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The motion of a particle constrained to move between two walls one of which is moveable
is solved. We determine analytically the e�ective forces that act on the particle or on the
moveable wall. The quantal version of the solution is briey discussed.

I. Introduction

Classical Mechanics text books discuss friction

forces without paying much attention to the dvnam-

ics behind their origin. It would be useful for didatical

purposes, to develop simple models that allows one to

\derive" friction forces and thus enables one to discuss

their properties.

In this paper we fully solve a simple one-dimentional

problem for this purpose. The problem at hand is that

of the motion of a particle of massm constrained within

a region bounded by two walls one with in�nite mass

and the other with arbitrary mass M > m:

When the wall with massM is oscillating the system

is called a Fermi Accelerator [1] and has been investi-

gated in the past by Ulam [2]. Usually Ulam's model

has been used for he investigation of the stochastic ac-

celeration of the light particles in collisions with the

moving heavy obJects [2-5]. In this paper we study

a simpler problem of a free movable wall. The model

can be schematized as in Fig. 1. In contrast to the

Fermi accelerator, we study the inverse process, where

the kinetic energy of the light particle is ransferred to

the heavy particle - the movable wall. Upon hitting the

�xed wall the particle loses momentum but not energy

whereas collision with the movable wall allows for loss

of momentum and energy. Our model is relevant to

studies involvin the con�nement of ultracold neutrons

in bottles [6]. Further, it is analytically fully soluble.

In Section II, for a given value � � m=M; we solve, fully

the problem and obtain the value of the velocities of the

particle, �n, and the movable wall, Vn, after their nth

collision. In Section III, we discuss the e�ective force

that acts on the light particle due to the collisions with

the wall. In Section IV we give a brief discussion of

the quantum mechanicaI solution recently obtained by

Hussein and Kharchenko [7]. Finally, in Section V we

present our concluding remarks.

Figure 1. A schematic �gure showing the Inverse Fermi Ac-

celerator.
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II. Exact solution of the Inverse Fermi Acceler-

ator

The conservation of momentumand energy after the

n collision is given by the following recursive formula

m�n +MVn = �m�n+1 +MVn+1 (1)

1

2
m�2n +

1

2
MV 2

n =
1

2
m�2n+1 +

1

2
MV 2

n+1

The solution of the above equations can be written

in a matrix form

�
�n+1
Vn+1

�
= Â

�
�n
Vn

�
=

 
1��
1+�

�2
1+�

2�
1+�

1��
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!�
�n
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�
;

(2)

where we have introduced the parameter

� =
m

M
(3)

Recursion relation given by Eq.2 allows to evalu-

ate the velocities of the light and heavy particles after

n� �th collisions, if their initial velocities are known:

�n=0 = �o ; Vn=0 = V0 (4)

Momentum and energy transfer between heavy and

light sub-systems is stopped after some number of col-

lisions. i. e. there is a critical n; nc, after which the

particle always lags behind the now moving wall.

To obtain a closed expression for Vn and �n we �rst

recognize that Eq.(2) can be thought of as an evolution

equation for a two-dimensional velocity vector which we

call

~Vn � x̂�n + ŷVn: (5)

This vector is not conserved, neither its length nor

its direction, and the velocity evolution matrix Â de-

scribes these changes.

It is possible however, to de�ne a constant-length

vector in the phase space form the energy conservation

equation Eq.1b. vis [8]

~Qn � x̂
p
m�n + ŷ

p
MVn (6)

Clearly

~Q2
n = m�2n +MV 2

n = m�20 +MV 2
0 � 2E0; (7)

which is a constant. In this case the collisional evolu-

tion of the system is described by the phase �n of the
~Qn vector

�n = arctan

 r
M

m

Vn
�n

!
(8)

Thus ~Qn evolves in a circle and the matrix that re-

lates the components
p
m�n+1 and

p
MVn+1 to

p
m�n

and
p
MVn is an elementary rotation

c

� p
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Call

1� �

1 + �
� cos� and

2�1=2

1 + z
sin� : (10)

Thus

B =

�
cos� �sin�
sin� cos�

�
(11)

which is the rotation matrix in two dimensions through angle �. Clearly, after n collisions the velocity evolution

matrix is given by Bn

Bn =

�
cosn� �sinn�
sinn� cosn�

�
(12)

Thus � p
m �np
MVn

�
=

�
cosn� �sinn�
sinn� cosn�

�� p
m �0p
MV0

�
(13)

Or �nally the velocity vector projections from the Eq.(5) satisfy the eliptic equations
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�n =

r
2E0

m
cos�n ; Vn =

r
2E0

M
sin�n ; (14)

�n = n�+ �0 ;

and

� = arctan(2�1=2=1� �); �0 = arctan

�
V0

�0�1=2

�
; (15)

d

where the initial phase angle �0 can be calculated via

the initial velocities of the Eq.(4). The magnitude of

the total phase �n = n� + �0 is restricted: j�nj � �
2

and it allows the evaluation of the maximumnumber of

collisions Nmax, for a system with arbitrary initial con-

ditions and mass ratio � = m=M . Indeed, according to

Eq.(14)

n = Int

�
�n � �0

�

�
� Nmax =

�

�
: (16)

where the function Int[x] gives the greatest integer less

than or equal to x. The evolution of velocities, Eq.(14),

is more simple in the case of zero initial velocity of the

moveable wall, V0 = 0. The initial phase �0 = O and

�n = �0cosn� ; Vn = �0�
1=2sinn�: (17)

The total number of collisions n = n
(0)
c between par-

ticle and wall is restricted by the conditions Vn � �n;

or tg(n
(0)
c ) � 1=�1=2. The last inequality can be written

as the restriction of the total angle of rotation in the

phase space n� :

n(0)c = max[n] = Int

�
1

�
arctan

�
1

�1=2

��
(18)

For the adiabatic limit � = m=M � 1 the elementary

phase angle � is very small (� ' 2�1=2); �
n
(0)
c
' �

2 and

critical value n
(0)
c can be estimated as

n(0)c ' 1

2�1=2
arctan

�
1

�1=2

�
=
�

4

r
M

m
(19)

To verify the above �ndings, we have numerically

solved Eq.(2), taking for initial conditions �(0) = �0 =

1; V (0) = 0; r(0) = 0, R(0) = R0 = 1 (see Fig. 1). The

results are shown in Figs. 2 and 3 for � = 4� 10�2 and

10�4, respectively. The value of nc in Figs. 2 is 5, close

to �
4�1=2

' 4. In Fig. 3, we have n(0)c ' 78. compared

to �
4�1=2

' 78:5. Further, Fig. 3 shows a rather smooth

function of time. The agreement with the analytical

results, Eq.(19), is excellent. This would allow the ex-

traction of an e�ective friction force which we discuss

in the following section.

Figure 2. The velocities �n and Vn vs. t for � = 4� 10�2,

m = �0 = R0 = 1:

Figure 3. Same as Fig.2 for � = 10�4.

For a system with arbitrary initial velocities the crit-

ical (or total) number of collisons between particle and

moveable wall nc is de�ned as a maximal value of n

satisfying velocity conditions �n � Vn; or tg �n � 1p
�
:
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c

nc = max[n] = Int
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For the adiabatic limit � = m=M � 1 the elementary phase angle � is very small (� ' 2�1=2), and one can derive

the asymptotic formula

nc ' 1

2�1=2

��
2
��0

�
(21)

It is important to note, that the intial phase angle �0 can be positive or negative, depending on the relative

orientation of the particle and the wall velocities. If the wall initially moves to the left, �0 < O and the number of

collisions ns, needed to stop the wall or to change the wall velocity direction is

ns ' j�0j
2�1=2

=
1

2

r
M

m
arctan

"
jV0j
�0

r
M

m

#
=

1

2

r
M

m
arctan

"r
K0

k0

#
(22)

d

where the initial kinetic energies of the light particle

and the moveable wall are denoted by k0 and K0 re-

spectively. The situation during these ns, collisions

can be described as an acceleration of the particle as

the kinetic energy of the wall is transferred to it until

the wall comes to a halt, followed by the inverse Fermi

acceleration when the particle losses energy. The crit-

ical number of collisions for arbitrary initial velocities

is

n(�)c = (n(0)c � ns) (23)

where n
(�)
c and n

(+)
c are critical number of collisions for

the initial movable wall velocity towards and away from

the stationary wall. Phase space diagrams for the dif-

ferent initial conditions are shown in the Fig. 4. From

the Eqs. (22), (23) it is not di�cult to extract the

collisionless condition n(+) = (n
(0)
c � ns) � 0, that is

identical to the velocity relation V0 � �0. According

to Eq. (22) the maximal number of the collisions ned-

eded to stop the wall is ns ' 1
2

q
M
m

�
2
' n

(0)
c and thus

n
(�)
c = 2n

(0)
c '

q
M
m

�
2 . This result shows a good agree-

ment with our general estimate of the maximal number

of collisions from Eq.(16): Nmax = �
� ' �

2

q
M
m ; which

is given for the particular case of asymptotically small

value of �. The method of �nite rotation in phase space,

developed in his Section, provides the exact evaluation

of the velocity evolution matrix. Natural generalization

of this method for the completely quantal Fermi accel-

erator system allows also to �nd the exact quantum

solution, as has been shown in [7].

Figure 4. The phase space diagram for the positive (a) and

negative (b) velocity projection of moveable wall.

III. The particle-wall e�ective force

In this section the particle wall e�ective force is

studied for the strong adiabatic condition, when the

parameter � << 1 and elementary rotational angle

� ' 2�1=2 is very small. The critical number of col-

lisions in this case is very large (see Eqs.(19),(23)) and

for the description of the velocity evolution of both the

particle and the wall we can use a quasi-continuous vari-

able n related with the time

dn =
dt
2Rn

�n

=
dt�n
2Rn

: (24)
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We write for the time variation of the kinetic energy

of m the following rate equation

d

dt

�
1

2
m�2

�
= �� � Fef (25)

Fef = m
d�

dt

where Fef , represents the e�ective force felt by m due

to its collisions with the moveable wall. Clearly, from

conservation of total energy,

Fef = �M V

�

dV

dt
(26)

dt =
dRn

Vn
(27)

Since, from Eq. (17)

dVn
dn

= �1=2�0� cos n� (28)

= ��1=2�n :

Or with Eq. (24)

2Rn
dVn
�ndt

= �n�
1=2� ; (29)

thus

dVn
dt

=
�2n�

1=2�

2RN
=
��1=2�

�
2E0
M � V 2

n

�
Rn

: (30)

and

dVn
V 2
1 � V 2

n

= ��1=2�
dt

RN
= ��1=2�

1

Vn

dRn

Rn
; (31)

which gives

Vn = V1

s
1�

�
R0

R

����1=2

� dRn

dt
(32)

or

Rn = R0

�
V 2
1

V 2
1 � V 2

n

��1=2��1

(33)

Now Rn(t) can be obtained from Eq.(32) by simple

integration. A closed expression is obtained by setting

���1=2 � 2 which is an excellent approximation for
m
M << 1. We thus �ndq

R2
n � R2

0 = V1t = �1=2�0t (34)

R2(t) = R2
0 + V 2

1t
2

Putting things together, we �nally obtain for the

e�ective force the following expression

Fef (�n) = � m

R0

(�20 � �2n)
1=2�2n

�0
(35)

or

Fef (Vn) = �
p
mM

R0

(V 2
1 � V 2

n )Vn
V1

(36)

and

Fef (t) = �(2E0�
1=2R0)

V1t

(R2
0 + V 2

1t
2)3=2

(37)

The above functions peak at �0=
p
3, �1=2�0=

p
3 and

R0=
p
2�1=2�0 respectively. Before we end this section,

we give in the following the expression for the acceler-

ation of the movable wall, d2R=dt2. From Eq.(34), we

�nd

d2R

dt2
=

V 2
1
R2
0

(R2
0 + V 2

1t
2)3=2

(38)

The numerically generated e�ective force is shown

as functions of �0 � �; V and t, in Figs. 5, 6 and 7,

respectively, for � = 10�4. The agreement with our an-

alytical formulae, Eqs. (35), (36) and (37) is excellent.

We should mention, however, that Eqs. (35-38) are

approximate formulae valid in the limit of a very large

number of collisions and at times shorter than the time,

tc, at which the velocities attain their terminal values.

Clearly, at longer times the acceleration is identically

zero. Before we end this section, we comment on the

di�erence between the e�ective \friction" force, given

by md�
dt and the acceleration force M dV

dt . Whereas

the movable wall of mass M receives energy through

energy - and momentum-conserving collisions with m,

the particle su�ers also momentum-nonconserving colli-

sions with the �xed wall. In each of these collisions, say

the nth one, a quantity of momentum, 2m�n, is lost to

the �xed wall. This is basically the reason why Fef=m,

Eq.(37), is qualitativelv di�erent from d2R
dt2 of Eq.(38).

Figure 5. The friction force corresponding to the case of

� = 10�4 (Fig.3).
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Figure 6. Same as Fig.5 but vs. V.

Figure 7. Same as Fig.6 but vs. time.

IV. Semiquantal treatment of the inverse Fermi

accelerator

In a recent work [7] two of us soived the problem

of the inverse Fermi accelerator quantum mechanically

for the light and heavy particles. The solution was ob-

tained for di�erent limits: the semi-quantal, the full

Born-Oppenheimer and the exact solutions were pre-

sented. It is instructive to compare the classical results

obtained in the present paper. with the semi-quantal

solution. where the moving wall is treated classically

while the particle quantum mechanically. The quan-

tized motion of the particle is fully described by the

normalized wave function

�n(r;R) =

r
2

R
sin
�n�r
R

�
(39)

n = 1; 2::::

The eigenenergies, �1 are

�n =
~
2

2m

�n�
R

�2
(40)

The classical \Hamiltonian" that describes the mo-

tion of the wall is accordingly given by

H =
P 2

2M
+ �n(R) (41)

It is clear that there are in�nite number of Hamil-

tonians corresponding to the in�nite number of eigen-

states of m described by (39). From the equation of

motion follows

M
d2R

dt2
= �@�n

@R
=

~
2n2�2

mR3
(42)

On the other hand, the conservation of total energy

gives

dR

dt
=

n�~p
mMR0

r
1� R2

0

R2
(43)

Thus

R(t) = (R2
0 + V 2

1t
2)1=2; V1 =

n�~p
mMR0

(44)

With Eq.(44), Eq.(42) becomes

d2R

dt2
=

V 2
1R

2
0

(R2
0 + V 2

1t
2)3=2

; (45)

Notice, that all reference to quantum mechanics in

(45) is contained in the de�nition of the terminal ve-

locity V1, Eq. (44). We see from (38) and (45) an

apparent equality between the classical and semiquan-

tal treatments of the inverse Fermi accelerator. There

is, however, an important di�erence between the two.

As we have discussed in Section III, Eq.(38) is valid only

at times shorter than the limiting time tc. On the other

hand, when treated quantum mechanically, the particle

will have continuous distribution of velocities. Accord-

ingly the interaction between wall and the particle may

be considered \continuous" thus making Eq.(45) valid

for all times.

V. Conclusions

In this paper the classical solution of the inverse

Fermi accelerator is presented in details. The e�ective

\friction" force that acts on the particle due to its colli-

sions with the moveable wall in derived. A semiquantal
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solution of the problem is also presented. The classical

and quantal accelerating forces that act on the movable

wall were found to be identical at times shorter than the

critical time at which classically the particle and wall

attain their terminal velocities.
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