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The transport coefficients of a completely ionized gas are determined from an extended
thermodynamic theory of mixtures of ideal gases in the presence of external electromag-
netic fields. The Onsager relations for the transport coefficients in the presence of external

magnetic flux density are also discussed.

I. Introduction

The extended thermodynamic theory for a mixture
of v ideal gases was first formulated by Kremer [1] as a
field theory whose objective was the determination of
13 v fields of partial mass densities, partial velocities,
partial pressure tensors and partial heat fluxes.

Recently Pennisi and Trovato [2] analised the same
problem and incorporated the electric charge of the con-
stituents and the influence of electromagnetic fields, but
they have not obtained the dependence of the transport
coefficients on the external magnetic flux density. It is
well known in the literature of ionized gases that the
transport coefficients do depend on the external mag-
netic flux density (see for example Balescu [3] or Rod-
bard, Bezerra Jr. and Kremer [4]).

The purpose of this work is to obtain - from a
phenomenological extended thermodynamic theory of
a fully ionized gas - the laws of Navier-Stokes, Fourier
and Ohm and to find the dependence of the trans-
port coefficients on the external magnetic flux density.
In Section IT we base on [1] and remind the principal
features of extended thermodynamics of mixtures of v
ideal gases, while in Section I1I we present the so-called
one-fluid theory of an ionized gas whose objective is

the determination of the five fields of density, velocity

and temperature. The constitutive equations for the
partial pressure deviators and partial heat fluxes are
calculated in Section IV by the use of a method akin
to the Maxwellian iteration method of kinetic theory
of gases (see [5]). The laws of Navier-Stokes, Fourier
and Ohm are obtained in Section V and the transport
coefficients are calculated as functions of the external
magnetic flux density. In Section VI we discuss the
Onsager reciprocity relations in the presence of exter-
nal axial fields. The representation and the inverse of
second- and fourth-order tensors that depend on an ax-
1al field are given in the Appendix.

Cartesian notation for tensors with the usual sum-
mation convention is used. Parentheses denote sym-
metrization of all indices while angular parentheses in-

dicate traceless symmetrization.

II. A reminder of extended thermodynamics of

mixtures

We may say that objective of extended thermody-
namics of ionized gases is the determination of 13y fields

of

0. - partial mass densities,

vi - partial velocities,
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N .
p;j - partial pressure tensors, and

(2.1)

g7 - partial heat flux vectors,

where @ = 1,2, ..., v denotes the constituents of a mix-
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ture of electrons, ions and neutral particles.

To achieve this objective, we need 13 v field equa-
tions that are based on the following balance equations
for the moments (2.1):

do. | do.vf
=0 2.2
815 + 6902 ’ ( )
61}‘»’ 81)‘»’ apz] echa
0a ( Et v‘»’) + L = Py + == [Ei + (v* x B),], (2.3)
ot Ox; 7 Ox; N
Opy | Opvi | OPlyny 400G | 2045, . O
ot ' Oxy dxr | 50zy | om0 TG,
_'PDI —|—2 pk(zg])lel’ (24)
Og; | O¢ivy 10w . Ovi 2 Ovi T Ov
ot T or, T2 0e, TPMag, T5% 5, T 5% ba;
2 _Ovy by opi. pe. Op, 3P(”
z _ Lrr P8k _ pe P inqS B 2.5
+ QZ Jrr, 0. Oxr 20, Ouy Y2 . )+ Ejkq] " (25)
|
In the above equations p¢. e+ v
(o s i Pr= Y Mil+ ZMZM, (28)
= (qi ik + 45 0ik + qkélj) and Py are higher-order =1
moments while 7, P and P; are production terms.
The production term P; is constrained by the relation . v
: Pi =R ) = Zaaﬂp@.j), (2.9)
:1
S P =0 (2.6) ’
a=1
which expresses the conservation of the total momen- Z Q"ﬂql + Z QY Ve (2.10)
tum density. Moreover, e, and m, are the electric
charge and the mass of a particle of constituent « in We have introduced above the velocity difference V;* =

the mixture, F; is the external electric field and B; the
external magnetic flux density.

To close the system of equations (2.2)-(2.5) we as-
sume pr; vy, Pjjes Py, Pj; and P; as constitutive quan-
tities that depend on the basic fields (2.1). Through
the explotation of the principle of material frame-
indifference and of the entropy principle we get the fol-
lowing linearized constitutive equations:!

2
6zk+7 Pliky

o

p?z]k) = Oa pz]]k - 5 (27)

1 We have restricted to a classical ideal gas where p, = Oa 7=

III. The one-fluid theory

It is usual in the literature (see for example [3]) to
describe an ionized gas by the so-called one-fluid the-
ory whose objective is the determination of five fields of
mass density o, velocity v; and temperature T'. These

fields are defined with respect to the partial fields as:

T and dropped out all constants of integrations.
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v 1 v . 1 v
Q:ZQQ) vizgzgavia T:gznchcxa (31)
a=1 a=1 a=1
where n, = g./m, is the number density of constituent o and n = Y. _, n,. Here we shall suppose that all

constituents have the same temperature, which is the temperature of the mixture 7.

To determine the five fields above we base on the following balance equations for the mass density g, momentum

density gv; and internal energy density ge:
de
ot

Ovi O\ | Opij _
¢ 815 ]890]» 890]» o

Ope
ot T o

a=1

(oev; +¢i) + Pij

=0, (3.2)

v

€alo oy
L IxB),. .
S L pr 4+ (1xB) (33)

o

61;2»

where E* = E + (v x B). The above equations were obtained by summing over all constituents of the mixture the

equations (2.2), (2.3) and the trace of equation (2.4). Moreover, we have introduced the electric current density I,

the pressure tensor p;;, the heat flux vetor ¢; and the internal energy density through the relationships:

v

I; = E €a US,

a=1

v

pij = > (pf + eauius), (3.5)

a=1

v 1 v 1
qi = Z [q{" + Ca (a, + 511?,) ug —I-p}’iu}’] , 0 = Z O (a, —+ §u3) , (3.6)
a=1

a=1

where uf and p,c, are the diffusion velocity and the
internal energy density of constituent « in the mixture,
respectively, which are defined by

3 1
—p, = =p> . 3.7
5P = 5P (3.7)

o _ o _
U; =V, — Uy, 0aa =

To get a system of field equations from (3.2)-(3.4)
one has to consider ¢, p;;, ¢; and I; as constitutive quan-
tities that depend on the basic fields g, v;, T". Since we
are dealing with an ideal gas and interested only in a
linear theory, ¢ and p = 22:1 p. are known functions
of p and T'. In the next section we shall show how to get
the constitutive equations for p(;;y, ¢; and I; from the

system of field equations of extended thermodynamics.

e e;
L= (2 )
mg mr

IV. The Maxwellian iteration method

In most applications of plasma physics the ionized
gas 1s in a state of complete ionization, 1.e., 1t is consid-
ered as a binary mixture of ions (o« = I) and eletrons
(o = F). Here we shall restrict ourselves to this case.

First we note that there are only v — 1 linearly in-

dependent diffusion velocities, since

ZV: o.ui = 0. (4.1)
a=1

For the binary mixture in study we have u] =

—oguf /o, and the following relationship hold:

VE = -V = L (4.2)
Or

On the other hand, in a linearized theory equations (3.5)2 and (3.6); reduce to:

Pij = Pfj -l-Pfj,

5
¢ = +aq; + kT

Al (4.3)

EgMy — €;Mpg
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since p, = 20,6, = 0.
To get the constitutive equations for Plij) and ¢ we proceed as follows: we insert the constitutive equations
(2.7)-(2.10) into the equations (2.3), (2.5), and into the traceless part of equation (2.4), consider only linear terms

in the resulting equations. Hence

mgMmy ﬁ( 4 I) Lapfw) _ iapzzy) +L6PE 1 apl

exm; —e;mg Ot \ 0,05 0x Ox; 0 Ox; o5 Ox; or Ox;
- (S ) 4 v x B = M+ Mt
mgMny Or0; Or0r
2
( Y ) mginy MV 6” + €p0rM; + €;05Mp EijkBk Ij, (44)
Or0; €My —€/Mpg Or Ql(eEmI - 61mE)
61)".. 4 6 Ous Ovy:
{ij) 4 {é i _ B I €a o ) _
B + 592 " + 2p., 9z, + 2p., 9z, = OapPlij) T TarPiij) T Qm—ap(k(i)Ey)lel, (o= E,1) (4.5)
dqc 5p2 10T p 3172}]') . 5p 5p
¢ - LN LA — "Mq q7 LR Ay V/ & | I
ot + 2 0, T Ox; + 0. Ox; *B QQC, + o 29, &
5 p, 0 MpM; €.
\4 \4 o
* ( o 2 [ QE) Op0r €y — €;Mpg + maE ik B (a ) ( )

by performing some rearrangements. Equation (4.4) follows by subtraction of the ion equation from the electron
equation. Now we use an iteration method akin to the Maxwellian iteration of kinetic gas theory (see [5]). For the
a(0) _

first iteration step we insert the equilibrium values I( ' =0,p Pljy = 0 and ¢; () (o = B, 1) into the left hand side of
equations (4.4)-(4.6) and obtain the first iterated values I\, p?i(].l)) and ¢ on the right hand side:

€Mg — €My

5 (my—mg) 0l o

& —k = M F® e ¥ M
Mgy T2 mem;,  0x;  gpor U * omor P
2
4 Mmegin; 4 Eg0rM; +61QE7’TLE @
* Mipbij + cijeBr | ;" 4.7
[<QEQI) EpMy — €;Mg BB QEQI(eEmI_eij) TRk J ( )
9 31}(2' B(1) O B B e
Pa 6_l‘]) = O'aEp( ) + O'QIP( i + —p( ( )Ey)kl 7 (a = F, ) ( ) )
5p2 1 9T L ) .
5%?% _Hqqu()‘i‘Hqul()+HXEIZ()+—€M]()Bk, (a = E,1). (4.9)
In the above equations we have introduced
Hq = qg _ 5pcqu HV — Vo 5pcxMV 1Y MeMm; (410)
af af 2@ 2] a B QQQ aF 080; €xm; — eImE,
* mem; T 9 He — Hr
Gi=bit : 4.11
! + erMy — EgMy 61‘2 ( T ( )

where p,, (o = E,T) is the chemical potential of constituent «. For simplicity from now on we shall drop the index
(1) that denotes the iterated value.

From the system of equations (4.9) we obtain:

o 0T 1,
g __[”a v L5, (a=E) (4.12)

by using equations (B.4) and (B.5) of Appendix B, where

[{;} = —(a‘l’élj + a‘z’qjkBk + agBiBj), L?] = aZ(SZ']' + agqjkBk + ClgBZ'B]'. (413)
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The coefficients af through ag are given in Appendix A.

Now by the use of equation (B.9) of Appendix B, it follows from the system of equations (4.8):

8v(k aU(k
B _9pe K o= _opl Ak 4.14
Plij) = 2y g0 Pl T 720500 g, (4.14)
where
2
Mgy = 01 <5ik5ﬂ + budjr — géiﬂki)
+05 (€1 Brbir, + €1y Br it + €17 Br b + €57 Br651)
. 4 4 4 .,
+b5 | 62 B; B1 + 65 B; B, + 6;1. B, B + 6;:B; By, — §5leiBj - géz’jBkBl + §B 63501
+05 (€ixr Br B; By + €1, B, Bj By + €3, B, B; Bi + €1, B, B; By,)
Loy Lo Lo
—|—bg BZ'B]'BkBl — gB BZ'B]'(SM — gB BkBl(SZ']' + §B (Si]'(skl . (415)
The coefficients b through bg are also given in Appendix A.
|
V. The laws of Navier-Stokes, Fourier and Ohm one can get
8v(k
iy = =205 — 5.1
P(ij) M D) B (5.1)

In a linearized theory the presure tensor and the
heat flux vector of the mixture are given by equations

(4.3). Hence by the use of equations (4.14) and (4.3),

which i1s the mathematical expression of the law of
Navier-Stokes. The fourth-order tensor n;;y(zsy is iden-
tified with the coefficient of shear viscosity and it is

given by

Wiy (kD) = Mgy T Mgy (k) - (5.2)

On the other hand, the law of Fourier is obtained from equations (4.12) and (4.3)s:

R T
q; = — K % + L I;. (5.3)

K;; denotes the tensor of thermal conductivity and L;; the tensor of a electrical thermal effect. They are given by

- - - 5 m; — Mg
Finally the law of Ohm follows from equations (4.7) and (4.12):
L 0T

In the above equation we 1dentify ;; as the electrical resistivity tensor and L7; the tensor of a thermal electrical

effect. The expressions for X;; and Lj; read:

mginy

eg0rMm; + e;0sMpg

2
Y= mginy ( 4 )
]
€My — Mg @rlr EpMy —

erMg QEQI(eEmI —€érMmg

My, 65 + )szkBk
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4
+-L (Mg, 5 + ML) } 6.9)
mgMny 4 - - D, m; —mg
L = M KE+ ML K —k—"b;; p. 5.7
4 €My — EgTN; {QEQI [ BE X” + m XZ]] + 2 Mgy ]} ( )

VI.The Onsager relations

In a linearized theory the entropy flux is given by (see equation (9.2)3 of [1]):

qj)' _ q_z+ mem; He — Hr
;=

T  e;mg—exm; T

I;, (6.1)

or by the use of equation (5.3):

Ki; OT
= —— 4 DI 6.2
¢ T 3% + JJ ( )
where according to (5.4), D;; is given by
D"—l LE + LI 4 ékTmI_mE+( — ) __ Mstr (6.3)
R 4 2 MM, He = fr ermp —egmy P ’

On the other hand, one can obtain from equations (5.5) and (4.11) that

0 — or

€My — €My ox; Y Oxj’

where the coefficient D7; is given, in conformity with (5.7), by:

* mgin 4 - - 5 m; —m My — M
Dj; = Bt { [ME KF + ML KL+ | sh————+ ET ]5]} (6.5)

€rMp —€gM; (Prlr 2 mgmy;
In a linear irreversible thermodynamics (see for example [6])

Mmgim; a(ﬂE - /«LI)
€My — €My Ox;

& and Ef +

are identified as thermodynamic fluxes while I; and — % as thermodynamic forces. Besides, the following symmetric

relations are postulated for the coefficients in the presence of a magnetic flux density B:
Ki;(B) = Kji(—=B), Xj;(B)=2%;(-B), Dj;(B)=D;i(-B), Dj;(B)=Dj(-B), (6.6)
Dy = Dj; (6.7)

which are known as the Onsager reciprocity relations.

The relationships (6.6) are satisfied since the coef- HY =H; =0
ficients are expressed in a form like the one given by . .
} ) ) ) e the production term of the partial momentum
equation (4.13). However, the relationship (6.7) is not ) .
density do not depend on the partial heat fluxes,

satisfied in general as it can be seen from equations
so that M, = M1, =0.

(6.3) and (6.5). In order to get such a relationship we
base on [1] and assume that: With the two above assumptions it is easy to show
from equations (A.4), (A.5), (A.6), (A.8)2 and (A.9)
e the production term of the partial heat fluxes from Appendix A that af =af =af =0fora =L, 1,

do not depend on the diffusion fluxes, so that and from equation (4.13)s thet Li; = Li; = 0. Hence,
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1t follows

mginy 5km1_mE +/'LE_/'LI s
Z .
e;My —epm; |2 mpm; T J

(638)

Appendix A: Scalar Coefficients

The scalar coefficients of ¢ are given by:

15
le = Eisz

_ (6_EHq + &g ) bt s po
m m

15 n n e e
E — 272 A = ' B = _E 54 Iy = ')
as = D2k T ( IHEI - HH) (mE Hi + mIHEE)
€r Np €r €1 o
—-———— |H!{ H! —H! HI + ——B HE HE — HY HI
mI mE ( IE ET EFE Ir + mE mI ) ( IE ET EFE II)’
B L5 2 "1 g e 1rq €5 1r4q €1 11 ’ q q q q
a5 = —=k°T HI — Hi Hi + H{ ) + | HL,HL, — HL_H]},
D2 m; 5 Mg m;
€ € € € € € €
+m—Em—IBZ) m—Em—I] g
E I E I E I
1 €p €
a? = 5 [(H?EHgI — HL_HI + —mz —mIIBz) (HLHY, —H) HL)

[ [ [
+m_IIH¥E (m—zHgI + m—IIHgE) B?

1
D

a? =Y [(H?EHgI - H%EH;]I

_|_

(H;]EHgI - H%EH;]I) )

(H;]EHgI - H%EH;]I) ’

€r €1 o €r v
B
I

Mg My

€ €
+ (mE—H?I + —mf HgE) (HL,HY, - HIVEHgI)] (HI HL, — HL HY),
E I

1
D

mg

n n [ [
(m_IIH}%I - m_EEH?I) (H?EHgI - H%EH;]I + m_EEm_IIBz)

Ng
- )
mr Mg

2
€ €
a}62 = _{(H?IH}‘E/E - HIVEHgI) l(iH?I + m_IH}%E) + (H?EHJ%I - HgEH?I
I

[ [ [ [ [ [ [
+_E_IBZ)_E_I‘| __IH}‘E/E <_EH?I+_IH}%E) (H?EHgI_HgEH?I)}’
mg m;

mg My Mg My mr
1 5 Ny €x
a= P _geer+ arp?|, =
Hz; |2 Mp Mp
1 [e ] 1 [e
I E B q B I E B
adn = ——— | —as + Hi a ay; = —a
3 q 2 EEZ3 | 4 q 5
Hyr [mg Hyr [mg
1 e 1
I _ E B q B I _
a5 = =g | —ay + Hpgag |, ag = — 7
BI B BI

q
HEI

mg

1
[e—Eaf + HY

E
Ea2:| ’

32 - HgEaé]f - H:J/E:| )

€r g
- q B
Mp as + HEEa6

.

539

(A1)

(A.2)

(A.5)
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provided HL, # 0, and where

2 2
€ €
D= KH?EHgI — HL HY + ——Bz) + <—mE H + —mf HgE) B?
I
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€ €1

Mg My B

The scalar coefficients of Pljy are:

where:

Cy =

with

€
bf = Cl(PEU'U - pIUEI) - 4CZ_IPEBza
mr
B €r
bz = CZ(PEU'U - pIUEI) + 1 —ps,
mr
E __ €r €r 2
b3 = CS(pEO'H - pIUEI) + 3co—pr — c4a—pp B,
m, m,
€
bf = c4(pEUII - pIUEI) + CS_IpEa
mr

€
b? = CS(pEU'H - pIUEI) + 464—IPEa
mr

1p o ep bF
I _ B BE 1 B B 2 2
i B
Opr Orr Mg Opr
B
b — ep bF Org b
2 — - 2
Mg Ogr Orr
B B
B UEEI)E 5 er bF leg b7 o
3= — 3 o S b,
Orr Mg Opr 2mg 0m;
B
bI _ OeE bE €r b3
4= 4 — — )
Orr Mg Og;
B
b= Tempe g fn U
5= — 5 — 44— ;
Orr Mg Opr
dy ds

C1

e 3dyd% — dids + 4d3ds B? — dyd3B?

® 7 4(d2 4+ 4dZB?)(d2 + d2B? + 2d,d3 B? + d2B*)
o do(3d2 — 2dyd3 — dB?)

* 7 4(d2 + 4dZB?)(d2 + d2B? + 2d,d3 B? + d2B*)
(9d% — 9dyd3ds + d?d3 — Td3d3B? + d\d3B?)

(H;]EHgI - HgEH?I)

(d? +4d3B?)(3dy + 4d3B?)(d} + d3B? + 2d1dsB? + d3B*)

Ore0gr Or10gg € €

dy = — 2= L pB*

! 2 2 + Mg m;

1 3
dy= —= {012 4 opp—2 ), dy = 252 0
2 Mmg I 2mg my;

Appendix B: Representation and Inverse of Tensors

(A.10)

(A.11)

(A.12)
(A.13)
(A.14)

(A.15)
(A.16)
(A.17)
(A.18)
(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

Let T;; be an isotropic second-order tensor that is a function of the axial vector B. The representation of T;; is

given by:

T;j = ab;j + bejjp By + ¢B; Bj,

(B.1)

where a, b and c are scalar coefficients that depend on B2. The inverse of 7}; is obtained from the Cayley-Hamilton

theorem, which can be written as:

. 1
(T = ¢ [(T2),; = BTy o+ Loty

(B.2)
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with I;, I» and I3 denoting the scalar invariants

1

I, =Ty, I, = 5 [T T35 — (T%)u] Is = det(T). (B.3)
Hence for T;; given by (B.1) we have
1
(T = I [a(a + ¢B?)&;; — b(a + ¢B?)e;jp By, + (b” — ac)B; Bj] (B.4)
where
I3 = (a* + b2 B*)(a + cB?). (B.5)

Let T;;5; be and isotropic fourth-order tensor symmetric in the indices (4, j) and (k,[) that is a function of
the axial vector B, and let S;; be an arbitrary symmetrical tensor. According to the tables of Smith [7] the
representation of the tensor 75;3:5%;, which is linear in S and depends on the skew-symmetric tensor W;; = ;51 Bg,

is given by
TijuiSk = a1 Sij + a2[(SW)i; — (WS)yj] + as(WSW);; + as[(WSW2),; — (W2SW),;]

+as(SW2),.(W2); + asS, (W2)i; + arS,,6i; + as(SW2),.,.65. (B.6)

where a; through ag depend on (Wz)w. By taking the derivative of equation (B.6) with respect to S and returning
to the axial vector B, we get the desidered representation for 7j;1;. Since we are interested only in the fourth-order
tensor Ti;;)(k1y, Which is symmetric and traceless in (i, j) and (k,[), by performing the symmetrization it reduces

to:

2
T(ij)(k‘l) =a (@kéﬂ + 631051 — géijékl)

+b (€j1r Br b3 + €1y Br it + €510 Br b1 + €557 Br851)
4 4
3 3
+d (€;x» By Bj By + €1, B, Bj By + € By B; Bi + €;1» B, B; By,)

4
+c <6ikBjBl +6uB;Br + 62 Bi By + 0;1B; By, — 50,1 B Bj — 56;; Bp By + —Bzéz’jékl)

9

1 1 1
+e (BiBjBkBl — ngBiBjékl — ngBkBl(SZ']' + §B46ij6kl) , (B?)

where a through e are scalar coefficients tha depend on B?.

The inverse of T{;jy(x1y is found by the use of the relationship

_ 1 2
(T Y iy bty Tikty (mn) = 3 <6im6jn + 6inbjm — gézjémn) ; (B.8)

and it reads
_ 1 2
(T )<ij><hi> = N T4 59 [a (6ik 81+ i1 b5 — 3 bij 5k1)

+b (6ik €iir By + 651 €510 By + 651 €1y By + 051 i Br)

ab® —a“cH+ c—a cc—2a —a
3ab® 2 4% B? B?2c?2—2abB%d B*d?
(a2+b2B2+2aB?c+ B2+ 2bBYd+ BSd?)

(o B; By

4 4 4
+éi Bj By + 651 Bi Bi + 61 B; By — 3 Bi B bpt — 3 Bx Bi bij + g B 6 5k1)

—2Z2abc— c+ad—+ —
365 —2abec—bB?*c?+a’d+20?B*d—bB*d?
(a?+02B2+2aB?c+ B*c? +2bBYd+ B d?)

X (Ez’kr B, B; Bi+ €;r By Bj By + €1 By B; Bi + €1 By B; Bk)



542

C. F. Xavier and G. M. Kremer

360 —36abic+4ac®2 —280°B?c?+4aB?cP+24a%bd

+(3a—|—4BZC—|—B46)(a2—|—sz2—|—2aBZC—|—B462—|—2bB4d—|—B6d2)
T20°B2d+8abB%cd+12a?B>d> + 3602 B*d?+4aB*cd*—3de

(3a+4B?c+Be)(a?+ 0> B2+ 2aB?c+ B*c? +2bBYd+ B5d?)
aBSd?e—15ab?B?e—2a?>B%ce— 1602 B*ce+aB*c?e+2abB*de

(3a+4B?c+Be)(a?+ 0> B2+ 2aB?c+ B*c? +2bBYd+ B5d?)

1 1 1
x (Bi By By B — S B! By By bu— 5 B B Bioy + 5 B4, o). (B.9)
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