On the Thermodynamics of Ionized Gases

Christine Fernandes Xavier
Departamento de Estado Sólido e Ciência dos Materiais, UNICAMP
Caixa Postal 6165, Campinas, Brazil

G. M. Kremer
Departamento de Física, Universidade Ferderal do Paraná
Caixa Postal 19081, 81531-990, Curitiba, SP, Brazil

Dedicated to Roberto Luzzi on the occasion of his sixtieth birthday
Received March 20, 1997

Abstract

The transport coefficients of a completely ionized gas are determined from an extended thermodynamic theory of mixtures of ideal gases in the presence of external electromagnetic fields. The Onsager relations for the transport coefficients in the presence of external magnetic flux density are also discussed.

I. Introduction

The extended thermodynamic theory for a mixture of ν ideal gases was first formulated by Kremer [1] as a field theory whose objective was the determination of 13ν fields of partial mass densities, partial velocities, partial pressure tensors and partial heat fluxes.

Recently Pennisi and Trovato [2] analised the same problem and incorporated the electric charge of the constituents and the influence of electromagnetic fields, but they have not obtained the dependence of the transport coefficients on the external magnetic flux density. It is well known in the literature of ionized gases that the transport coefficients do depend on the external magnetic flux density (see for example Balescu [3] or Rodbard, Bezerra Jr. and Kremer [4]).

The purpose of this work is to obtain - from a phenomenological extended thermodynamic theory of a fully ionized gas - the laws of Navier-Stokes, Fourier and Ohm and to find the dependence of the transport coefficients on the external magnetic flux density. In Section II we base on [1] and remind the principal features of extended thermodynamics of mixtures of ν ideal gases, while in Section III we present the so-called one-fluid theory of an ionized gas whose objective is the determination of the five fields of density, velocity
and temperature. The constitutive equations for the partial pressure deviators and partial heat fluxes are calculated in Section IV by the use of a method akin to the Maxwellian iteration method of kinetic theory of gases (see [5]). The laws of Navier-Stokes, Fourier and Ohm are obtained in Section V and the transport coefficients are calculated as functions of the external magnetic flux density. In Section VI we discuss the Onsager reciprocity relations in the presence of external axial fields. The representation and the inverse of second- and fourth-order tensors that depend on an axial field are given in the Appendix.

Cartesian notation for tensors with the usual summation convention is used. Parentheses denote symmetrization of all indices while angular parentheses indicate traceless symmetrization.

II. A reminder of extended thermodynamics of mixtures

We may say that objective of extended thermodynamics of ionized gases is the determination of 13ν fields of

$$
\varrho_{\alpha}-\text { partial mass densities, }
$$

v_{i}^{α} - partial velocities,
$p_{i j}^{\alpha}$ - partial pressure tensors, and q_{i}^{α} - partial heat flux vectors,
where $\alpha=1,2, \ldots, \nu$ denotes the constituents of a mix-
ture of electrons, ions and neutral particles.
To achieve this objective, we need 13ν field equations that are based on the following balance equations for the moments (2.1):

$$
\begin{gather*}
\frac{\partial \varrho_{\alpha}}{\partial t}+\frac{\partial \varrho_{\alpha} v_{i}^{\alpha}}{\partial x_{i}}=0 \tag{2.2}\\
\varrho_{\alpha}\left(\frac{\partial v_{i}^{\alpha}}{\partial t}+\frac{\partial v_{i}^{\alpha}}{\partial x_{j}} v_{j}^{\alpha}\right)+\frac{\partial p_{i j}^{\alpha}}{\partial x_{j}}=P_{i}^{\alpha}+\frac{e_{\alpha} \varrho_{\alpha}}{m_{\alpha}}\left[E_{i}+\left(\mathbf{v}^{\alpha} \times \mathbf{B}\right)_{i}\right] \tag{2.3}\\
\frac{\partial p_{i j}^{\alpha}}{\partial t}+\frac{\partial p_{i j}^{\alpha} v_{k}^{\alpha}}{\partial x_{k}}+\frac{\partial p_{\langle i j k)}^{\alpha}}{\partial x_{k}}+\frac{4}{5} \frac{\partial q_{(i}^{\alpha}}{\partial x_{j)}}+\frac{2}{5} \frac{\partial q_{k}^{\alpha}}{\partial x_{k}} \delta_{i j}+2 p_{k(i}^{\alpha} \frac{\partial v_{j)}^{\alpha}}{\partial x_{k}} \\
=\mathcal{P}_{i j}^{\alpha}+2 \frac{e_{\alpha}}{m_{\alpha}} p_{k(i}^{\alpha} \epsilon_{j) k l} B_{l}, \tag{2.4}\\
\frac{\partial q_{i}^{\alpha}}{\partial t}+\frac{\partial q_{i}^{\alpha} v_{j}^{\alpha}}{\partial x_{j}}+\frac{1}{2} \frac{\partial p_{i j j k}^{\alpha}}{\partial x_{k}}+p_{\langle i j k)}^{\alpha} \frac{\partial v_{j}^{\alpha}}{\partial x_{k}}+\frac{2}{5} q_{j}^{\alpha} \frac{\partial v_{j}^{\alpha}}{\partial x_{i}}+\frac{7}{5} q_{j}^{\alpha} \frac{\partial v_{i}^{\alpha}}{\partial x_{j}} \\
+\frac{2}{5} q_{i}^{\alpha} \frac{\partial v_{k}^{\alpha}}{\partial x_{k}}-\frac{p_{i j}^{\alpha}}{\varrho_{\alpha}} \frac{\partial p_{j k}^{\alpha}}{\partial x_{k}}-\frac{p_{r r}^{\alpha}}{2 \varrho_{\alpha}} \frac{\partial p_{i k}^{\alpha}}{\partial x_{k}}=\mathcal{P}_{i}^{\alpha}-\frac{3}{2} \frac{p_{(i j}^{\alpha}}{\varrho_{\alpha}} P_{j)}^{\alpha}+\frac{e_{\alpha}}{m_{\alpha}} \epsilon_{i j k} q_{j}^{\alpha} B_{k} \tag{2.5}
\end{gather*}
$$

In the above equations $p_{\langle i j k\rangle}^{\alpha}=p_{i j k}^{\alpha}+$ $\frac{2}{5}\left(q_{i}^{\alpha} \delta_{j k}+q_{j}^{\alpha} \delta_{i k}+q_{k}^{\alpha} \delta_{i j}\right)$ and $p_{i j j k}^{\alpha}$ are higher-order moments while $P_{i}^{\alpha}, \mathcal{P}_{i j}^{\alpha}$ and \mathcal{P}_{i}^{α} are production terms. The production term P_{i}^{α} is constrained by the relation

$$
\begin{equation*}
\sum_{\alpha=1}^{\nu} P_{i}^{\alpha}=0 \tag{2.6}
\end{equation*}
$$

which expresses the conservation of the total momentum density. Moreover, e_{α} and m_{α} are the electric charge and the mass of a particle of constituent α in the mixture, E_{i} is the external electric field and B_{i} the external magnetic flux density.

To close the system of equations (2.2)-(2.5) we assume $p_{\langle i j k\rangle}^{\alpha}, p_{i j j k}^{\alpha}, P_{i}^{\alpha}, \mathcal{P}_{i j}^{\alpha}$ and \mathcal{P}_{i}^{α} as constitutive quantities that depend on the basic fields (2.1). Through the explotation of the principle of material frameindifference and of the entropy principle we get the following linearized constitutive equations: ${ }^{1}$

$$
\begin{equation*}
p_{\langle i j k\rangle}^{\alpha}=0, \quad p_{i j j k}^{\alpha}=5 \frac{p_{\alpha}^{2}}{\varrho_{\alpha}} \delta_{i k}+7 \frac{p_{\alpha}}{\varrho_{\alpha}} p_{\langle i k\rangle}^{\alpha}, \tag{2.7}
\end{equation*}
$$

$$
\begin{gather*}
P_{i}^{\alpha}=\sum_{\beta=1}^{\nu} M_{\alpha \beta}^{q} q_{i}^{\beta}+\sum_{\beta=1}^{\nu-1} M_{\alpha \beta}^{V} V_{i}^{\beta}, \tag{2.8}\\
\mathcal{P}_{i i}^{\alpha}=R_{\alpha}, \quad \mathcal{P}_{\langle i j\rangle}^{\alpha}=\sum_{\beta=1}^{\nu} \sigma_{\alpha \beta} p_{\langle i j\rangle}^{\beta}, \tag{2.9}\\
\mathcal{P}_{i}^{\alpha}=\sum_{\beta=1}^{\nu} Q_{\alpha \beta}^{q} q_{i}^{\beta}+\sum_{\beta=1}^{\nu-1} Q_{\alpha \beta}^{V} V_{i}^{\beta} . \tag{2.10}
\end{gather*}
$$

We have introduced above the velocity difference $V_{i}^{\alpha}=$ $v_{i}^{\alpha}-v_{i}^{\nu}$.

III. The one-fluid theory

It is usual in the literature (see for example [3]) to describe an ionized gas by the so-called one-fluid theory whose objective is the determination of five fields of mass density ϱ, velocity v_{i} and temperature T. These fields are defined with respect to the partial fields as:

[^0]\[

$$
\begin{equation*}
\varrho=\sum_{\alpha=1}^{\nu} \varrho_{\alpha}, \quad v_{i}=\frac{1}{\varrho} \sum_{\alpha=1}^{\nu} \varrho_{\alpha} v_{i}^{\alpha}, \quad T=\frac{1}{n} \sum_{\alpha=1}^{\nu} n_{\alpha} T_{\alpha}, \tag{3.1}
\end{equation*}
$$

\]

where $n_{\alpha}=\varrho_{\alpha} / m_{\alpha}$ is the number density of constituent α and $n=\sum_{\alpha=1}^{\nu} n_{\alpha}$. Here we shall suppose that all constituents have the same temperature, which is the temperature of the mixture T.

To determine the five fields above we base on the following balance equations for the mass density ϱ, momentum density ϱv_{i} and internal energy density $\varrho \varepsilon$:

$$
\begin{gather*}
\frac{\partial \varrho}{\partial t}+\frac{\partial \varrho v_{i}}{\partial x_{i}}=0 \tag{3.2}\\
\varrho\left(\frac{\partial v_{i}}{\partial t}+v_{j} \frac{\partial v_{i}}{\partial x_{j}}\right)+\frac{\partial p_{i j}}{\partial x_{j}}=\sum_{\alpha=1}^{\nu} \frac{e_{\alpha} \varrho_{\alpha}}{m_{\alpha}} E_{i}^{*}+(\mathbf{I} \times \mathbf{B})_{i} . \tag{3.3}\\
\frac{\partial \varrho \varepsilon}{\partial t}+\frac{\partial}{\partial x_{i}}\left(\varrho \varepsilon v_{i}+q_{i}\right)+p_{i j} \frac{\partial v_{i}}{\partial x_{j}}=\mathbf{I} \cdot \mathbf{E}^{*} \tag{3.4}
\end{gather*}
$$

where $\mathbf{E}^{*}=\mathbf{E}+(\mathbf{v} \times \mathbf{B})$. The above equations were obtained by summing over all constituents of the mixture the equations (2.2), (2.3) and the trace of equation (2.4). Moreover, we have introduced the electric current density I_{i}, the pressure tensor $p_{i j}$, the heat flux vetor q_{i} and the internal energy density through the relationships:

$$
\begin{gather*}
I_{i}=\sum_{\alpha=1}^{\nu} e_{\alpha} n_{\alpha} u_{i}^{\alpha}, \quad p_{i j}=\sum_{\alpha=1}^{\nu}\left(p_{i j}^{\alpha}+\varrho_{\alpha} u_{i}^{\alpha} u_{j}^{\alpha}\right) \tag{3.5}\\
q_{i}=\sum_{\alpha=1}^{\nu}\left[q_{i}^{\alpha}+\varrho_{\alpha}\left(\varepsilon_{\alpha}+\frac{1}{2} u_{\alpha}^{2}\right) u_{i}^{\alpha}+p_{j i}^{\alpha} u_{j}^{\alpha}\right], \quad \varrho \varepsilon=\sum_{\alpha=1}^{\nu} \varrho_{\alpha}\left(\varepsilon_{\alpha}+\frac{1}{2} u_{\alpha}^{2}\right), \tag{3.6}
\end{gather*}
$$

where u_{i}^{α} and $\varrho_{\alpha} \varepsilon_{\alpha}$ are the diffusion velocity and the internal energy density of constituent α in the mixture, respectively, which are defined by

$$
\begin{equation*}
u_{i}^{\alpha}=v_{i}^{\alpha}-v_{i}, \quad \varrho_{\alpha} \varepsilon_{\alpha}=\frac{3}{2} p_{\alpha}=\frac{1}{2} p_{r r}^{\alpha} . \tag{3.7}
\end{equation*}
$$

To get a system of field equations from (3.2)-(3.4) one has to consider $\varepsilon, p_{i j}, q_{i}$ and I_{i} as constitutive quantities that depend on the basic fields ϱ, v_{i}, T. Since we are dealing with an ideal gas and interested only in a linear theory, ε and $p=\sum_{\alpha=1}^{\nu} p_{\alpha}$ are known functions of ϱ and T. In the next section we shall show how to get the constitutive equations for $p_{\langle i j\rangle}, q_{i}$ and I_{i} from the system of field equations of extended thermodynamics.

IV. The Maxwellian iteration method

In most applications of plasma physics the ionized gas is in a state of complete ionization, i.e., it is considered as a binary mixture of ions ($\alpha=I$) and eletrons $(\alpha=E)$. Here we shall restrict ourselves to this case.

First we note that there are only $\nu-1$ linearly independent diffusion velocities, since

$$
\begin{equation*}
\sum_{\alpha=1}^{\nu} \varrho_{\alpha} u_{i}^{\alpha}=0 \tag{4.1}
\end{equation*}
$$

For the binary mixture in study we have $u_{i}^{I}=$ $-\varrho_{E} u_{i}^{E} / \varrho_{I}$ and the following relationship hold:

$$
\begin{equation*}
I_{i}=\left(\frac{e_{E}}{m_{E}}-\frac{e_{I}}{m_{I}}\right) \varrho_{E} u_{i}^{E}, \quad V_{i}^{E}=-V_{i}^{I}=\frac{\varrho}{\varrho_{I}} u_{i}^{E} \tag{4.2}
\end{equation*}
$$

On the other hand, in a linearized theory equations $(3.5)_{2}$ and (3.6) $)_{2}$ reduce to:

$$
\begin{equation*}
p_{i j}=p_{i j}^{E}+p_{i j}^{I}, \quad q_{i}=q_{i}^{E}+q_{i}^{I}+\frac{5}{2} k T \frac{m_{I}-m_{E}}{e_{E} m_{I}-e_{I} m_{E}} I_{i} \tag{4.3}
\end{equation*}
$$

since $p_{\alpha}=\frac{2}{3} \varrho_{\alpha} \varepsilon_{\alpha}=\varrho_{\alpha} \frac{k}{m_{\alpha}} T$.
To get the constitutive equations for $p_{\langle i j\rangle}^{\alpha}$ and q_{i}^{α} we proceed as follows: we insert the constitutive equations (2.7)-(2.10) into the equations (2.3), (2.5), and into the traceless part of equation (2.4), consider only linear terms in the resulting equations. Hence

$$
\begin{gather*}
\frac{m_{E} m_{I}}{e_{E} m_{I}-e_{I} m_{E}} \frac{\partial}{\partial t}\left(\frac{\varrho}{\varrho_{I} \varrho_{E}} I_{i}\right)+\frac{1}{\varrho_{E}} \frac{\partial p_{\langle i j\rangle}^{E}}{\partial x_{j}}-\frac{1}{\varrho_{I}} \frac{\partial p_{\langle i j\rangle}^{I}}{\partial x_{j}}+\frac{1}{\varrho_{E}} \frac{\partial p_{E}}{\partial x_{i}}-\frac{1}{\varrho_{I}} \frac{\partial p_{I}}{\partial x_{i}} \\
-\left(\frac{e_{E} m_{I}-e_{I} m_{E}}{m_{E} m_{I}}\right)\left[E_{i}+(\mathbf{v} \times \mathbf{B})_{i}\right]=\frac{\varrho}{\varrho_{E} \varrho_{I}} M_{E E}^{q} q_{i}^{E}+\frac{\varrho}{\varrho_{E} \varrho_{I}} M_{E I}^{q} q_{i}^{I} \\
+\left[\left(\frac{\varrho}{\varrho_{E} \varrho_{I}}\right)^{2} \frac{m_{E} m_{I}}{e_{E} m_{I}-e_{I} m_{E}} M_{E E}^{V} \delta_{i j}+\frac{e_{E} \varrho_{I} m_{I}+e_{I} \varrho_{E} m_{E}}{\varrho_{E} \varrho_{I}\left(e_{E} m_{I}-e_{I} m_{E}\right)} \epsilon_{i j k} B_{k}\right] I_{j}, \tag{4.4}\\
\frac{\partial p_{\langle i j\rangle}^{\alpha}}{\partial t}+\frac{4}{5} \frac{\partial q_{\langle i}^{\alpha}}{\partial x_{j\rangle}}+2 p_{\alpha} \frac{\partial u_{\langle i}^{\alpha}}{\partial x_{j\rangle}}+2 p_{\alpha} \frac{\partial v_{\langle i}}{\partial x_{j\rangle}}=\sigma_{\alpha E} p_{\langle i j\rangle}^{E}+\sigma_{\alpha I} p_{\langle i j\rangle}^{I}+2 \frac{e_{\alpha}}{m_{\alpha}} p_{\langle k(i\rangle}^{\alpha} \epsilon_{j j) k l} B_{l}, \quad(\alpha=E, I) \tag{4.5}\\
\frac{\partial q_{i}^{\alpha}}{\partial t}+\frac{5}{2} \frac{p_{\alpha}^{2}}{\varrho_{\alpha}} \frac{1}{T} \frac{\partial T}{\partial x_{i}}+\frac{p_{\alpha}}{\varrho_{\alpha}} \frac{\partial p_{\langle i j\rangle}^{\alpha}}{\partial x_{j}}=\left(Q_{\alpha E}^{q}-\frac{5}{2} \frac{p_{\alpha}}{\varrho_{\alpha}} M_{\alpha E}^{q}\right) q_{i}^{E}+\left(Q_{\alpha I}^{q}-\frac{5}{2} \frac{p_{\alpha}}{\varrho_{\alpha}} M_{\alpha I}^{q}\right) q_{i}^{I} \\
+\left(Q_{\alpha E}^{V}-\frac{5}{2} \frac{p_{\alpha}}{\varrho_{\alpha}} M_{\alpha E}^{V}\right) \frac{\varrho}{\varrho_{E} \varrho_{I}} \frac{m_{E} m_{I}}{e_{E} m_{I}-e_{I} m_{E}} I_{i}+\frac{e_{\alpha}}{m_{\alpha}} \epsilon_{i j k} q_{j}^{\alpha} B_{k}, \quad(\alpha=E, I) \tag{4.6}
\end{gather*}
$$

by performing some rearrangements. Equation (4.4) follows by subtraction of the ion equation from the electron equation. Now we use an iteration method akin to the Maxwellian iteration of kinetic gas theory (see [5]). For the first iteration step we insert the equilibrium values $I_{i}^{(0)}=0, p_{\langle i j\rangle}^{\alpha(0)}=0$ and $q_{i}^{\alpha(0)}(\alpha=E, I)$ into the left hand side of equations (4.4)-(4.6) and obtain the first iterated values $I_{i}^{(1)}, p_{\langle i j\rangle}^{\alpha(1)}$ and $q_{i}^{\alpha(1)}$ on the right hand side:

$$
\begin{gather*}
\frac{e_{I} m_{E}-e_{E} m_{I}}{m_{E} m_{I}} \mathcal{E}_{i}+\frac{5}{2} k \frac{\left(m_{I}-m_{E}\right)}{m_{E} m_{I}} \frac{\partial T}{\partial x_{i}}=\frac{\varrho}{\varrho_{E} \varrho_{I}} M_{E E}^{q} q_{i}^{E(1)}+\frac{\varrho}{\varrho_{E} \varrho_{I}} M_{E I}^{q} q_{i}^{I(1)} \\
+\left[\left(\frac{\varrho}{\varrho_{E} \varrho_{I}}\right)^{2} \frac{m_{E} m_{I}}{e_{E} m_{I}-e_{I} m_{E}} M_{E E}^{V} \delta_{i j}+\frac{e_{E} \varrho_{I} m_{I}+e_{I} \varrho_{E} m_{E}}{\varrho_{E} \varrho_{I}\left(e_{E} m_{I}-e_{I} m_{E}\right)} \epsilon_{i j k} B_{k}\right] I_{j}^{(1)}, \tag{4.7}\\
2 p_{\alpha} \frac{\partial v_{\langle i}}{\partial x_{j\rangle}}=\sigma_{\alpha E} p_{\langle i j\rangle}^{E(1)}+\sigma_{\alpha I} p_{\langle i j\rangle}^{I(1)}+2 \frac{e_{\alpha}}{m_{\alpha}} p_{\langle k(i\rangle}^{\alpha(1)} \epsilon_{j) k l} B_{l}, \quad(\alpha=E, I) \tag{4.8}\\
\frac{5}{2} \frac{p_{\alpha}^{2}}{\varrho_{\alpha}} \frac{1}{T} \frac{\partial T}{\partial x_{i}}=H_{\alpha E}^{q} q_{i}^{E(1)}+H_{\alpha I}^{q} q_{i}^{I(1)}+H_{\alpha E}^{V} I_{i}^{(1)}+\frac{e_{\alpha}}{m_{\alpha}} \epsilon_{i j k} q_{j}^{\alpha(1)} B_{k}, \quad(\alpha=E, I) . \tag{4.9}
\end{gather*}
$$

In the above equations we have introduced

$$
\begin{gather*}
H_{\alpha \beta}^{q}=\left(Q_{\alpha \beta}^{q}-\frac{5 p_{\alpha}}{2 \varrho_{\alpha}} M_{\alpha \beta}^{q}\right), \quad H_{\alpha E}^{V}=\left(Q_{\alpha E}^{V}-\frac{5 p_{\alpha}}{2 \varrho_{\alpha}} M_{\alpha E}^{V}\right) \frac{\varrho}{\varrho_{E} \varrho_{I}} \frac{m_{E} m_{I}}{e_{E} m_{I}-e_{I} m_{E}} \tag{4.10}\\
\mathcal{E}_{i}=E_{i}^{*}+\frac{m_{E} m_{I} T}{e_{I} m_{E}-e_{E} m_{I}} \frac{\partial}{\partial x_{i}}\left(\frac{\mu_{E}-\mu_{I}}{T}\right) \tag{4.11}
\end{gather*}
$$

where $\mu_{\alpha}(\alpha=E, I)$ is the chemical potential of constituent α. For simplicity from now on we shall drop the index (1) that denotes the iterated value.

From the system of equations (4.9) we obtain:

$$
\begin{equation*}
q_{i}^{\alpha}=-K_{i j}^{\alpha} \frac{\partial T}{\partial x_{j}}+L_{i j}^{\alpha} I_{j}, \quad(\alpha=E, I) \tag{4.12}
\end{equation*}
$$

by using equations (B.4) and (B.5) of Appendix B, where

$$
\begin{equation*}
K_{i j}^{\alpha}=-\left(a_{1}^{\alpha} \delta_{i j}+a_{2}^{\alpha} \epsilon_{i j k} B_{k}+a_{3}^{\alpha} B_{i} B_{j}\right), \quad L_{i j}^{\alpha}=a_{4}^{\alpha} \delta_{i j}+a_{5}^{\alpha} \epsilon_{i j k} B_{k}+a_{6}^{\alpha} B_{i} B_{j} \tag{4.13}
\end{equation*}
$$

The coefficients a_{1}^{α} through a_{6}^{α} are given in Appendix A.
Now by the use of equation (B.9) of Appendix B, it follows from the system of equations (4.8):

$$
\begin{equation*}
p_{\langle i j\rangle}^{E}=-2 \eta_{\langle i j\rangle\langle k l\rangle}^{\alpha} \frac{\partial v_{\langle k}}{\partial x_{l\rangle}}, \quad p_{\langle i j\rangle}^{I}=-2 \eta_{\langle i j\rangle\langle k l}^{I} \frac{\partial v_{\langle k}}{\partial x_{l\rangle}}, \tag{4.14}
\end{equation*}
$$

where

$$
\begin{gather*}
\eta_{\langle i j\rangle\langle k l\rangle}^{E}=b_{1}^{\alpha}\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}-\frac{2}{3} \delta_{i j} \delta_{k l}\right) \\
+b_{2}^{\alpha}\left(\epsilon_{j l r} B_{r} \delta_{i k}+\epsilon_{j k r} B_{r} \delta_{i l}+\epsilon_{i l r} B_{r} \delta_{j k}+\epsilon_{i k r} B_{r} \delta_{j l}\right) \\
+b_{3}^{\alpha}\left(\delta_{i k} B_{j} B_{l}+\delta_{i l} B_{j} B_{k}+\delta_{j k} B_{i} B_{l}+\delta_{j l} B_{i} B_{k}-\frac{4}{3} \delta_{k l} B_{i} B_{j}-\frac{4}{3} \delta_{i j} B_{k} B_{l}+\frac{4}{9} B^{2} \delta_{i j} \delta_{k l}\right) \\
+b_{4}^{\alpha}\left(\epsilon_{i k r} B_{r} B_{j} B_{l}+\epsilon_{i l r} B_{r} B_{j} B_{k}+\epsilon_{j k r} B_{r} B_{i} B_{l}+\epsilon_{j l r} B_{r} B_{i} B_{k}\right) \\
+b_{5}^{\alpha}\left(B_{i} B_{j} B_{k} B_{l}-\frac{1}{3} B^{2} B_{i} B_{j} \delta_{k l}-\frac{1}{3} B^{2} B_{k} B_{l} \delta_{i j}+\frac{1}{9} B^{4} \delta_{i j} \delta_{k l}\right) . \tag{4.15}
\end{gather*}
$$

The coefficients b_{1}^{α} through b_{5}^{α} are also given in Appendix A.

V. The laws of Navier-Stokes, Fourier and Ohm

In a linearized theory the presure tensor and the heat flux vector of the mixture are given by equations (4.3). Hence by the use of equations (4.14) and (4.3) $)_{1}$,
one can get

$$
\begin{equation*}
p_{\langle i j\rangle}=-2 \eta_{\langle i j\rangle\langle k l\rangle} \frac{\partial v_{\langle k}}{\partial x_{l\rangle}} \tag{5.1}
\end{equation*}
$$

which is the mathematical expression of the law of Navier-Stokes. The fourth-order tensor $\eta_{\langle i j\rangle\langle k l\rangle}$ is identified with the coefficient of shear viscosity and it is given by

$$
\begin{equation*}
\eta_{\langle i j\rangle\langle k l\rangle}=\eta_{\langle i j\rangle\langle k l\rangle}^{E}+\eta_{\langle i j\rangle\langle k l\rangle}^{I} \tag{5.2}
\end{equation*}
$$

On the other hand, the law of Fourier is obtained from equations (4.12) and (4.3) ${ }_{2}$:

$$
\begin{equation*}
q_{i}=-K_{i j} \frac{\partial T}{\partial x_{j}}+L_{i j} I_{j} \tag{5.3}
\end{equation*}
$$

$K_{i j}$ denotes the tensor of thermal conductivity and $L_{i j}$ the tensor of a electrical thermal effect. They are given by

$$
\begin{equation*}
K_{i j}=K_{i j}^{E}+K_{i j}^{I}, \quad L_{i j}=L_{i j}^{E}+L_{i j}^{I}+\frac{5}{2} k T \frac{m_{I}-m_{E}}{e_{I} m_{E}-e_{E} m_{I}} \delta_{i j} \tag{5.4}
\end{equation*}
$$

Finally the law of Ohm follows from equations (4.7) and (4.12):

$$
\begin{equation*}
\mathcal{E}_{i}=\Sigma_{i j} I_{j}-L_{i j}^{*} \frac{\partial T}{\partial x_{j}} \tag{5.5}
\end{equation*}
$$

In the above equation we identify $\Sigma_{i j}$ as the electrical resistivity tensor and $L_{i j}^{*}$ the tensor of a thermal electrical effect. The expressions for $\Sigma_{i j}$ and $L_{i j}^{*}$ read:

$$
\Sigma_{i j}=\frac{m_{E} m_{I}}{e_{I} m_{E}-m_{E} m_{I}}\left\{\left(\frac{\varrho}{\varrho_{E} \varrho_{I}}\right)^{2} \frac{m_{E} m_{I}}{e_{E} m_{I}-e_{I} m_{E}} M_{E E}^{V} \delta_{i j}+\frac{e_{E} \varrho_{I} m_{I}+e_{I} \varrho_{E} m_{E}}{\varrho_{E} \varrho_{I}\left(e_{E} m_{I}-e_{I} m_{E}\right)} \epsilon_{i j k} B_{k}\right.
$$

$$
\begin{gather*}
\left.+\frac{\varrho}{\varrho_{I} \varrho_{E}}\left[M_{E E}^{q} L_{i j}^{E}+M_{E I}^{q} L_{i j}^{I}\right]\right\}, \tag{5.6}\\
L_{i j}^{*}=\frac{m_{E} m_{I}}{e_{I} m_{E}-e_{E} m_{I}}\left\{\frac{\varrho}{\varrho_{E} \varrho_{I}}\left[M_{E E}^{q} K_{i j}^{E}+M_{E I}^{q} K_{i j}^{I}\right]+\frac{5}{2} k \frac{m_{I}-m_{E}}{m_{E} m_{I}} \delta_{i j}\right\} . \tag{5.7}
\end{gather*}
$$

VI.The Onsager relations

In a linearized theory the entropy flux is given by (see equation $(9.2)_{3}$ of [1]):

$$
\begin{equation*}
\phi_{i}=\frac{q_{i}}{T}+\frac{m_{E} m_{I}}{e_{I} m_{E}-e_{E} m_{I}} \frac{\mu_{E}-\mu_{I}}{T} I_{i} \tag{6.1}
\end{equation*}
$$

or by the use of equation (5.3):

$$
\begin{equation*}
\phi_{i}=-\frac{K_{i j}}{T} \frac{\partial T}{\partial x_{i}}+D_{i j} I_{j} \tag{6.2}
\end{equation*}
$$

where according to $(5.4)_{2}, D_{i j}$ is given by

$$
\begin{equation*}
D_{i j}=\frac{1}{T}\left\{L_{i j}^{E}+L_{i j}^{I}+\left[\frac{5}{2} k T \frac{m_{I}-m_{E}}{m_{E} m_{I}}+\left(\mu_{E}-\mu_{I}\right)\right] \frac{m_{E} m_{I}}{e_{I} m_{E}-e_{E} m_{I}} \delta_{i j}\right\} \tag{6.3}
\end{equation*}
$$

On the other hand, one can obtain from equations (5.5) and (4.11) that

$$
\begin{equation*}
E_{i}^{*}+\frac{m_{E} m_{I}}{e_{I} m_{E}-e_{E} m_{I}} \frac{\partial\left(\mu_{E}-\mu_{I}\right)}{\partial x_{i}}=\Sigma_{i j} I_{j}-D_{i j}^{*} \frac{\partial T}{\partial x_{j}} \tag{6.4}
\end{equation*}
$$

where the coefficient $D_{i j}^{*}$ is given, in conformity with (5.7), by:

$$
\begin{equation*}
D_{i j}^{*}=\frac{m_{E} m_{I}}{e_{I} m_{E}-e_{E} m_{I}}\left\{\frac{\varrho}{\varrho_{E} \varrho_{I}}\left[M_{E E}^{q} K_{i j}^{E}+M_{E I}^{q} K_{i j}^{I}\right]+\left[\frac{5}{2} k \frac{m_{I}-m_{E}}{m_{E} m_{I}}+\frac{\mu_{E}-\mu_{I}}{T}\right] \delta_{i j}\right\} . \tag{6.5}
\end{equation*}
$$

In a linear irreversible thermodynamics (see for example [6])

$$
\phi_{i} \quad \text { and } \quad E_{i}^{*}+\frac{m_{E} m_{I}}{e_{I} m_{E}-e_{E} m_{I}} \frac{\partial\left(\mu_{E}-\mu_{I}\right)}{\partial x_{i}}
$$

are identified as thermodynamic fluxes while I_{i} and $-\frac{\partial T}{\partial x_{i}}$ as thermodynamic forces. Besides, the following symmetric relations are postulated for the coefficients in the presence of a magnetic flux density \mathbf{B} :

$$
\begin{gather*}
K_{i j}(\mathbf{B})=K_{j i}(-\mathbf{B}), \quad \Sigma_{i j}(\mathbf{B})=\Sigma_{j i}(-\mathbf{B}), \quad D_{i j}(\mathbf{B})=D_{j i}(-\mathbf{B}), \quad D_{i j}^{*}(\mathbf{B})=D_{j i}^{*}(-\mathbf{B}), \tag{6.6}\\
D_{i j}=D_{i j}^{*} \tag{6.7}
\end{gather*}
$$

which are known as the Onsager reciprocity relations.

The relationships (6.6) are satisfied since the coefficients are expressed in a form like the one given by equation (4.13). However, the relationship (6.7) is not satisfied in general as it can be seen from equations (6.3) and (6.5). In order to get such a relationship we base on [1] and assume that:

- the production term of the partial heat fluxes do not depend on the diffusion fluxes, so that

$$
H_{E E}^{V}=H_{I E}^{V}=0 ;
$$

- the production term of the partial momentum density do not depend on the partial heat fluxes, so that $M_{E E}^{q}=M_{E I}^{q}=0$.

With the two above assumptions it is easy to show from equations (A.4), (A.5), (A.6), (A.8) 2 and (A.9) from Appendix A that $a_{4}^{\alpha}=a_{5}^{\alpha}=a_{6}^{\alpha}=0$ for $\alpha=E, I$, and from equation $(4.13)_{2}$ thet $L_{i j}^{E}=L_{i j}^{I}=0$. Hence,
it follows
$D_{i j}=D_{i j}^{*}=\frac{m_{E} m_{I}}{e_{I} m_{E}-e_{E} m_{I}}\left[\frac{5}{2} k \frac{m_{I}-m_{E}}{m_{E} m_{I}}+\frac{\mu_{E}-\mu_{I}}{T}\right] \delta_{i j}$.

Appendix A: Scalar Coefficients

The scalar coefficients of q_{i}^{α} are given by:

$$
\begin{align*}
& a_{1}^{E}=\frac{1}{D} \frac{5}{2} k^{2} T\left[\left(\frac{n_{I}}{m_{I}} H_{E I}^{q}-\frac{n_{E}}{m_{E}} H_{I I}^{q}\right)\left(H_{I E}^{q} H_{E I}^{q}-H_{E E}^{q} H_{I I}^{q}+\frac{e_{E}}{m_{E}} \frac{e_{I}}{m_{I}} B^{2}\right)\right. \\
& \left.-\left(\frac{e_{E}}{m_{E}} H_{I I}^{q}+\frac{e_{I}}{m_{I}} H_{E E}^{q}\right) \frac{e_{I}}{m_{I}} \frac{n_{E}}{m_{E}} B^{2}\right]\left(H_{I E}^{q} H_{E I}^{q}-H_{E E}^{q} H_{I I}^{q}\right), \tag{A.1}\\
& a_{2}^{E}=\frac{1}{D} \frac{5}{2} k^{2} T\left[\left(\frac{n_{I}}{m_{I}} H_{E I}^{q}-\frac{n_{E}}{m_{E}} H_{I I}^{q}\right)\left(\frac{e_{E}}{m_{E}} H_{I I}^{q}+\frac{e_{I}}{m_{I}} H_{E E}^{q}\right)\right. \\
& \left.-\frac{e_{I}}{m_{I}} \frac{n_{E}}{m_{E}}\left(H_{I E}^{q} H_{E I}^{q}-H_{E E}^{q} H_{I I}^{q}+\frac{e_{E}}{m_{E}} \frac{e_{I}}{m_{I}} B^{2}\right)\right]\left(H_{I E}^{q} H_{E I}^{q}-H_{E E}^{q} H_{I I}^{q}\right), \tag{A.2}\\
& a_{3}^{\bar{E}}=\frac{1}{D} \frac{5}{2} k^{2} T\left\{(\frac { n _ { I } } { m _ { I } } H _ { E I } ^ { q } - \frac { n _ { E } } { m _ { E } } H _ { I I } ^ { q }) \left[\left(\frac{e_{E}}{m_{E}} H_{I I}^{q}+\frac{e_{I}}{m_{I}} H_{E E}^{q}\right)^{2}+\left(H_{I E}^{q} H_{E I}^{q}-H_{E E}^{q} H_{I I}^{q}\right.\right.\right. \\
& \left.\left.\left.+\frac{e_{E}}{m_{E}} \frac{e_{I}}{m_{I}} B^{2}\right) \frac{e_{E}}{m_{E}} \frac{e_{I}}{m_{I}}\right]+\left(\frac{e_{E}}{m_{E}} H_{I I}^{q}+\frac{e_{I}}{m_{I}} H_{E E}^{q}\right)\left(H_{I E}^{q} H_{E I}^{q}-H_{E E}^{q} H_{I I}^{q}\right) \frac{e_{I}}{m_{I}} \frac{n_{E}}{m_{E}}\right\}, \tag{A.3}\\
& a_{4}^{E}=\frac{1}{D}\left[\left(H_{I E}^{q} H_{E I}^{q}-H_{E E}^{q} H_{I I}^{q}+\frac{e_{E}}{m_{E}} \frac{e_{I}}{m_{I}} B^{2}\right)\left(H_{I I}^{q} H_{E E}^{V}-H_{I E}^{V} H_{E I}^{q}\right)\right. \\
& \left.+\frac{e_{I}}{m_{I}} H_{E E}^{V}\left(\frac{e_{E}}{m_{E}} H_{I I}^{q}+\frac{e_{I}}{m_{I}} H_{E E}^{q}\right) B^{2}\right]\left(H_{I E}^{q} H_{E I}^{q}-H_{E E}^{q} H_{I I}^{q}\right), \tag{A.4}\\
& a_{5}^{E}=\frac{1}{D}\left[\left(H_{I E}^{q} H_{E I}^{q}-H_{E E}^{q} H_{I I}^{q}+\frac{e_{E}}{m_{E}} \frac{e_{I}}{m_{I}} B^{2}\right) \frac{e_{I}}{m_{I}} H_{E E}^{V}\right. \\
& \left.+\left(\frac{e_{E}}{m_{E}} H_{I I}^{q}+\frac{e_{I}}{m_{I}} H_{E E}^{q}\right)\left(H_{I I}^{q} H_{E E}^{V}-H_{I E}^{V} H_{E I}^{q}\right)\right]\left(H_{I E}^{q} H_{E I}^{q}-H_{E E}^{q} H_{I I}^{q}\right), \tag{A.5}\\
& a_{6}^{E}=\frac{1}{D}\left\{(H _ { I I } ^ { q } H _ { E E } ^ { V } - H _ { I E } ^ { V } H _ { E I } ^ { q }) \left[\left(\frac{e_{E}}{m_{E}} H_{I I}^{q}+\frac{e_{I}}{m_{I}} H_{E E}^{q}\right)^{2}+\left(H_{I E}^{q} H_{E I}^{q}-H_{E E}^{q} H_{I I}^{q}\right.\right.\right. \\
& \left.\left.\left.+\frac{e_{E}}{m_{E}} \frac{e_{I}}{m_{I}} B^{2}\right) \frac{e_{E}}{m_{E}} \frac{e_{I}}{m_{I}}\right]-\frac{e_{I}}{m_{I}} H_{E E}^{V}\left(\frac{e_{E}}{m_{E}} H_{I I}^{q}+\frac{e_{I}}{m_{I}} H_{E E}^{q}\right)\left(H_{I E}^{q} H_{E I}^{q}-H_{E E}^{q} H_{I I}^{q}\right)\right\}, \tag{A.6}\\
& a_{1}^{I}=\frac{1}{H_{E I}^{q}}\left[\frac{5}{2} k^{2} T \frac{n_{E}}{m_{E}}-H_{E E}^{q} a_{1}^{E}+\frac{e_{E}}{m_{E}} a_{2}^{E} B^{2}\right], \quad a_{2}^{I}=-\frac{1}{H_{E I}^{q}}\left[\frac{e_{E}}{m_{E}} a_{1}^{E}+H_{E E}^{q} a_{2}^{E}\right], \tag{A.7}\\
& a_{3}^{I}=-\frac{1}{H_{E I}^{q}}\left[\frac{e_{E}}{m_{E}} a_{2}^{E}+H_{E E}^{q} a_{3}^{E}\right], \quad a_{4}^{I}=\frac{1}{H_{E I}^{q}}\left[\frac{e_{E}}{m_{E}} a_{5}^{E} B^{2}-H_{E E}^{q} a_{4}^{E}-H_{E E}^{V}\right], \tag{A.8}\\
& a_{5}^{I}=-\frac{1}{H_{E I}^{q}}\left[\frac{e_{E}}{m_{E}} a_{4}^{E}+H_{E E}^{q} a_{5}^{E}\right], \quad a_{6}^{I}=-\frac{1}{H_{E I}^{q}}\left[\frac{e_{E}}{m_{E}} a_{5}^{E}+H_{E E}^{q} a_{6}^{E}\right], \tag{A.9}
\end{align*}
$$

provided $H_{E I}^{q} \neq 0$, and where

$$
\begin{equation*}
D=\left[\left(H_{I E}^{q} H_{E I}^{q}-H_{E E}^{q} H_{I I}^{q}+\frac{e_{E}}{m_{E}} \frac{e_{I}}{m_{I}} B^{2}\right)^{2}+\left(\frac{e_{E}}{m_{E}} H_{I I}^{q}+\frac{e_{I}}{m_{I}} H_{E E}^{q}\right)^{2} B^{2}\right]\left(H_{I E}^{q} H_{E I}^{q}-H_{E E}^{q} H_{I I}^{q}\right) . \tag{A.10}
\end{equation*}
$$

The scalar coefficients of $p_{\langle i j\rangle}^{\alpha}$ are:

$$
\begin{gather*}
b_{1}^{E}=c_{1}\left(p_{E} \sigma_{I I}-p_{I} \sigma_{E I}\right)-4 c_{2} \frac{e_{I}}{m_{I}} p_{E} B^{2}, \tag{A.11}\\
b_{2}^{E}=c_{2}\left(p_{E} \sigma_{I I}-p_{I} \sigma_{E I}\right)+c_{1} \frac{e_{I}}{m_{I}} p_{E}, \tag{A.12}\\
b_{3}^{E}=c_{3}\left(p_{E} \sigma_{I I}-p_{I} \sigma_{E I}\right)+3 c_{2} \frac{e_{I}}{m_{I}} p_{E}-c_{4} \frac{e_{I}}{m_{I}} p_{E} B^{2}, \tag{A.13}\\
b_{4}^{E}=c_{4}\left(p_{E} \sigma_{I I}-p_{I} \sigma_{E I}\right)+c_{3} \frac{e_{I}}{m_{I}} p_{E}, \tag{A.14}\\
b_{5}^{E}=c_{5}\left(p_{E} \sigma_{I I}-p_{I} \sigma_{E I}\right)+4 c_{4} \frac{e_{I}}{m_{I}} p_{E}, \tag{A.15}\\
b_{1}^{I}=-\frac{1}{2} \frac{p_{E}}{\sigma_{E I}}-\frac{\sigma_{E E}}{\sigma_{I I}} b_{1}^{E}+4 \frac{e_{E}}{m_{E}} \frac{b_{2}^{E}}{\sigma_{E I}} B^{2}, \tag{A.16}\\
b_{3}^{I}=-\frac{e_{E}^{I}}{m_{E}} \frac{b_{1}^{E}}{\sigma_{E I}}-\frac{\sigma_{E E}}{\sigma_{I I}} b_{2}^{E}, \tag{A.17}\\
\sigma_{E E} \tag{A.18}\\
\sigma_{I I}^{E}
\end{gather*} b_{3} \frac{e_{E}}{m_{E}} \frac{b_{2}^{E}}{\sigma_{E I}}+\frac{1}{2} \frac{e_{E}}{m_{E}} \frac{b_{4}^{E}}{\sigma_{E I}} B^{2},, ~ b_{4}^{I}=-\frac{\sigma_{E E}}{\sigma_{I I}} b_{4}^{E}-\frac{e_{E}}{m_{E}} \frac{b_{3}^{E}}{\sigma_{E I}}, \quad \begin{aligned}
& b_{5}^{I}=-\frac{\sigma_{E E}}{\sigma_{I I}^{E}} b_{5}^{E}-4 \frac{e_{E}}{m_{E}} \frac{b_{4}^{E}}{\sigma_{E I}}, \tag{A.19}
\end{aligned}
$$

where:

$$
\begin{gather*}
c_{1}=\frac{d_{1}}{4\left(d_{1}^{2}+4 d_{2}^{2} B^{2}\right)}, \quad c_{2}=\frac{d_{2}}{4\left(d_{1}^{2}+4 d_{2}^{2} B^{2}\right)}, \tag{A.21}\\
c_{3}=\frac{3 d_{1} d_{2}^{2}-d_{1}^{2} d_{3}+4 d_{2}^{2} d_{3} B^{2}-d_{1} d_{3}^{2} B^{2}}{4\left(d_{1}^{2}+4 d_{2}^{2} B^{2}\right)\left(d_{1}^{2}+d_{2}^{2} B^{2}+2 d_{1} d_{3} B^{2}+d_{3}^{2} B^{4}\right)} \tag{A.22}\\
c_{4}=\frac{d_{2}\left(3 d_{2}^{2}-2 d_{1} d_{3}-d_{3}^{2} B^{2}\right)}{4\left(d_{1}^{2}+4 d_{2}^{2} B^{2}\right)\left(d_{1}^{2}+d_{2}^{2} B^{2}+2 d_{1} d_{3} B^{2}+d_{3}^{2} B^{4}\right)} \tag{A.23}\\
c_{5}=\frac{\left(9 d_{2}^{4}-9 d_{1} d_{2}^{2} d_{3}+d_{1}^{2} d_{3}^{2}-7 d_{2}^{2} d_{3}^{2} B^{2}+d_{1} d_{3}^{3} B^{2}\right)}{\left(d_{1}^{2}+4 d_{2}^{2} B^{2}\right)\left(3 d_{1}+4 d_{3} B^{2}\right)\left(d_{1}^{2}+d_{2}^{2} B^{2}+2 d_{1} d_{3} B^{2}+d_{3}^{2} B^{4}\right)} \tag{A.24}
\end{gather*}
$$

with

$$
\begin{gather*}
d_{1}=\frac{\sigma_{I E} \sigma_{E I}}{2}-\frac{\sigma_{I I} \sigma_{E E}}{2}+2 \frac{e_{E}}{m_{E}} \frac{e_{I}}{m_{I}} B^{2}, \tag{A.25}\\
d_{2}=-\frac{1}{2}\left(\sigma_{I I} \frac{e_{E}}{m_{E}}+\sigma_{E E} \frac{e_{I}}{m_{I}}\right), \quad d_{3}=-\frac{3}{2} \frac{e_{E}}{m_{E}} \frac{e_{I}}{m_{I}} . \tag{A.26}
\end{gather*}
$$

Appendix B: Representation and Inverse of Tensors

Let $T_{i j}$ be an isotropic second-order tensor that is a function of the axial vector \mathbf{B}. The representation of $T_{i j}$ is given by:

$$
\begin{equation*}
T_{i j}=a \delta_{i j}+b \epsilon_{i j k} B_{k}+c B_{i} B_{j}, \tag{B.1}
\end{equation*}
$$

where a, b and c are scalar coefficients that depend on B^{2}. The inverse of $T_{i j}$ is obtained from the Cayley-Hamilton theorem, which can be written as:

$$
\begin{equation*}
\left(\mathbf{T}^{-1}\right)_{i j}=\frac{1}{I_{3}}\left[\left(\mathbf{T}^{2}\right)_{i j}-I_{1} T_{i j}+I_{2} \delta_{i j}\right] \tag{B.2}
\end{equation*}
$$

with I_{1}, I_{2} and I_{3} denoting the scalar invariants

$$
\begin{equation*}
I_{1}=T_{i i}, \quad I_{2}=\frac{1}{2}\left[T_{i i} T_{j j}-\left(\mathbf{T}^{2}\right)_{i i}\right], \quad I_{3}=\operatorname{det}(\mathbf{T}) \tag{B.3}
\end{equation*}
$$

Hence for $T_{i j}$ given by (B.1) we have

$$
\begin{equation*}
\left(\mathbf{T}^{-1}\right)_{i j}=\frac{1}{I_{3}}\left[a\left(a+c B^{2}\right) \delta_{i j}-b\left(a+c B^{2}\right) \epsilon_{i j k} B_{k}+\left(b^{2}-a c\right) B_{i} B_{j}\right] \tag{B.4}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{3}=\left(a^{2}+b^{2} B^{2}\right)\left(a+c B^{2}\right) \tag{B.5}
\end{equation*}
$$

Let $T_{i j k l}$ be and isotropic fourth-order tensor symmetric in the indices (i, j) and (k, l) that is a function of the axial vector \mathbf{B}, and let $S_{i j}$ be an arbitrary symmetrical tensor. According to the tables of Smith [7] the representation of the tensor $T_{i j k l} S_{k l}$, which is linear in \mathbf{S} and depends on the skew-symmetric tensor $W_{i j}=\varepsilon_{i j k} B_{k}$, is given by

$$
\begin{align*}
T_{i j k l} S_{k l}= & \alpha_{1} S_{i j}+\alpha_{2}\left[(\mathbf{S W})_{i j}-(\mathbf{W} \mathbf{S})_{i j}\right]+\alpha_{3}(\mathbf{W} \mathbf{S} \mathbf{W})_{i j}+\alpha_{4}\left[\left(\mathbf{W} \mathbf{S} \mathbf{W}^{\mathbf{2}}\right)_{i j}-\left(\mathbf{W}^{\mathbf{2}} \mathbf{S W}\right)_{i j}\right] \\
& +\alpha_{5}\left(\mathbf{S W}^{\mathbf{2}}\right)_{r r}\left(\mathbf{W}^{\mathbf{2}}\right)_{i j}+\alpha_{6} S_{r r}\left(\mathbf{W}^{\mathbf{2}}\right)_{i j}+\alpha_{7} S_{r r} \delta_{i j}+\alpha_{8}\left(\mathbf{S W}^{\mathbf{2}}\right)_{r r} \delta_{i j} \tag{B.6}
\end{align*}
$$

where α_{1} through α_{8} depend on $\left(\mathbf{W}^{\mathbf{2}}\right)_{r r}$. By taking the derivative of equation (B.6) with respect to \mathbf{S} and returning to the axial vector \mathbf{B}, we get the desidered representation for $T_{i j k l}$. Since we are interested only in the fourth-order tensor $T_{\langle i j\rangle\langle k l\rangle}$, which is symmetric and traceless in (i, j) and (k, l), by performing the symmetrization it reduces to:

$$
\begin{gather*}
T_{\langle i j\rangle\langle k l\rangle}=a\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}-\frac{2}{3} \delta_{i j} \delta_{k l}\right) \\
+b\left(\epsilon_{j l r} B_{r} \delta_{i k}+\epsilon_{j k r} B_{r} \delta_{i l}+\epsilon_{i l r} B_{r} \delta_{j k}+\epsilon_{i k r} B_{r} \delta_{j l}\right) \\
+c\left(\delta_{i k} B_{j} B_{l}+\delta_{i l} B_{j} B_{k}+\delta_{j k} B_{i} B_{l}+\delta_{j l} B_{i} B_{k}-\frac{4}{3} \delta_{k l} B_{i} B_{j}-\frac{4}{3} \delta_{i j} B_{k} B_{l}+\frac{4}{9} B^{2} \delta_{i j} \delta_{k l}\right) \\
+d\left(\epsilon_{i k r} B_{r} B_{j} B_{l}+\epsilon_{i l r} B_{r} B_{j} B_{k}+\epsilon_{j k r} B_{r} B_{i} B_{l}+\epsilon_{j l r} B_{r} B_{i} B_{k}\right) \\
+e\left(B_{i} B_{j} B_{k} B_{l}-\frac{1}{3} B^{2} B_{i} B_{j} \delta_{k l}-\frac{1}{3} B^{2} B_{k} B_{l} \delta_{i j}+\frac{1}{9} B^{4} \delta_{i j} \delta_{k l}\right) \tag{B.7}
\end{gather*}
$$

where a through e are scalar coefficients tha depend on \mathbf{B}^{2}.
The inverse of $T_{\langle i j\rangle\langle k l\rangle}$ is found by the use of the relationship

$$
\begin{equation*}
\left(\mathbf{T}^{-1}\right)_{\langle i j\rangle\langle k l\rangle} T_{\langle k l\rangle\langle m n\rangle}=\frac{1}{2}\left(\delta_{i m} \delta_{j n}+\delta_{i n} \delta_{j m}-\frac{2}{3} \delta_{i j} \delta_{m n}\right), \tag{B.8}
\end{equation*}
$$

and it reads

$$
\begin{gathered}
\left(\mathbf{T}^{-1}\right)_{<i j><k l>}=\frac{1}{4\left(a^{2}+4 b^{2} B^{2}\right)}\left[a\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}-\frac{2}{3} \delta_{i j} \delta_{k l}\right)\right. \\
+b\left(\delta_{i k} \epsilon_{j l r} B_{r}+\delta_{i l} \epsilon_{j k r} B_{r}+\delta_{j k} \epsilon_{i l r} B_{r}+\delta_{j l} \epsilon_{i k r} B_{r}\right) \\
+\frac{\left(3 a b^{2}-a^{2} c+4 b^{2} B^{2} c-a B^{2} c^{2}-2 a b B^{2} d-a B^{4} d^{2}\right)}{\left(a^{2}+b^{2} B^{2}+2 a B^{2} c+B^{4} c^{2}+2 b B^{4} d+B^{6} d^{2}\right)}\left(\delta_{i k} B_{j} B_{l}\right. \\
\left.+\delta_{i l} B_{j} B_{k}+\delta_{j k} B_{i} B_{l}+\delta_{j l} B_{i} B_{k}-\frac{4}{3} B_{i} B_{j} \delta_{k l}-\frac{4}{3} B_{k} B_{l} \delta_{i j}+\frac{4}{9} B^{2} \delta_{i j} \delta_{k l}\right) \\
+\frac{\left(3 b^{3}-2 a b c-b B^{2} c^{2}+a^{2} d+2 b^{2} B^{2} d-b B^{4} d^{2}\right)}{\left(a^{2}+b^{2} B^{2}+2 a B^{2} c+B^{4} c^{2}+2 b B^{4} d+B^{6} d^{2}\right)} \\
\times\left(\epsilon_{i k r} B_{r} B_{j} B_{l}+\epsilon_{i l r} B_{r} B_{j} B_{k}+\epsilon_{j k r} B_{r} B_{i} B_{l}+\epsilon_{j l r} B_{r} B_{i} B_{k}\right)
\end{gathered}
$$

$$
\begin{align*}
& +\frac{36 b^{4}-36 a b^{2} c+4 a^{2} c^{2}-28 b^{2} B^{2} c^{2}+4 a B^{2} c^{3}+24 a^{2} b d}{\left(3 a+4 B^{2} c+B^{4} e\right)\left(a^{2}+b^{2} B^{2}+2 a B^{2} c+B^{4} c^{2}+2 b B^{4} d+B^{6} d^{2}\right)} \\
& +\frac{72 b^{3} B^{2} d+8 a b B^{2} c d+12 a^{2} B^{2} d^{2}+36 b^{2} B^{4} d^{2}+4 a B^{4} c d^{2}-3 a^{3} e}{\left(3 a+4 B^{2} c+B^{4} e\right)\left(a^{2}+b^{2} B^{2}+2 a B^{2} c+B^{4} c^{2}+2 b B^{4} d+B^{6} d^{2}\right)} \\
& +\frac{a B^{6} d^{2} e-15 a b^{2} B^{2} e-2 a^{2} B^{2} c e-16 b^{2} B^{4} c e+a B^{4} c^{2} e+2 a b B^{4} d e}{\left(3 a+4 B^{2} c+B^{4} e\right)\left(a^{2}+b^{2} B^{2}+2 a B^{2} c+B^{4} c^{2}+2 b B^{4} d+B^{6} d^{2}\right)} \\
& \left.\quad \times\left(B_{i} B_{j} B_{k} B_{l}-\frac{1}{3} B^{2} B_{i} B_{j} \delta_{k l}-\frac{1}{3} B^{2} B_{k} B_{l} \delta_{i j}+\frac{1}{9} B^{4} \delta_{i j} \delta_{k l}\right)\right] . \tag{B.9}
\end{align*}
$$

Acknowledgement

One of the authors (G. M. K.) gratefully acknowledges the support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico of Brazil.

References

1. G. M. Kremer, Int. J. Engng. Sci. 25, 95 (1987).
2. S. Pennisi and M. Trovato, Continuum Mech. Thermodyn. 7, 489 (1995).
3. R. Balescu Transport Processes in Plasmas Vol. 1 (Classical Transport), North-Holland, Amsterdam (1988).
4. M. G. Rodbard, A. G. Bezerra Jr. and G. M. Kremer, Phys. Plasmas 2, 642 (1995).
5. E. Ikenberry and C. Truesdell, J. Rational Mech. Anal. 5, 1 (1956).
6. S. R. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North-Holland, Amsterdam (1962).
7. G. F. Smith, Int. J. Engng. Sci. 9, 899 (1971).

[^0]: ${ }^{1}$ We have restricted to a classical ideal gas where $p_{\alpha}=\varrho_{\alpha} \frac{k}{m_{\alpha}} T_{\alpha}$ and dropped out all constants of integrations.

