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The transport coe�cients of a completely ionized gas are determined from an extended
thermodynamic theory of mixtures of ideal gases in the presence of external electromag-
netic �elds. The Onsager relations for the transport coe�cients in the presence of external
magnetic 
ux density are also discussed.

I. Introduction

The extended thermodynamic theory for a mixture

of � ideal gases was �rst formulated by Kremer [1] as a

�eld theory whose objective was the determination of

13 � �elds of partial mass densities, partial velocities,

partial pressure tensors and partial heat 
uxes.

Recently Pennisi and Trovato [2] analised the same

problem and incorporated the electric charge of the con-

stituents and the in
uence of electromagnetic �elds, but

they have not obtained the dependence of the transport

coe�cients on the external magnetic 
ux density. It is

well known in the literature of ionized gases that the

transport coe�cients do depend on the external mag-

netic 
ux density (see for example Balescu [3] or Rod-

bard, Bezerra Jr. and Kremer [4]).

The purpose of this work is to obtain - from a

phenomenological extended thermodynamic theory of

a fully ionized gas - the laws of Navier-Stokes, Fourier

and Ohm and to �nd the dependence of the trans-

port coe�cients on the external magnetic 
ux density.

In Section II we base on [1] and remind the principal

features of extended thermodynamics of mixtures of �

ideal gases, while in Section III we present the so-called

one-
uid theory of an ionized gas whose objective is

the determination of the �ve �elds of density, velocity

and temperature. The constitutive equations for the

partial pressure deviators and partial heat 
uxes are

calculated in Section IV by the use of a method akin

to the Maxwellian iteration method of kinetic theory

of gases (see [5]). The laws of Navier-Stokes, Fourier

and Ohm are obtained in Section V and the transport

coe�cients are calculated as functions of the external

magnetic 
ux density. In Section VI we discuss the

Onsager reciprocity relations in the presence of exter-

nal axial �elds. The representation and the inverse of

second- and fourth-order tensors that depend on an ax-

ial �eld are given in the Appendix.

Cartesian notation for tensors with the usual sum-

mation convention is used. Parentheses denote sym-

metrization of all indices while angular parentheses in-

dicate traceless symmetrization.

II. A reminder of extended thermodynamics of

mixtures

We may say that objective of extended thermody-

namics of ionized gases is the determination of 13� �elds

of

%� - partial mass densities,

v�i - partial velocities,
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p�ij - partial pressure tensors, and

q�i - partial heat 
ux vectors, (2:1)

where � = 1; 2; : : :; � denotes the constituents of a mix-

ture of electrons, ions and neutral particles.

To achieve this objective, we need 13 � �eld equa-

tions that are based on the following balance equations

for the moments (2.1):

c
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+
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d

In the above equations p�hijki = p�ijk +
2
5

�
q�i �jk + q�j �ik + q�k�ij

�
and p�ijjk are higher-order

moments while P �

i , P
�

ij and P�

i are production terms.

The production term P �

i is constrained by the relation

�X
�=1

P �

i = 0; (2:6)

which expresses the conservation of the total momen-

tum density. Moreover, e� and m� are the electric

charge and the mass of a particle of constituent � in

the mixture, Ei is the external electric �eld and Bi the

external magnetic 
ux density.

To close the system of equations (2.2)-(2.5) we as-

sume p�hijki, p
�

ijjk; P
�

i , P
�

ij and P
�

i as constitutive quan-

tities that depend on the basic �elds (2.1). Through

the explotation of the principle of material frame-

indi�erence and of the entropy principle we get the fol-

lowing linearized constitutive equations:1

p�hijki = 0; p�ijjk = 5
p2
�

%�
�ik + 7

p�
%�

p�hiki; (2:7)

P �

i =
�X

�=1

M q

��
q�i +

��1X
�=1

MV

��
V �

i ; (2:8)

P�

ii = R�; P�

hiji =
�X

�=1

���p
�

hiji
; (2:9)

P�

i =
�X

�=1

Qq

��
q�i +

��1X
�=1

QV

��
V �

i : (2:10)

We have introduced above the velocity di�erence V �

i =

v�i � v�i .

III. The one-
uid theory

It is usual in the literature (see for example [3]) to

describe an ionized gas by the so-called one-
uid the-

ory whose objective is the determination of �ve �elds of

mass density %, velocity vi and temperature T . These

�elds are de�ned with respect to the partial �elds as:

1We have restricted to a classical ideal gas where p� = %�
k

m�
T� and dropped out all constants of integrations.
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% =
�X

�=1

%�; vi =
1

%

�X
�=1

%�v
�

i ; T =
1

n

�X
�=1

n�T�; (3:1)

where n� = %�=m� is the number density of constituent � and n =
P�

�=1 n�. Here we shall suppose that all

constituents have the same temperature, which is the temperature of the mixture T .

To determine the �ve �elds above we base on the following balance equations for the mass density %, momentum

density %vi and internal energy density %":
@%
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+
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= 0; (3:2)
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where E� = E+ (v �B). The above equations were obtained by summing over all constituents of the mixture the

equations (2.2), (2.3) and the trace of equation (2.4). Moreover, we have introduced the electric current density Ii,

the pressure tensor pij , the heat 
ux vetor qi and the internal energy density through the relationships:
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d

where u�i and %�"� are the di�usion velocity and the

internal energy density of constituent � in the mixture,

respectively, which are de�ned by

u�i = v�i � vi; %�"� =
3

2
p� =

1

2
p�rr: (3:7)

To get a system of �eld equations from (3.2)-(3.4)

one has to consider ", pij, qi and Ii as constitutive quan-

tities that depend on the basic �elds %, vi, T . Since we

are dealing with an ideal gas and interested only in a

linear theory, " and p =
P�

�=1 p� are known functions

of % and T . In the next section we shall show how to get

the constitutive equations for phiji, qi and Ii from the

system of �eld equations of extended thermodynamics.

IV. The Maxwellian iteration method

In most applications of plasma physics the ionized

gas is in a state of complete ionization, i.e., it is consid-

ered as a binary mixture of ions (� = I) and eletrons

(� = E). Here we shall restrict ourselves to this case.

First we note that there are only � � 1 linearly in-

dependent di�usion velocities, since

�X
�=1

%�u
�

i = 0: (4:1)

For the binary mixture in study we have uIi =

�%Eu
E

i =%I and the following relationship hold:

c
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�
eE
mE

�
eI
mI

�
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E

i ; V E

i = �V I

i =
%

%I
uEi : (4:2)

On the other hand, in a linearized theory equations (3.5)2 and (3:6)2 reduce to:

pij = pEij + pIij; qi = qEi + qIi +
5

2
kT

mI �mE

eEmI � eImE

Ii; (4:3)
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since p� =
2
3%�"� = %�

k
m�

T .

To get the constitutive equations for p�hiji and q�i we proceed as follows: we insert the constitutive equations

(2.7)-(2.10) into the equations (2.3), (2.5), and into the traceless part of equation (2.4), consider only linear terms

in the resulting equations. Hence
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by performing some rearrangements. Equation (4.4) follows by subtraction of the ion equation from the electron

equation. Now we use an iteration method akin to the Maxwellian iteration of kinetic gas theory (see [5]). For the

�rst iteration step we insert the equilibrium values I(0)i = 0, p�(0)hiji = 0 and q�(0)i (� = E; I) into the left hand side of

equations (4.4)-(4.6) and obtain the �rst iterated values I(1)i , p�(1)hiji and q�(1)i on the right hand side:
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In the above equations we have introduced
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where �� (� = E; I) is the chemical potential of constituent �. For simplicity from now on we shall drop the index

(1) that denotes the iterated value.

From the system of equations (4.9) we obtain:

q�i = �K�

ij

@T

@xj
+ L�

ijIj; (� = E; I) (4:12)

by using equations (B:4) and (B:5) of Appendix B, where

K�

ij = �(a�1�ij + a�2�ijkBk + a�3BiBj); L�

ij = a�4�ij + a�5�ijkBk + a�6BiBj : (4:13)
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The coe�cients a�1 through a�6 are given in Appendix A.

Now by the use of equation (B:9) of Appendix B, it follows from the system of equations (4.8):
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The coe�cients b�1 through b�5 are also given in Appendix A.

d

V. The laws of Navier-Stokes, Fourier and Ohm

In a linearized theory the presure tensor and the

heat 
ux vector of the mixture are given by equations

(4.3). Hence by the use of equations (4.14) and (4.3)1,

one can get

phiji = �2�hijihkli
@vhk

@xli
; (5:1)

which is the mathematical expression of the law of

Navier-Stokes. The fourth-order tensor �hijihkli is iden-

ti�ed with the coe�cient of shear viscosity and it is

given by

c
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On the other hand, the law of Fourier is obtained from equations (4.12) and (4.3)2:

qi = �Kij

@T

@xj
+ LijIj : (5:3)

Kij denotes the tensor of thermal conductivity and Lij the tensor of a electrical thermal e�ect. They are given by
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Finally the law of Ohm follows from equations (4.7) and (4.12):
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In the above equation we identify �ij as the electrical resistivity tensor and L�
ij the tensor of a thermal electrical

e�ect. The expressions for �ij and L�
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VI.The Onsager relations

In a linearized theory the entropy 
ux is given by (see equation (9.2)3 of [1]):
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On the other hand, one can obtain from equations (5.5) and (4.11) that
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where the coe�cient D�
ij is given, in conformity with (5.7), by:
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In a linear irreversible thermodynamics (see for example [6])

�i and E�
i +

mEmI

eImE � eEmI

@(�E � �I)

@xi

are identi�ed as thermodynamic 
uxes while Ii and�
@T
@xi

as thermodynamic forces. Besides, the following symmetric

relations are postulated for the coe�cients in the presence of a magnetic 
ux density B:

Kij(B) = Kji(�B); �ij(B) = �ji(�B); Dij(B) = Dji(�B); D�
ij(B) = D�

ji(�B); (6:6)

Dij = D�
ij (6:7)

which are known as the Onsager reciprocity relations.

d

The relationships (6.6) are satis�ed since the coef-

�cients are expressed in a form like the one given by

equation (4.13). However, the relationship (6.7) is not

satis�ed in general as it can be seen from equations

(6.3) and (6.5). In order to get such a relationship we

base on [1] and assume that:

� the production term of the partial heat 
uxes

do not depend on the di�usion 
uxes, so that

HV

EE
= HV

IE
= 0;

� the production term of the partial momentum

density do not depend on the partial heat 
uxes,

so that M q
EE = M q

EI = 0.

With the two above assumptions it is easy to show

from equations (A.4), (A.5), (A.6), (A.8)2 and (A.9)

from Appendix A that a�4 = a�5 = a�6 = 0 for � = E; I,

and from equation (4.13)2 thet LE

ij = LI

ij = 0. Hence,
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it follows
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Appendix A: Scalar Coe�cients

The scalar coe�cients of q�i are given by:
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II
HV

EE
�HV

IE
Hq

EI

�#
(Hq

IE
Hq

EI
�Hq

EE
Hq

II
) ; (A:5)

aE6 =
1

D

(
(Hq

II
HV

EE
�HV

IE
Hq

EI
)

"�
eE
mE

Hq
II
+

eI
mI

Hq
EE

�2

+

 
Hq

IE
Hq

EI
�Hq

EE
Hq

II

+
eE
mE

eI
mI

B2

!
eE
mE

eI
mI

#
�

eI
mI

HV
EE

�
eE
mE

Hq
II
+

eI
mI

Hq
EE

�
(Hq

IE
Hq

EI
�Hq

EE
Hq

II
)

)
; (A:6)

aI1 =
1

Hq
EI

�
5

2
k2T

nE
mE

�Hq
EE
aE1 +

eE
mE

aE2B
2

�
; aI2 = �

1

Hq
EI

�
eE
mE

aE1 +Hq
EE
aE2

�
; (A:7)

aI3 = �
1

Hq
EI

�
eE
mE

aE2 +Hq
EE
aE3

�
; aI4 =

1

Hq
EI

�
eE
mE

aE5B
2 �Hq

EE
aE4 �HV

EE

�
; (A:8)

aI5 = �
1

Hq
EI

�
eE
mE

aE4 +Hq
EE
aE5

�
; aI6 = �

1

Hq
EI

�
eE
mE

aE5 +Hq
EE
aE6

�
; (A:9)
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provided Hq
EI 6= 0, and where

D =

"�
Hq

IE
Hq

EI
�Hq

EE
Hq

II
+

eE
mE

eI
mI

B2

�2

+

�
eE
mE

Hq
II
+

eI
mI

Hq
EE

�2

B2

#
(Hq

IE
Hq

EI
�Hq

EE
Hq

II
): (A:10)

The scalar coe�cients of p�hiji are:

bE1 = c1(pE�II � pI�EI)� 4c2
eI
mI

pEB
2; (A:11)

bE2 = c2(pE�II � pI�EI) + c1
eI
mI

pE; (A:12)

bE3 = c3(pE�II � pI�EI) + 3c2
eI
mI

pE � c4
eI
mI

pEB
2; (A:13)

bE4 = c4(pE�II � pI�EI) + c3
eI
mI

pE; (A:14)

bE5 = c5(pE�II � pI�EI) + 4c4
eI
mI

pE; (A:15)

bI1 = �
1

2

pE
�EI

�
�EE
�II

bE1 + 4
eE
mE

bE2
�EI

B2; (A:16)

bI2 = �
eE
mE

bE1
�EI

�
�EE
�II

bE2 ; (A:17)

bI3 = �
�EE
�II

bE3 � 3
eE
mE

bE2
�EI

+
1

2

eE
mE

bE4
�EI

B2; (A:18)

bI4 = �
�EE
�II

bE4 �
eE
mE

bE3
�EI

; (A:19)

bI5 = �
�EE
�II

bE5 � 4
eE
mE

bE4
�EI

; (A:20)

where:

c1 =
d1

4(d21 + 4d22B
2)
; c2 =

d2
4(d21 + 4d22B

2)
; (A:21)

c3 =
3d1d

2
2 � d21d3 + 4d22d3B

2 � d1d
2
3B

2

4(d21 + 4d22B
2)(d21 + d22B

2 + 2d1d3B2 + d23B
4)

(A:22)

c4 =
d2(3d22 � 2d1d3 � d23B

2)

4(d21 + 4d22B
2)(d21 + d22B

2 + 2d1d3B2 + d23B
4)

(A:23)

c5 =
(9d42 � 9d1d22d3 + d21d

2
3 � 7d22d

2
3B

2 + d1d
3
3B

2)

(d21 + 4d22B
2)(3d1 + 4d3B2)(d21 + d22B

2 + 2d1d3B2 + d23B
4)

(A:24)

with

d1 =
�IE�EI

2
�
�II�EE

2
+ 2

eE
mE

eI
mI

B2; (A:25)

d2 = �
1

2

�
�II

eE
mE

+ �EE
eI
mI

�
; d3 = �

3

2

eE
mE

eI
mI

: (A:26)

Appendix B: Representation and Inverse of Tensors

Let Tij be an isotropic second-order tensor that is a function of the axial vector B. The representation of Tij is

given by:

Tij = a�ij + b�ijkBk + cBiBj ; (B:1)

where a, b and c are scalar coe�cients that depend on B2. The inverse of Tij is obtained from the Cayley-Hamilton

theorem, which can be written as:

(T�1)ij =
1

I3

h�
T2
�
ij
� I1Tij + I2�ij

i
(B:2)
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with I1, I2 and I3 denoting the scalar invariants

I1 = Tii; I2 =
1

2

�
TiiTjj � (T2)ii

�
; I3 = det(T): (B:3)

Hence for Tij given by (B.1) we have

(T�1)ij =
1

I3

�
a(a+ cB2)�ij � b(a + cB2)�ijkBk + (b2 � ac)BiBj

�
(B:4)

where

I3 = (a2 + b2B2)(a + cB2): (B:5)

Let Tijkl be and isotropic fourth-order tensor symmetric in the indices (i; j) and (k; l) that is a function of

the axial vector B, and let Sij be an arbitrary symmetrical tensor. According to the tables of Smith [7] the

representation of the tensor TijklSkl, which is linear in S and depends on the skew-symmetric tensor Wij = "ijkBk,

is given by

TijklSkl = �1Sij + �2[(SW)ij � (WS)ij] + �3(WSW)ij + �4[(WSW2)ij � (W2SW)ij ]

+�5(SW
2)rr(W

2)ij + �6Srr(W
2)ij + �7Srr�ij + �8(SW

2)rr�ij : (B:6)

where �1 through �8 depend on (W2)rr . By taking the derivative of equation (B.6) with respect to S and returning

to the axial vector B, we get the desidered representation for Tijkl. Since we are interested only in the fourth-order

tensor Thijihkli, which is symmetric and traceless in (i; j) and (k; l), by performing the symmetrization it reduces

to:

Thijihkli = a

�
�ik�jl + �il�jk �

2

3
�ij�kl

�

+b (�jlrBr�ik + �jkrBr�il + �ilrBr�jk + �ikrBr�jl)

+c

�
�ikBjBl + �ilBjBk + �jkBiBl + �jlBiBk �

4

3
�klBiBj �

4

3
�ijBkBl +

4

9
B2�ij�kl

�

+d (�ikrBrBjBl + �ilrBrBjBk + �jkrBrBiBl + �jlrBrBiBk)

+e

�
BiBjBkBl �

1

3
B2BiBj�kl �

1

3
B2BkBl�ij +

1

9
B4�ij�kl

�
; (B:7)

where a through e are scalar coe�cients tha depend on B2.

The inverse of Thijihkli is found by the use of the relationship

(T�1)hijihkliThklihmni =
1

2

�
�im�jn + �in�jm �

2

3
�ij�mn

�
; (B:8)

and it reads

(T�1)<ij><kl> =
1

4(a2 + 4 b2B2)

h
a
�
�ik �jl + �il �jk �

2

3
�ij �kl

�

+b
�
�ik �jlr Br + �il �jkrBr + �jk �ilr Br + �jl �ikrBr

�

+
(3 a b2 � a2 c+ 4 b2B2 c� aB2 c2 � 2 a bB2 d� aB4 d2)

(a2 + b2B2 + 2 aB2 c+B4 c2 + 2 bB4 d+ B6 d2)

�
�ikBj Bl

+�il Bj Bk + �jk BiBl + �jlBi Bk �
4

3
BiBj �kl �

4

3
Bk Bl �ij +

4

9
B2 �ij �kl

�

+
(3 b3 � 2 a b c� bB2 c2 + a2 d+ 2 b2B2 d� bB4 d2)

(a2 + b2B2 + 2 aB2 c+ B4 c2 + 2 bB4 d+ B6 d2)

�
�
�ikrBr Bj Bl + �ilr Br Bj Bk + �jkrBr BiBl + �jlr Br BiBk

�
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+
36 b4 � 36 a b2 c + 4 a2 c2 � 28 b2B2 c2 + 4 aB2 c3 + 24 a2 b d

(3 a+ 4B2 c+B4 e)(a2 + b2B2 + 2 aB2 c+ B4 c2 + 2 bB4 d+B6 d2)

+
72 b3B2 d+ 8 a bB2 c d+ 12 a2B2 d2 + 36 b2B4 d2 + 4 aB4 c d2 � 3 a3 e

(3 a+ 4B2 c+B4 e)(a2 + b2B2 + 2 aB2 c+ B4 c2 + 2 bB4 d+B6 d2)

+
aB6 d2 e� 15 a b2B2 e� 2 a2B2 c e� 16 b2B4 c e+ aB4 c2 e + 2 a bB4 d e

(3 a+ 4B2 c+B4 e)(a2 + b2B2 + 2 aB2 c+ B4 c2 + 2 bB4 d+B6 d2)

�
�
Bi Bj BkBl �

1

3
B2BiBj �kl �

1

3
B2Bk Bl �ij +

1

9
B4 �ij �kl

�i
: (B:9)
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