in

the form of the so called telegraphist equation [40, 41].

Next step is of course a full development of these sub-

ject, presently under way and to be reported in future

articles.

Returning to the results of section III, we consid-

ered in the third subsection a connection between the

density distribution functions and the MaxEnt-NSOM

Lagrange multipliers. To obtain a general relation [ex-

cept the implicit ones given by Eqs. (73), (74) and

(75)] is a formidable task, and so one needs to resort to

approximations. We used a quite simple one consisting

in, as already noted, a truncated description that would

produce classical conservation equation [Cf. Eqs. (85)

and (86)], and so acceptable under the proviso that the

local-equilibrium approximation holds. Next, neglect-

ing two-particle correlation [Cf. Eqs. (85), (97) and

(98)], viz, considering a dilute uid, we �nally arrived at

the result that there follows a local Maxwell-Boltzmann

distribution function, with the presence of a shift in

momentum distribution, and the presence of a space-

dependent potential composed of the external potential

and an average �eld potential accounting for an approx-

imation (quasiparticles in the dilute weakly correlated

uid) to the two-particle central-force interaction. Lo-

cal (and time-dependent) temperature, chemical poten-

tial, drift velocity, and pressure, can be de�ned and the

average kinetic energy satis�es, locally, the equiparti-

tion theorem. As noted before, the extension of these

concepts, mainly that of nonequilibrium temperature,

entropy and entropy production under quite general

dissipative conditions is an open question.

As �nal words, we comment that the MaxEnt-

NSOM, which possesses a remarkable compactness,

having by far a most appealing structure, and based

on reasonable sound principles [14,21-23,25-27] o�ers a

very e�ective method for dealing with nonlinear and

nonlocal in space and time irreversible processes in far-

from-equilibrium conditions in many-body systems. As

noticed, it provides microscopic foundations to IST, and

in this paper we have stressed the fact that it provides a

seemingly far-reaching-generalized hydrodynamics. We

have shown how classical conservation equations are re-

covered when imposing very limiting restrictive con-

ditions, bringing into evidence { at least in a general

way { the contributions to be expected to allow for go-

ing outside the domain of validity of CIT. In a sense

this anticipates that besides the quasi-conserved quan-

tities (basically density and energy density) one needs

to introduce, to an appropriate degree depending on

the problem in hands, relaxing uxes of ever increasing

order.
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