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A nonequilibrium system of classical particles interacting through nonconservative forces is
studied by a stochastic Markovian process de�ned over the space of the particle positions.
The velocities of the particles are treated as independent stochocastic variables with a given
probability distribution. We deduce expressions for the rate in which energy is exchanged
with the surrounding as well as the rate in which energy is dissipated. These results are
applied to the special case in which the irrotational and solenoidal parts of the forces acting
on the particles are orthogonal. We also solve exactly a model in which these two forces are
linear functions of positions.

I. Introduction

We consider here the stochastic Markovian ap-

proach in the study of nonequilibrium system of clas-

sical particles interacting through forces that may be

nonconservative. According to this approach, the de-

terministic trajectory of the system in phase space is

replaced by a random trajectory governed by a stochas-

tic or Langevin equation [1] [2] [3]. Our starting point

is a Langevin equation of motion de�ned over the space

of the particle positions only. The probability distribu-

tion de�ned on this space will evolve in time according

to a Smoluchowski equation which is a Fokker-Planck

equation in position space [1] [2] [3]. Such a stochastic

approach can be understood as a coarse grained descrip-

tion in which the velocities become stochastic variables

independent of positions, with a certain given proba-

bility distribution. The positions are also stochastic

variables but depend on the velocities.

The coarse grained description used here is obtained

by assuming that within a characteristic time interval

� the velocities of the particles become independent of

the positions and acquire a distribution whose average

speed of the particles is u: The description is then char-

acterized by the velocity relaxation time � and by the

average speed u of the particles after relaxation. We as-

sume also that the forces among particles vary so slowly

over a distance u� that may be considered constant

within the time interval �:

Within the above assumptions we obtain the

Langevin equation and the corresponding Fokker-

Planck equation in position space. We consider sys-

tems described by nonconservative forces and deduce

from these equations expressions for the rate in which

energy is exchanged with the surrounding as well as the

rate in which energy is dissipated. These results are ap-

plied to the special case in which the irrotational and

solenoidal parts of the forces acting on the particles are

orthogonal. We solve exactly a model in which these

two orthogonal forces are linear functions of positions.

There are other ways to justify the position space

description used here. For instance, one could start

from a Kramers equation, which is a Fokker-Planck

equation in position and velocity space, and perform

the elimination of velocities treated as being fast vari-

ables [1] [2] [3]. But in this case we would have to in-

troduce �rst the stochastic equation that describes the

trajectory of the system in the position and velocity

space and then proceed to the elimination of the fast

variables. Moreover this procedure involves the use of

a friction term that we avoided in our approach.

The point of view we use here in the study of

nonequilibrium system described by continuous vari-

ables is the same one adopted by Tom�e [4] in the study

of nonequilibrium stochastic lattice gas models. In this

case the analysis of lattice gas models by a stochas-
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tic dynamics [5] [6] [7] has been successful in describ-

ing the phase transitions in system far from equilib-

rium [7-15]. Other approaches, macroscopic and mi-

croscopic, in which uctuations play an important role,

have been used in explaining self-organization and dis-

sipative structures. These include the pioneering work

of Nicolis and Prigogine[16] and the one based on the

nonequilibrium statistical operator method introduced

by Zubarev [17]. This last formalism has been explored

extensively and successfully by Luzzi and Vasconcellos

[18] in the study of dissipative structures in condensed

matter.

II. Stochastic equation of motion

Consider a classical system composed of a certain

number of identical particles of mass m each one inter-

acting with each other and possibly with the external

environment. Let xi(t) and vi(t) be the position and

the velocity of the i-th particle at time t and let fi(x)

be the total force on particle i due to the other particles

which is supposed to depend only on the positions. The

forces acting on particles may be conservative or non-

conservative. The notation x stands for the collection

fxig of positions of the particles and v will denote the

set fvig of their velocities . Assuming that the forces

fi(x) can be considered constant during a time interval

�; the position of the i-th particle at time t+ � will be

given by

xi(t+ � ) = xi(t) + �vi(t) +
�2

2

fi(x(t))

m
; (1)

where fi(x(t))=m is the acceleration and vi(t) is the

velocity of the particle at the beginning of the time in-

terval, and m is the mass of the particle.

According to our assumptions, the velocity v(t+ � )

of the particles at time t+ � will not depend on the po-

sitions x(t) of the particles at time t but could depend

on the velocity v(t) at time t: However, we assume that

it will not depend on the velocity v(t) of the particles

on the previous time so that < vi(t+ � )vj(t) >= 0 for

any pair i; j. The velocity probability distribution of

distinct particles are identical and are characterized by

having zero mean and dispersion u2; that is,

< vi(t) >= 0 and < vi(t)vj(t) >= u2�ij : (2)

Let us de�ne � = 2m=� and �i(t) = �vi(t) so that

equation (1) is written in the form of a stochastic dif-

ference equation

�
xi(t + � )� xi(t)

�
= �i(t) + fi(x(t)); (3)

where the noise �i(t) has the properties

< �i(t) >= 0 ; < �i(t)�j(t
0) >=

2��

�
�ij�tt0 ; (4)

where � = mu2 is proportional to the average kinetic

energy of the particles

Notice that there are only three independent param-

eters: the relaxation time �; the average speed u and

the mass m of the particles. The others, � and �; are

de�ned in terms of these three. In what follows how-

ever we will adopt as independent parameters � , � and

� so that m = ��=2 and u =
p
2�=��: Formally we

may take the limit � ! 0; with � and � constants to

obtain the following stochastic di�erential equation or

Langevin equation,

�
dxi
dt

= �i(t) + fi(x); (5)

where �i(t) is a white noise with the properties

< �i(t) >= 0 ; < �i(t)�j(t
0) >= 2���ij�(t � t0):

(6)

In this case we are left with only two parameters which

are � and �: In any case, we will always consider equa-

tions (5) and (6) as meaning equation (3) and (4) with

small � . Eventually we may take the limit � ! 0 in

case it makes sense.

The Fokker-Planck equation corresponding to the

Langevin equation (5) with properties (6), that is, the

equation that governs the time evolution of the proba-

bility P (x; t) of the system being at position x at time

t; is given by

�
@

@t
P (x; t) = �

X
i

@

@xi
[fi(x)P (x; t)]

+ �
X
i

@2

@x2i
P (x; t); (7)

which we call Smoluchowski equation.

By solving this equation we may obtain the average

< F > of any state function F (x) by

< F >=

Z
F (x)P (x; t)dx: (8)

Quantities that are not functions of positions cannot, in

principle, be calculated from this formula. We shall see

however that there are some quantities of this type that

can be written as an average of a certain function of po-

sitions. One purpose of this paper is to show how this
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can be done for dissipation of energy in nonequilibrium

systems.

In the case of a free particle (Brownian motion)

where the forces vanish, the equation

�
dxi
dt

= �i(t); (9)

with the properties (6) can be exactly solved and we

get the following result

< x2i >= 2Dt ; D =
�

�
: (10)

The Smoluchowski equation becomes the pure di�usion

equation

@

@t
P (x; t) = D

X
i

@2

@x2i
P (x; t): (11)

The di�usion constant can also be written as D =

�u2=2 = `2=2� where ` = u�:

III. Equilibrium state

According to classical statistical mechanics the

probability distribution P (x) of a system interacting

through a potential energy E(x) and in equilibrium

with a heat reservoir at an absolute temperature T is

given by

P (x) =
1

Q
expf��E(x)g ; (12)

where � = 1=kBT and Q is a normalization factor. The

potential energy E(x) is de�ned over the position space

x = fxig composed of the positions of the particles.

Here we show that if the force fi(x) is conservative,

that is, if fi(x) is the gradient of a potential energy

E(x); then (12) is the stationary solution of the Smolu-

chowski equation (7).

Consider the Langevin equation (5) with the noise

having the properties (6). The corresponding Fokker-

Planck equation (7) can be written in the form

�
@

@t
P (x; t) = �

X
i

@

@xi
Ji(x; t) ; (13)

where Ji(x; t) is the current de�ned by

Ji(x; t) = fi(x)P (x; t)� �
@

@xi
P (x; t) : (14)

The stationary solution P (x) satis�es the equation

X
i

@

@xi
Ji(x) = 0 ; (15)

where the stationary Ji(x) current is given by

Ji(x) = fi(x)P (x)��
@

@xi
P (x) : (16)

If the force fi(x) is the gradient of a potential energy

E(x), that is, if

fi(x) = �
@E(x)

@xi
; (17)

then one can write

Ji(x) = �P (x)
@

@xi
fE(x) + � lnP (x)g ; (18)

from which one easily sees that the stationary solution

is

P (x) = A expf�
1

�
E(x)g : (19)

where A is a normalization constant. This solution not

only satis�es equation (15) but also satis�es Ji(x) = 0:

That is, the current vanishes at each point of position

space.

We conclude that the probability distribution (19)

becomes identical to the probability distribution given

by equation (12) of classical equilibrium system at tem-

perature T such that

� = kBT: (20)

Hence, may say that the stationary state of a system in-

teracting through conservative forces is an equilibrium

state. To known a priori whether the stationary state

of a given system is an equilibrium state we just have

to check whether the condition

@fi
@xj

=
@fj
@xi

(21)

is satis�ed for any pair (i; j): When this condition is

satis�ed the system has microscopic reversibility.

The results of this section serve as the basis of the

numerical simulation method used in equilibrium sta-

tistical mechanics known as the Langevin method. Sup-

pose we wish to estimate numerically averages of func-

tions that depend only on the positions of a system

described by the potencial energy E(x): If we were able

to generate a set of M points x(1); x(2); x(3); ...x(M)

in position space, each one sampled according to the

probability distribution given by equation (12) then an

estimative of the average

< F >=

Z
F (x)P (x)dx (22)
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will be simply given by

F =
1

M

MX
m=1

F (x(m)) : (23)

The numerical problem is then reduced to devise meth-

ods of sampling points in the position space accord-

ing to a probability distribution (12) known a priori.

These methods are englobed in basically two types

that are known as the Monte Carlo methods and the

method of the Langevin equation. Both approaches

use a stochastic Markov process de�ned over the posi-

tion space whose stationary probability distribution is

P (x): The stochastic process can be viewed as a tra-

jectory in position space such that, for long times, the

points of the trajectory will be emerging with the de-

sired probabilityP (x): If we simulate equation (5), with

fi(x) = �@E(x)=@xi; we will generate, for long times, a

set of points that are distributed according to equation

(12).

IV. Power of a conservative force

The average rate in which any given force Fi(x) does

work, that is, its average power, is determined by


 =<
X
i

dxi
dt

Fi(x) > : (24)

We want to �nd a state function W (x) such that


 =< W (x) > : (25)

To this end we consider �rst the case in which the force

is conservative, that is, Fi(x) = �@V (x)=@xi: In this

case


 = � <
X
i

dxi
dt

@V (x)

@xi
>= � <

dV (x)

dt
>

= �
d

dt
< V (x) > ; (26)

so that the average power of a conservative force is the

rate of the average potential energy < V (x) > : It is

clear that in the stationary state < V (x) > does not

depend on time and the power 
 vanishes.

Now, expression (26) gives


 = �

Z
V (x)

@P (x; t)

@t
dx : (27)

Using the equation (13) we obtain that


 =
1

�

X
i

Z
V (x)

@

@xi
Ji(x; t)dx : (28)

After an integration by parts and using the de�nition

(16) of current and equation (17) we get

c


 =
1

�

X
i

Z
Fi(x)ffi(x)P (x; t)� �

@

@xi
P (x; t)gdx : (29)

Performing once more an integration by parts in the last integral we further obtain that


 =
1

�

X
i

Z
fFi(x)fi(x) + �

@Fi(x)

@xi
gP (x; t)dx : (30)

and then

d

W (x) =
1

�

X
i

fFi(x)fi(x) + �
@Fi(x)

@xi
g; (31)

as desired.

V. Power of a generic force

Let us now consider the power developed by a

generic force Fi(x) that might not be conservative. In

this case we cannot use the procedure of the preceding

section since the force cannot in general be written as

the gradient of a certain function. We proceed then as

follows. We start by using the discretize form
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c

�
xi(t+ � )� xi(t)

�
+ (1� �)

xi(t)� xi(t � � )

�
(32)

of the velocity dxi=dt; where 0 � � � 1: The expression for the power of the force Fi is then


 =
X
i

<

�
�
xi(t + � )� xi(t)

�
+ (1� �)

xi(t) � xi(t� � )

�

�
Fi(x(t)) > : (33)

Using the discretize form (3) of the Langevin equation this expression can be written as


 =
1

�

X
i

< (�[�i(t) + fi(x(t))] + (1� �)[�i(t� � ) + fi(x(t� � ))])Fi(x(t)) > : (34)

Now, in the limit � ! 0;

< f�fi(x(t)) + (1� �)fi(x(t� � ))gFi(x(t)) > ! < fi(x)Fi(x) > (35)

Also

< �i(t)Fi(x(t)) >= 0; (36)

since �i(t) is independent of xi(t): Next we perform the following expansion

Fi(x(t+ � )) = Fi(x(t)) +
X
j

Fij(x(t))[xj(t + � )� xj(t)]; (37)

where Fij(x) = @Fi=@xj; or, using again the discretize form (3) of the Langevin equation, we �nd that

Fi(x(t+ � )) = Fi(x(t)) +
�

�

X
j

Fij(x(t))[�j(t) + fj(x(t))]: (38)

From this expression we obtain that

< �i(t)Fi(x(t+ t)) >= 2� < Fii(x(t)) > (39)

when � ! 0: Therefore in the limit � ! 0 it follows that


 =
1

�

X
i

f< fi(x)Fi(x) > +(1 � �)2� < Fii(x) >g : (40)

d

Since this expression must be valid also for conserva-

tive forces we should choose � = 1=2 so that it becomes

identical with expression (30).

For any force Fi(x), conservative or nonconserva-

tive, we have then


 =< W (x) >; (41)

where

W (x) =
1

�

X
i

fFi(x)fi(x) + �Fii(x)g : (42)

The quantity vanishes in the case of a conservative force

Fi no matter whether the force fi(x) that describes the

system is conservative or nonconservative.

VI. Exchanged and dissipated power

Let us consider a system described by a force that

might not be conservative, that is, one such that equa-

tion (21) might not be satis�ed. When the force fi(x)

is nonconservative the stationary state will not be an
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equilibrium state and we expect that energy will be dis-

sipated continuously. From the result of the previous

section, the power of the force fi(x) will be


 =<
1

�

X
i

f[fi(x)]
2 +�fii(x)g > : (43)

In the stationary state this expression will give the dis-

sipated power since the exchanged power must vanish.

However, if the system is in a transient state this ex-

pression gives the total power, that is, the sum of the

exchanged and dissipated power. Let us try next to

calculate each of these two contributions.

We start by splitting the force fi(x) into two parts

fi(x) = fCi (x) + fDi (x); (44)

such that fCi (x) is conservative, that is, f
C
i (x) is the

gradient of a potential E(x); or

fCi = �
@E

@xi
; (45)

and fDi (x) is a nonconservative force with a vanishing

divergence (solenoidal force), that is,

X
i

@fDi
@xi

= 0: (46)

That such a splitting can always be done can be seen

as follows. This last equation implies that

X
i

@fi
@xi

=
X
i

@fCi
@xi

; (47)

or yet X
i

@fi
@xi

= �
X
i

@2E

@x2i
: (48)

Therefore, if we are given a generic force fi(x); this

last equation can be solved to obtain E(x): From E(x)

we get fCi by means of equation (45) and fDi by using

equation (44).

The total power is then splitted into two parts

c


 = 
C +
D; (49)

where


C =<
1

�

X
i

ffCi (x)[f
C
i (x) + fDi (x)] + �fCii (x)g > (50)

is the power of force fCi (x) and


D =<
1

�

X
i

fDi (x)[fCi (x) + fDi (x)] > (51)

d

is the power of force fDi (x): These expression were ob-

tained from the expression by setting fi = fCi + fDi

and Fi equal to fCi and fDi respectively. We have also

used relation (46). Now 
C vanishes in the stationary

state since it is the power of a conservative force and it

is identi�ed with the energy exchanged per unit time.

The quantity 
D vanishes identically when the system

is conservative (fDi = 0) and it is identi�ed with the en-

ergy dissipated per unit time. It also must be positive.

For the special case in which the two components of the

force fCi (x) and f
D
i (x) are orthogonal this is indeed the

case. A system described by a force whose components

are of this type is considered in the next section.

Equation (49) may be interpreted by assuming, for

instance, that the system is an open system in contact

with two reservoir. One of them is the source of energy

and the other is the recipient of the dissipated energy.

In a given time interval �t the �rst reservoir releases an

amount of energy �E to the system. A part of it �EC,

is retained by the system whereas the remaining part

�ED is dissipated and released to the second reservoir.

In the stationary state �EC = 0 (
C = 0) and all the

energy released to the system is dissipated. If, more-

over, the stationary state is an equilibrium state, then

also �ED = 0 (
D = 0) and there is no exchange of

energy between the source reservoir and the system.
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VII. Orthogonal forces

Consider the special case where the irrotational

forces fCi and the solenoidal forces fDi are orthogonal

that is X
i

fCi (x)f
D
i (x) = 0: (52)

In this case


D =<
1

�

X
i

[fDi (x)]2 >; (53)

so that the dissipated power is positive and


C =<
1

�

X
i

f[fCi (x)]
2 +�fCii (x)g > : (54)

Although the system is described by force fi =

fCi + fDi which is not conservative since fDi is not con-

servative we show that in this case it is possible to �nd

the nonequilibrium stationary state. To this end, con-

sider the Fokker-Planck equation (7) in the stationary

regime, that is,

c

�
X
i

@

@xi
[fCi (x)P (x)]�

X
i

@

@xi
[fDi (x)P (x)] + �

X
i

@2

@x2i
P (x) = 0 : (55)

d

If the conditions (52) is ful�lled and assuming that

fDi (x) is orthogonal to the gradient of P (x); that is

X
i

fDi (x)
@

@xi
P (x; t) = 0 ; (56)

then the second term in equation (55) vanishes and

what is left is a Fokker-Planck equation for a system

described by a conservative force fCi (x) = �@E=@xi:

The solution is therefore

P (x) = A expf�
1

�
E(x)g : (57)

We can check from this solution that the assumption

(56) is indeed correct. Using (57) we can check explic-

itly that 
C vanishes.

VIII. Simple model

Let us consider a simple model of just two variables.

The force is given by

f = �Kr +Abz � r ; (58)

where K and A are two parameters, and r and f are the

two-dimensional vectors r = x1bx+x2by and f =f1bx+f2by:
As long as A 6= 0 the force is nonconservative since

r� f = �2Abz 6= 0: In this case


C =
1

�
fK2 < r2 > �2�Kg; (59)

and


D=
1

�
A2 < r2 > : (60)

The associate Fokker-Planck equation is

�
@P

@t
= �r � (fP ) + �r2P; (61)

that is,

�
@P

@t
= Kr � (rP )� Ar � (bz � rP ) + �r2P; (62)

which can be written as

�
@P

@t
= Kr � (rP )� Abz � r�rP + �r2P: (63)

Although this equation does not have radial symmetry,

it does possess a solution with radial symmetry. In-

deed if we assume that P is a function of jrj = r only

then the vector product term in (63) vanishes and the

equation becomes a Fokker-Planck equation for a con-

servative force given by f = �Kr. The time dependent

solution of such an equation is

P (r; t) = P0(t) expf�
r2

2B(t)
g; (64)

where

B(t) = B0 expf�
2Kt

�
g+

�

K
;

P0(t) =
1

2�B(t)
: (65)
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For simplicity we used initial conditions such that

< r >= 0:

To obtain 
C and 
D we insert the result < r2 >=

2B(t), obtained from (64), into equations (59) and (60)

to get


C =
K2

�
2B0 expf�

2Kt

�
g (66)

and


D =
A2

�
2[B0 expf�

2Kt

�
g+

�

K
] (67)

Therefore, 
C and 
D decay exponentially to their sta-

tionary values. Notice that 
D is always nonnegative

since B(t) is nonnegative. The quantity 
C on the

other hand can be positive or negative depending on

the sign of B0.

The stationary probability P (r) is given by

P (r) = P0 expf�
1

�
E(r)g = P0 expf�

K

2�
r2g ; (68)

where the normalization factor is P0 = K=2��, is ob-

tained by taking the limit t!1 in equation (64). The

stationary values 
C and 
D are


C = 0 ; (69)

and


D =
2�

K�
A2 ; (70)

so that the rate of dissipation of energy 
D is propor-

tional to A2 and, of course, it vanishes when A goes to

zero, that is, in the equilibrium case.

We may also calculate the stationary current. From

its de�nition

J(x) = f (x)P (x)��rP (x) ; (71)

we obtain the result

J(x) = A(bz � r)P0 expf�
K

2�
r2g : (72)

Hence, the stationary current is proportional to A and

also vanishes in the equilibrium state, as expected.

IX. Conclusion

We have studied a nonequilibrium classical system

of interacting particles by a stochastic approach whose

starting point is a Langevin equation of motion in po-

sition space. From this equation we have obtained ex-

pressions for the rate in which energy is exchanged as

well as the rate in which energy is dissipated. The ex-

changed and dissipated power are related to the irro-

tational and solenoidal parts of the forces, respectively.

We have applied the results to the case where these

two parts are orthogonal and solved exactly a model in

which the forces are linear functions of positions.
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