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The calculation of spin susceptibilities in metals, in particular the Ruderman-Kittel-Kasuya-
Yosida (RKKY) polarization due to a point coupling, is reviewed. In the one dimensional
case, the low coupling limit of the non-linear theory clari�es traditional perturbation ap-
proaches. Multilayer structures require theories with bounded metals. An explicit formula is
derived for the indirect interaction between two ferromagnetic plates in a half space. A case,
where an oscillatory amplitude decays with the �rst power of the distance to the boundary
is discussed.

I. Basic Theory

The seemingly simple subject of the theory of the

spin susceptibility in metals is still developing. This

short review describes certain aspects of the subject. It

may serve as an introduction into the �eld. However,

in no way does it intend to cite all important contribu-

tions.

The subject was opened by Pauli [1] 70 years ago.

He considered a homogeneous magnetic �eld acting on

the spins of a degenerate electron gas and calculated the

resulting magnetization. The electrons have a magnetic

moment of one Bohr magneton �B ; which leads to an

energy in the �eld B of ��BB, where the minus or plus

sign applies when the moment is aligned or opposed to

the �eld. This shifts the two bands which are �lled

to the same Fermi energy �F : The resulting change in

occupation produces a net magnetisation 2�(�F )�2BB,

where �(�F ) is the number of states per unit volume for

one type of spin. Kittel raised the question whether a

localized action on the spins in a metal would also turn

around some spins, which would �ll the whole volume

with a magnetization. The answer was given in the fa-

mous paper by Ruderman and Kittel [2]. Plane waves

are not diagonal in an inhomogeneous potential, which

was assumed to have the form of a three-dimensional

Dirac �-function:

H0 = �
�(3)(x)�z
2
;

where fx; �z=2g are the position and spin variables of a

conduction electron. Perturbed states were formed us-

ing �rst order perturbation theory. With these states,

and assuming no change in their occupation, the spin

density as a function of the distance r = jxj becomes:

R(r) =

m

32�3~2
sin(2kF r)� 2kF rcos(2kF r)

r4
(1)

where kF is the radius of the Fermi sphere. R(r) oscil-

lates with increasing r with an amplitude which decays

as r�3.

The spacial integral over R(r) gives 
�(�F )=2. This

corresponds to the Pauli result for the spin polariza-

tion due to a homogeneous coupling 
. For r ! 0;, the

function R(r) diverges, indicating that a higher order

approximation would not be meaningful. In fact, an

operator as in Eq. (1) does not have an exact scatter-

ing theory [3]. It is obvious that it cannot be treated

rigorously in a Schr�odinger equation: let the negative

three dimensional Dirac operator be represented by a

cubic well of width a and depth a�3. A Schr�odinger

wave squeezed into this well has kinetic energy � a�2

and negative potential energy � a�3, which dominates

in�nitely for a ! +0: Therefore, whenever such oper-

ators are used in solid state theory, it is understood

that the treatment is limited to the lowest order Born

approximation.

The method was also studied by Kasuya [4]. Yosida

[5] was intrigued by the fact, that in the Ruderman-
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Kittel calculation no shift in the occupation of the

states was applied, and yet, a net magnetization did

result. He showed that by integrating over all virtual

states and not excluding the same state, the normaliza-

tion of the perturbed states was violated in such a way

that this compensated the �rst mistake. In this way

the method and result, often denoted by the initials

RKKY, were consolidated.

It is straightforward to extend the theory to the

Fermi-Dirac statistics at �nite temperatures T [6]. At

intermediate temperatures, when the width of the �lled

part of the band is comparable to kBT , where kB is the

Boltzmann constant, the amplitudes of the oscillation

is diminished. At high temperature, for the Boltzmann

gas, the magnetization has a Gaussian shape, where the

reciprocal wavenumber of an electron with energy kBT ,

i.e. ~=
p
2mkBT ; is the decay length.

II. Simple applications

In the original paper [2], Eq. (1) represented the

contact interaction between a nuclear spin and a con-

duction electron. The resulting indirect interaction be-

tween nuclear spins explained the linewidth of nuclear

spin resonance in metals. The same form, Eq. (1), can

be used to describe the exchange coupling between the

spin of a magnetic ion and the spins of conduction elec-

trons. The �-function approximates the situation where

the diameter of the magnetic shell of the ion is small

compared to the wavelength of an electron at the Fermi

energy. The spin polarization due to one ion interacts

with another ion and thereby produces an indirect cou-

pling between the two ions. Considering the ions in the

hexagonal lattice of the heavy rare earth metals, De

Gennes [7] summed this coupling energy over all pairs

of ions and found that he could explain the Curie tem-

peratures of all the elements from Gd to Lu with just

one coupling constant. This works also for the light rare

earth metals [8]. In the liquid state of Gd [9], the radial

distribution of the neighbours to an ion gives a theoret-

ical Curie temperature which, while superior to that of

the solid phase, is below the melting point. The experi-

mental discovery [10], that thermally emitted electrons

from ferromagnetic Fe have spin polarization zero, was

explained [11] by the decay of the electron spin polar-

ization in the electron gas outside the metal.

III. Extensions of the theory

Kittel [12] applied the RKKY method to the one-

dimensional metal and obtained a polarization with a

constant term, i.e. an in�nite range. Yafet [13] re-

marked that this unlikely result could be avoided by

integrating �rst over the occupied states and then over

the virtual states. The two-dimensional problem was

only solved in 1986 by B�eal-Monot [14]. The problem

of the interaction per unit surface � of two parallel fer-

romagnetic plates embedded in a metal, also depends

on just one variable, the distance a between the plates.

� can be obtained by integrating over the couplings be-

tween a surface element of one plate with all surface

elements of the other plate. The result is [13,15]:

�(v) = �

�
��

4
+

Si(v)

2
+

sin(v) � vcos(v)

2v2

�
: (2)

with v = 2kFa: Again, �(v) oscillates, but for large

v the amplitudes decay as � v�2, and for v ! 0

the �nite value �(0) = ���=4 is obtained. Here

� = ��0I � I0k2Fm=(8�2~2), where I and I0 are the di-

rections of the magnetizations in the two plates. � is

the interaction strength per unit surface of a plate at

position ax and a conduction electron with variables

fr; �g :

H0
� = ���(rx � ax)I � �

2
: (3)

IV. Non-linear theory

The Hamiltonian, Eq.(3), contains a one-

dimensional Dirac �-function. This produces a change

in the slope of the wavefunctions. When the potential

is attractive, it has one bound state or, rather, one

bound band in view of the quantum numbers ky and

kz. The exact treatment of one plate in the electron

gas was given by Bardasis et al. [16] and Yosida et al.

[17]. These papers received little attention, possibly

since their explicit aim was to disprove a theory which

ascribed the indirect coupling between ferromagnetic

plates to quantum well states. An exact theory of the

indirect interaction between two plates was developed

by Bruno [18] using the framework of multiple scatter-

ing theory. Actually, the bound and propagating states

in the presence of two plates with couplings as given

by Eq. (3) are analytic expressions, so that the direct

solution of the quantum mechanical problem for two

plates is also possible [19]. The bound bands give an

important contribution, which, however, is canceled by

terms from the running waves. When the two plates
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have equal coupling and parallel magnetization, there

is a symmetric bound state, and, for large enough dis-

tances between the plates, also an antisymmetric bound

stste. The distance where this state ceases to exist is

not visible in the plot of the energy versus separation

of the plates. The propagating states are orthogonal

to the bound states. At the crucial distance the bound

state appears with zero energy and in�nite range. The

part of the Hilbert space which belongs to the bound

state, is taken over from the propagating states in a

smooth way which escapes detection.

The non-linear e�ects are surprisingly small: if the

coupling strength is caracterized by the binding energy

�0 of the bound state of a plate, then for �0 = �F which

is an intermediate coupling, the nodes of the function

�(v) are only slightly changed and the amplitudes are

reduced to about half the value of the perturbation re-

sult, Eq. (2). For a strong coupling, say �0 = 8�F ,

which applies to the exchange coupling of an ion to the

degenerate electron gas of a semiconductor, the inter-

action has much shorter range in the variable 2kFa.

In the non-linear theory, a change in the density of a

spin up state at a point is not exactly compensated

by the change in the density of the spin down state.

A net charge density appears, and the corresponding

Coulomb energy becomes relevant in the strong cou-

pling range [20].

Since with the planar interaction, Eq. (3), a bound

state appears at arbitrarily small coupling �, a pertur-

bation expansion around the point � = 0 is not valid.

The puzzling one-dimensional RKKY results [12,13] are

clari�ed by the low coupling limit of the non-linear the-

ory [21].

V. Inhomogeneous systems

When two ferromagnetic metals are separated by

a spacer metal of varying thickness a, the interaction

between the magnetisations oscillates as a function of

a. Often more than one period of oscillation can be

extracted from the measurement. In real metals the

interaction between the plates can be a superposition

of functions � with several values of kF , which corre-

spond to extremal distances of the Fermi surface of the

spacer metal, say the thickness of an `arm' between

`Fermi spheres'. In the spacer metal the electrons are

often in a lower potential, so that bound states appear

periodically as a function of the width of the well. Re-

peatedly it has been suggested that this produces the

oscillations of the interaction. However, it has been

shown [16,17,22,23] that the formation of quantum well

states does not lead to any periodicity in the coupling

between the ferromagnets.

Experiments with multilayer structures call for a

theory of the spin susceptibility in con�ned media. A

simple model uses an electron gas in a semi-space [24].

The wavefunctions then must have a node at x = 0;

where x is the coordinate perpendicular to the bound-

ary. Thus the RKKY procedure is repeated using in-

stead of plane waves the set

p
2sin(kxx)e

i(kyy+kzz); kx > 0: (4)

A spin-polarizationPh results which can be expressed in

terms of the RKKY result R(r) in homogeneous space,

Eq. (1), as follows:

Ph = R(2kF��) + R(2kF�+)� (5)

(�� + �+)2

2���+
R[kF (�� + �+)]

with p� =
p
(x� a)2 + y2 + z2 where fa; 0; 0g is the

position of the point coupling. Thus �� is the distance

to this point, and �+ the distance to the mirror posi-

tion of the point outside the boundary. The �rst two

terms in Eq. (5) give equal contributions on the bound-

ary where �� = �+. However, there the electron den-

sity vanishes, and indeed at the boundary the �rst two

terms are cancelled by the third expression.

An interesting problem is the indirect interaction

between two ferromagnetic plates at distances ax and bx
from the boundary. This can be obtained by integrat-

ing the polarization due to a point coupling at fax; 0; 0g
over the plane at bx. For the �rst two terms in Eq. (5)

this integration is identical to that which leads from Eq.

(1) to Eq. (2). This is also the case for the third term,

since the integration can be done with the variable

t = y2 + z2, and @(�� + �+)=@t = (�� + �+)=(2���+)

Thus the two plates couple as

�h = �(2kF jax � bxj) + �[2kF (ax + bx)]�
2�[kF (jax � bxj+ ax + bx0] : (6)

The �rst term is the coupling of two plates in an in�nite

medium, Eq. (2). The second term is such a coupling,

however, with the second plate in the mirror position.

The third term subtracts two couplings to a plate at

the boundary.
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The con�nement of a semi-space produces a remark-

able e�ect with just one plate at a distance ax from the

boundary. The ferromagnetism in the plate can have a

preferred direction. The anisotropy energy is measured

with a homogeneous outside �eld, which couples to the

integrated magnetization. Part of this is the integrated

magnetization P(a) of the conduction electrons. This

is obtained by integrating the density of the states at

the position ax over the Fermi surface, Eq. (A8) of [24].

For the waves of Eq. (4) the spin polarization becomes

(Eq. (18) of Ref. [24])

P(ax) = 
kF
8�2

2m

~2

�
1� sin(2kFax)

2kFax

�
(7)

The experiment has been performed [25] with an atom-

ically thin Co �lm at a variable distance ax from the

surface of a Cu single crystal. The result shows oscil-

lations which belong to two well known extremal vec-

tors kF of the Cu Fermi surface. The amplitudes decay

slowly with the �rst reciprocal power of the distance ax:

This is the slowest decay of an oscillating polarization

ever observed.

VI. Dedication to Roberto Luzzi

Jorge Helman and I had planned to dedicate an orig-

inal work to Roberto Luzzi. With the premature death

of Jorge on January 7, 1997, at the age of 56 years,

that project remains still in its initial steps. I therefore

decided to dedicate this historic account of a subject,

in which the activity of Jorge left its mark. In this way

Jorge Helman is present in this volume. It was his wish

to express his sympathy and admiration to his friend

Roberto Luzzi.
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