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The similarity between the electron equation of motion in electric and magnetic �elds and the
Bloch equations for nuclear magnetic moments in a magnetic �eld leads to a novel resonance
phenomenon involving the electrical current. This suggests a new experimental technique for
the investigation of transport properties in conducting materials. In this work we propose
a new set of Bloch Equations for the electrical current with di�erent electron-electron and
electron-lattice scattering rates and discuss the consequences of their solutions to the study of
the electronic properties of conducting materials. We outline the experimental conditions for
detecting electrical current resonance and estimate some relevant experimental parameters
for the observation of current echoes and free current decays.

I. Introduction

The dynamics of the magnetization in the presence

of an applied magnetic �eld B can be described classi-

cally through the Bloch equations [1]. These equations

are used in the description of several aspects of the phe-

nomenon of Nuclear Magnetic Resonance (NMR); they

predict, for example, the formation of spin echoes and

free induction decays [1].

In a previous paper we showed that similar phe-

nomena which we have called current echoes and free

current decays, can exist in conducting media [2]. Its

deduction, given in details on that reference, follows

in a straightforward way from the formalism developed

by Jaynes [3] to solve the Bloch equations. Actually,

the existence of current echoes can be seen in a very

simple way, just by comparing the Bloch Equations for

the nuclear magnetizationM in a �eld B with that for

the electrical current J in electric and magnetic �elds

E and B:

@M

@t
+
M�Mo

T1
+ 
n(B �M) = 0 (1a)

@J

@t
+
J� Jo

�
+ 
e(B � J) = 0 (1b)

Here, Mo = (�=�o)B is the nuclear equilibrium mag-

netization, 
n the nuclear gyromagnetic ratio, T1 the

nuclear relaxation time. For the sake of simplicity we

have taken the spin-lattice (T1) and spin-spin (T2) re-

laxation times as being the same. Similarly,Jo = �oE is

the steady state electrical current density, j
ej = e=m �
17:6 GHz kGauss�1 is the electronic analog of the \gy-

romagnetic ratio" for free-electrons and � the electronic

relaxation time. The other symbols have their usual

meaning. In both cases the relaxation time is linked to

fundamental mechanisms of interactions between the

nuclear magnetic moments (or, for instance, electrons

in a conduction band) among themselves or with the

lattice.

The similarity between these two equations is obvi-

ous. Consequently, for a certain con�guration of �elds,

if spin echoes and free induction decays (FID) follow

from the solutions of the �rst equation, current echoes

and free current decays (FCD) must follow in the same

way from the second. However, whereas spin echoes

and FID's have been observed since 1950 [4], current

echoes have not yet been detected.

Current echoes and FCD's arise when static electric

and magnetic �elds are applied along the same direc-

tion (z, for instance) and an oscillating pulsed magnetic

�eld is applied in a perpendicular direction (x, for in-

stance). In ref. [2] it is shown that at the resonance the
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FCD signal amplitude after a pulse of duration �p and

amplitude B1 is given by

Jy = �oEosin

�
eB1�p
m

�
(2)

and the current echo amplitude after 2 pulses with the

same duration is:

Jy = �oEosin(
eB1�p
m

)sin2
�
eB1�p
2m

�
(3)

In these equations, Eo is the modulus of the static elec-

tric �eld. Note that (2) and (3) represent the signals in

the rotating reference frame [1].

II. Steady state solution

If the oscillating �eld is applied continuously, it can

be shown [2] that the stationary solution for J is given

by (with J(0) = 0):

J(1) =
�

�

�
1

�
+ ~�

�
�1

E (4)

where 1=� + ~� is a matrix given [3] by:

0
@ 1=� �
Bz 
By


Bz 1=� �
Bx

�
By 
Bx 1=�

1
A (5)

c

The inverse of the above matrix can be easily calculated:

�
1

�
+ ~�

�
�1

=
�3

1 + 
2�2(B2
x +B2

y + B2
z )
�

�
0
@ 1=�2 + 
2B2

x �(
Bz=� + 
2BxBy) �(
2BxBz + 
By=� )
�(
2BxBy � 
Bz=� ) 1=�2 + 
2B2

y �(
2ByBz + 
Bx=� )

2BxBz + 
By=� �(
2ByBz � 
Bx=� ) 1=�2 + 
2B2

z

1
A (6)

d
From (4) and (6) we can easily work out the com-

ponents of J for an arbitrary con�guration of �elds B

and E. For instance, for a static magnetic �eld along

the z-axis and an oscillating magnetic �eld along x we

obtain absorption and dispersion relations for the com-

ponents of the current, similar to those in the magnetic

case [2].

Consider now the �eld components in the laboratory

frame:

B = (2B1cos!t; 0; Bo)

E = (0; 2E1sin!t; Eo)

that is, oscillating electric and magnetic �elds applied

along y and x directions, respectively, and static electric

and magnetic �elds applied along z.

In the laboratory coordinate system the total elec-

tric and magnetic �elds depend on t and (4) cannot be

used [3]. We can, however, make a transformation to

a reference frame rotating with angular frequency !,

where E and B are static [1]:

B = (B1; 0; !=
 � Bo)

E = (0; E1; Eo)

The \�ctitious �eld" !=
 appears as a consequence

of the transformation to the rotating frame [1]. On this

frame, (4) and (6) are again valid. Replacing the above

components for the vectors E and B, it is straightfor-

ward to obtain the solutions. At the resonance, i.e.,

when ! = j
jBo [2], we get:

Jx(1) = 0

Jy(1) =
�(E1 + !1�Eo)

1 + !2
1
�2

Jz(1) =
�(Eo � !1�E1)

1 + !2
1
�2

where !1 = 
B1. Note that the above expressions were

obtained without any approximation concerning the rel-

ative magnitudes of the �elds. It is interesting to no-

tice the fact that both the longitudinal and transverse

components Jy and Jz are proportional to E1 and B1.

This is an intuitive result since there are two ways of
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changing these components: either we change the elec-

tric �eld along a particular direction (z or y), or we

change the magnitude of the torque in Jz by modifying

B1 along x.

For free electrons, j
j � 17:6GHz kGauss�1. If

� = 10ns and B1 = 50Gauss, !1� � 1 and the compo-

nent Jz(1) � (�=2)(Eo�E1). Since these two compo-

nents of the electric �eld (Eo and E1) are mutually in-

dependent, the z-component of the current will be zero

when they are made equal, irrespective of the value of

�.

As another example of application of (4), consider a

problem of cylindrical symmetry. For instance, a static

magnetic �eld along z with �eld gradient @Bz=@z and a

radial electric �eld E = E�, produced, for instance, by

a charged wire placed along z. It can be shown that if

the �eld gradient is small, the radial component of the

magnetic �eld will be: B� = �(R=2)@Bz=@z, where R

is the radius of the orbit of the particle in the �eld [5].

On matrix (6) we now must replace By by B� = 0 and

Bx by B�, given above. By doing so, and calculating

the matrix product (4) one �nds:

J�(1) = �
1 + [(
�R=2)@Bz=@z]

2

1 + [B2
z + (R=2)@Bz=@z)2]
2�2

E�

J�(1) = �

�Bz

1 + [B2
z + (R=2)@Bz=@z)2]
2�2

E�

Jz(1) = �� (
2R=2)Bz@Bz=@z

1 + [B2
z + (R=2)@Bz=@z)2]
2�2

E�

Note that if the magnetic �eld is considered homoge-

neous, that is, @Bz=@z = 0, we obtain expressions to

the components of the Hall current in cylindrical co-

ordinates. The axial current is produced by the �eld

gradient. Also note that if the electric �eld con�gura-

tion is changed, by making, for instance, E along z, all

we have to do is to pickup the elements of the last col-

umn of (6) as the numerators of the above expressions.

We see from the above results that the sign of J�

depends upon the sign of the particle charge q, but

not that of Jz , which is always opposite in sign to the

magnetic �eld gradient. This re
ects the well known

tendency for the con�nement of charged particles, such

as in a plasma, by a magnetic �eld, in the presence of a

�eld gradient, creating the so-called magnetic mirrors

[5].

The observation of current echoes and electrical cur-

rent resonance (or ECR, for short) would lend all the

experimental potential of usual NMR to the study of

transport phenomena in electrical conductors. This pa-

per is devoted to the discussion of these potentialities

and under which conditions current echoes should be

detected.

III. What can we learn from ECR and current

echoes?

Equation (1b) for the electrical current was writ-

ten assuming a single relaxation time. As in the mag-

netic case, there are no a priori reasons for this sup-

position; electron scattering can occur either via inter-

actions with the lattice or with other electrons. We

will call the respective scattering rates ��1el and ��1ee

and propose, in analogy with the magnetic equations,

the following Bloch equations for the components of the

current in the rotating frame:

@Jz
@t

= �
�eJyB1 +
�oEo � Jz

�el

@Jx
@t

= +
�eJybo �
Jx
� 0ee

(7)

@Jy
@t

= 
�e (JzB1 � Jxbo) +
Jy
� 0ee

where bo = Bo � !=
�e and j
�e j = e=m�, with m� the

electron e�ective mass. Here � 0�1ee includes contribu-

tions from electron-electron and electron-lattice scat-

tering rates [1]:

1

� 0ee
=

1

�ee
+

1

2�el
(8)

In a two- or three-pulse experiment, if the relaxation

between the pulses can be neglected [6], one should ex-

pect the following dependences of the current echo am-

plitudes at resonance with the pulse separation:

Jy(2�� ) = Jy(0)e
�2��=� 0

ee (2 pulses)

where �� is the time interval between the two pulses,

and

Jz(�� ) = Jz(0)(1 � 2e���=�el ) (3 pulses)

where in this case �� represents the time interval be-

tween the �rst and second pulses [7].
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Thus, with the appropriate pulse sequence, the

electron-electron and electron-lattice scattering rates

can be measured independently. We can further split

��1el into two main contributions:

1

�el
=

1

�phel
+

1

� imp
el

(9)

where the �rst term represents the phonon scattering

rate and the second the residual impurities and crystal

defects contributions [8]. Then, at temperatures well

below the Debye temperature �D , the phonon contri-

bution can be neglected and the second term can be

measured separately. In short, from the dependence

of Jz(�� ) with the temperature one should be able

to identify the two contributions to �el, whereas from

Jy(2�� ) one can have the value of � 0ee.

The analogous of �ee and �el in usual NMR are the

spin-spin and spin-lattice relaxation times, T2 and T1,

respectively. The relation T1 � T2 is always veri�ed in

the magnetic case [10] and whereas T1 is temperature

dependent, T2 usually does not depend on T. In the

case we are analyzing, both �ee and �phel are temper-

ature dependent, with �ee / T�2 and �phel / T�3 [8].

Pauli Exclusion Principle limits the number of electrons

which can participate on electron-electron scattering to

those which are in an energy range �" � kBT about the

Fermi energy "F . The result is that at relatively high

temperatures �ee can become several orders of magni-

tude larger than �el. Even at low temperatures, it is dif-

�cult to say whether these two quantities will become

comparable. Thus, we should expect the lattice contri-

bution to dominate the \transverse" relaxation process

in equation (8). However, it may happen that in sys-

tems showing strong electronic correlation phenomena,

such as Kondo lattices and heavy-fermions, we would

have �ee � �el, as in the magnetic case.

Concerning ECR spectroscopy, for a �xed value of

Bo, the position of the resonance peaks will be directly

related to the e�ective massm� of conduction electrons,

since the resonance frequency can be written as

�c =

����

�

e

2�
Bo

���� =
��� e

2�m�

���Bo (10)

from which m� can be calculated for each line. In this

sense m� plays the same role for the electron in a con-

duction band as 
n for di�erent isotopes in NMR. Then,

an ECR spectrum should provide the e�ective masses

and proportions of the current carriers in di�erent con-

duction bands.

In the next section we turn to the discussion of the

experimental conditions for the observation of ECR,

FCD's and current echoes.

IV. Experimental Parameters

The key question concerning the observation of cur-

rent echoes in conducting media is how fast is the re-

laxation. As in the magnetic case, in order that the

transient e�ects can be observed in metals, relaxation

should be slow during the application of the pulses and

between them (in a more than one-pulse experiment).

If pulses of about 1 ns width are used, it is likely that

the detection of the free current decay requires mini-

mum relaxation times of about 0.5 ns.

Longer relaxation times can be achieved in high-

purity single-crystals at low temperatures. For a metal

like copper, for instance, with Debye temperature of

approximately 315 K, below 4.2 K the electron-lattice

relaxation will be dominated by impurity scattering.

Then, the question of how big can be made � imp
el is the

same as asking how pure can a single-crystal be grown.

The authors do not know of recent publications

where relaxation times have been measured in single-

crystalline metals at these temperatures. We be-

lieve that with modern ultra-high-vacuum techniques of

atomic deposition, single-crystals could be grown suf-

�ciently pure in order to meet the relaxation time re-

quirements.

The operating frequency range of ECR experiments

can be estimated from �c(GHz) � 2:8Bo(kGauss) [8].

In a �eld of 0:2kGauss, for instance, the signal should

appear at about 0:56GHz, a standard value for com-

mercial oscillators. We remark that this value refers to

the frequency in the laboratory frame. In the rotating

coordinate system, at the resonance, the electrical cur-

rent \feels" only the AC �eld, whose amplitude should

be typically one order of magnitude smaller, leading to

lower precession frequencies. Then the Hall current in

the rotating frame will appear reduced in respect to the
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laboratory system, and this fact can be used to detect

the resonance in a CW experiment.

Another important practical parameter is the skin-

depth, which measures the length of penetration of the

radiofrequency �eld in the metal. This is given by:

� =
1p

�c���

where � and � are the magnetic permeability and the

electrical conductivity, respectively. For copper at 4.2

K, for instance, � � 10�6H=m, and � = 1=� �
10�12
m. At �o = 0:6GHz we �nd � � 200�A. This

means that, likewise in usual NMR, in an ECR experi-

ment we will be dealing essentially with a surface cur-

rent. Obviously, the skin-depth can be increased by

decreasing the magnitude of the static magnetic �eld.

The \bulk" current will represent a \background" upon

which the resonance has to be measured. In this sense,

thinner samples will present a smaller background. An-

other aspect to be pointed out is the fact that the above

numbers were estimated using the free-electron value

for 
�e . From equation (10) we see that the larger m�,

the lower will be �c. In a case like the heavy-fermion

compound CeAl3, for instance, m� � 1600m [11] and

�c will be in the range of MHz for the same �eld Bo.

The experimental setup for ECR should be much

the same as that for NMR [9]. Passive electronic com-

ponents such as double-balanced-mixers, fast switches,

phase-shifters, etc., operating from a few kHz to sev-

eral GHz are commercially available. The characteris-

tics of the power ampli�er can be estimated from the

AC �eld amplitude necessary to tip the current by 90o:

B1 = �=2
�e �p � 50 Gauss, for �p = 2ns. For a cav-

ity of 1 cm3 with quality factor Q = 100 this would

correspond to a power of a few kW.

In a CW experiment the sample should have four

terminals, two for generating the current J and two

for detecting the transverse components of the current

at the resonance. The whole arrangement must be

inserted into a solenoid or cavity where the AC �eld

is generated perpendicularly to the static �eld. In a

pulsed experiment a \pickup coil" can be used to de-

tect the transient e�ects (FCD's or current echoes), as

in usual NMR. In this case there is no need for the

sample to have extra connections for the detection of

the signal.

V. Conclusions

In this paper we proposed a new set of Bloch equa-

tions for describing the behavior of the electrical current

in electric and magnetic �elds and discussed the exper-

imental consequences of their solutions. We have called

the resonance phenomena derived from these equations

current echoes and free current decays, or FCD's, and

the experimental technique Electrical Current Reso-

nance, or ECR. The main observable physical quantities

in an ECR experiment would be the electron-electron

and electron-lattice relaxation times and the electron

e�ective mass. With ECR it would then be possible to

study fundamental mechanisms of interactions involv-

ing charge carriers and the band structure in conducting

materials.

Although the discussion in this paper has been given

a classical treatment and directed to conducting mate-

rials in Solid State Physics, where relaxation is present,

we have recently recognized that the phenomenon of

free current decays and current echoes have a quantum-

mechanical analog [12]. The eigenstates of a charged

particle in a time-independent homogeneous magnetic

�eld are the well known Landau levels, sometimes also

referred as Landau tubes [8]. For a magnetic �eld ap-

plied along the z-axis, these are given by

En(pz) =

�
n+

1

2

�
~!c +

p2z
2m

(11)

In reference [12] it is shown that if we superimpose,

perpendicularly to the static �eld, an oscillating �eld

with magnitude B1 and frequency !, in the rotating

frame these levels become:

E0

n(p
0

z) =

�
n0 +

1

2

�
~!0c +

p02z
2m

(12)

where !0c = (q=m)Be is the particle cyclotron frequency

about the e�ective �eld Be . Here the \ prime " refers

a coordinate system where Be is axial. Then, as we

sweep over the resonance frequency, the Landau levels

are turned by 90o. The pulsed case is also analyzed

in ref. [12], and we show that the results are consis-

tent with the classical treatment. These results clearly

broaden the possibilities of applications of the e�ect,
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for instance in the de Haas-van Alphen e�ect, or in a

possible resonant method for particle spectroscopy.
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