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We develop a mathematically rigorous momentum space renormalization group formalism
for the perturbative study of interacting Fermi systems in spatial dimensions greater than
1. We first show, exploiting the different geometry of renormalizing around a surface, rather
around a point, improved bounds with respect to power counting for some Feynman graphs.
These bounds show that among all graphs with 4 external legs, only some special ones, called
direct and exchange graphs diverge, and they do so only at Cooper pairs or forward scattering
configurations of external momenta. Using these bounds, we propose a novel renormalization
scheme for the Fermi liquids, based on the physical idea of renormalizing only momentum
configurations close (in a precise sense) to these. We write the beta functional in this
formalism, which would tell in principle (and in perturbation theory) whether the system
is a normal Fermi liquid or not. Qur not renormalizing unnecessary terms makes the the
structure of the beta functional simpler, but a complete analysis is still complicated. We
explain some of its features, which lead us to conjecture as the result of a heuristic analysis
that Fermi liquids are normal for any dimension d > 1 if the interaction potential is repulsive.

1. Introduction

We are concerned in this paper with the perturba-
tion theory for a system of spinless fermions in d spatial
dimensions at zero temperature interacting through a
rotation invariant pair potential Ag(Z—%), which we will
study in the grand-canonical ensemble. The (grand-
canonical) Hamiltonian for the non-interacting system
is Ho = T — uN , where T = ;L [dZdy} - y; is
the total kinetic energy, p is the chemical potential and
N = [dE zﬁ;h/); is the number of fermions operator.
In the above formulae @bx? are respectively creation and
annihilation operators for fermions at position . The
interaction part to be summed to Hyis7gN +V , where
V, given by V = 1 [dEdFAo(Z — §) w;zﬂ;zbyi't/); , is
the pair potential interaction and Ty is the chemical po-
tential counterterm. The Fermi momentum pr is given
by pr = 2mpu .

Interest in quantum many-particle systems has in-
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creased in the last years because of the discovery of the
high-T, superconductors, not yet understood. As con-
duction electrons in these materials are concentrated
in Cu-O planes, it could be that some phenomenon
characteristic of d = 2 is the mechanism for the su-
perconductivity. Discovering in d = 2 some anoma-
lous Fermi liquid behavior, i.e. some behavior different
of the one predicted by the phenomenological Landau
theoryl!l| would be a good bet for explaining high-T,

superconductivity,2.

We note that existence of anomalous Fermi liquids
in d = 1 was rigourously established already in 65 by
Mattis and Lieb [®] these results being generalized to all
weakly interacting Fermi liquidsin d = 1,45, Ind > 1
there exist numerous calculations wie the Feynman-
graphs approach, see [6] or [7] for a complete account
mainly in d = 3 and [8],[9] for recent calculations in

d = 2. In spite of great successes, as in the BCS the-
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ory of superconductivity, most calculations use uncon-
trolled approximations, such as low-order perturbation
theory, random phase, Hartree-Fock, resummations of
parts of the perturbative series, efc, and 1t is a common
feature that results change according to the approxima-
tions used. This is why we think a rigorous approach

from first principles is necessary.

Our long term objective is to understand in a math-
ematically rigorous way whether interacting Fermi sys-
tems in d > 1 are normal Fermi liquids in the sense
of Landau theory,'!, or not. The Kohn-Luttinger
effect(19] theoretically proposed in 1965, is an example
of the necessity for rigorous methods. At that time it
was well known that any attractive effective interaction
between fermions, no matter how small, would make the
Landau picture unstable and lead to superconductivity.
Kohn and Luttinger argued then, based on a careful ex-
amination of a second-order perturbative calculation,
that for systems in d = 3, superconductivity would oc-
cur at small enough temperatures and high enough an-
gular momentum, even if the interaction potential be-
tween fermions is repulsive. Since then there have been
various detailed calculations within several kinds of ap-
proximations. A recent survey,[!1], claims the existence
of the Kohn-Luttinger effect in d = 3 down to angu-
lar momentum [ = 1, whereas 2-dimensional systems
would remain normal Fermi liqﬁids even at zero tem-
perature. One year later,['?], one of the authors would
affirm that at d = 2 there would be a Kohn-Luttinger
effect, too. A mathematical proof of either normality
or anomaly (due to Kohn-Luttinger or anything else) of
interacting Fermi systems, bothind =2 and in d = 3

is still lacking.

The idea of using the renormalization group to
attack the problem of interacting many-fermion sys-
tems is recent*3] Renormalization group methods,
even non-rigorous ones, produce in principle safer re-
sults. One example for fermions in d = 1 is noted by
Shankarl!¥l. The mean-field approximation predicts a
charge-density wave for weak repulsion and supercon-
ductivity for weak attraction, whereas the renormal-
ization group predicts the correct result (rigorously es-
tablished in [5]), which is neither of them: a Luttinger

liquid for weak interaction of either sign.

45

Our main result is a new rigorous renormalization
group formalism with physical ideas simplifying some
aspects of the problem for d > 1 in the important case
of spherical Fermi surface. We hope to explore in forth-
coming papers these simplifications. This formalism
originated in [15]. For a more readable exposition of
these ideas, with emphasis on the different geometry of

renormalizing around a surface, seell®l.

QOur formalism is an extension of the one invented by
Benfatto and Gallavottil®17, to any spatial dimension
d (theirs works only for odd values of d) incorporat-
ing important ideas already present in a non-rigorous
work by Shankarl'®l. In the rest of this introduction
we present, briefly our results and compare them to the

works of Benfatto and Gallavotti and Shankar.

In section II we make our version of the formalism
of Benfatto and Gallavotti, introducing a multiscale de-
composition of the free-fermion propagatorrwhich, like
theirs, has Landau quasiparticles present from the be-
ginning. Our multiscale decomposition has the desired
properties only in momentum space, so we work in this
space. Also in section II we present power counting

bounds for the Feynman graphs.

Section III presents the main technical results of
this work, showing improved bounds for some Feyn-
man graphs with respect to power counting. These are
consequence of the different geometry of renormalizing
around a surface, instead of around a finite number
of points (the case d = 1). Without these improve-
ments, the novel renormalization scheme of section IV
would not be possible. We first state and prove theorem
1, which exploits integration over angular variables on
the Fermi surface to improve power counting for direct
and exchange graphs, showing that these graphs diverge
only in some special configurations: Cooper pairs for
direct and forward scattering for exchange graphs. We
continue then with theorem 5, which shows improved
bounds for other graphs. In particular, it shows that
all the other 4-legged graphs which are neither direct,
nor exchange do not diverge in any momentum config-
uration.

In section IV, we devise a new momentum-
dependent and graph-dependent renormalization scheme

which takes advantage of the improvements with re-
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spect to power counting to remove all divergences of
the theory. This is another difference with respect to
[4], which relies on power counting to define relevant
and irrelevant couplings. The main idea behind our
scheme is to renormalize only really divergent graphs,
only at the momentum configurations in which they di-
verge. We see then that many of the terms Benfatto
and Gallavotti thought were relevant are in fact irrele-
vant.

This fact was also noted by Shankar in [14], but
in his non-rigorous approach he neglects the irrelevant
terms. These, even absent from the beta function, con-
tribute indirectly to the running couplings, because one
may build relevant terms from irrelevant ones. He thus
obtains an oversimplified beta functional, too easy to
analyze, concluding that all Fermi liquids in d > 1
should be normal if the interaction potential is repul-
sive. !

On the contrary, the beta functional in the works
of Benfatto and Gallavotti for d = 3 is too compli-
cated. They are forced to make too many conjectures
in order to simplify it and conclude, under these con-
jectures, that Fermi liquids in d = 3 are normal if the
interaction is repulsive. The complication of their beta
functional comes from two sources. The first is the in-
finite number of running couplings, consequence of the
fact that if d > 1 the Fermi surface comsists of infinite
points. This was overcome in Shankar’s approach by
neglecting the irrelevant terms. The second source of
complication is the inclusion in the beta functional of
unnecessary terms coming from graphs which seem rel-
evant by power counting, but are in fact irrelevant if
one uses better bounds.

In section V we give a definition of normal Fermi
liquid and study the beta functional. OQur beta func-
tional is in some sense intermediate between the ones of
Shankar and Benfatto and Gallavotti. For example, we
also have the same complication of an infinite number
of running couplings of the latter, but our renormal-
ization scheme incorporating Shankar’s ideas has intro-

duced some simplifications with respect to [4]:

1. Like them, we can also, by an angular momentum
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expansion, diagonalize the beta functional for the
4-legged couplings, not only to second order in
perturbation theory, but to any order. The dif-
ference 1s due to non-inclusion in our beta func-
tional of some graphs irrelevant by theorem 5, but

appearing in theirs already at third order.

2. They neglect all 4-legged couplings, except
Cooper pairs, without justifying it. Our renor-
malization scheme provides a factor strongly
depleting non-Cooper-pairs and non-forward-

scattering configurations, see (40).

3. When considering only the Cooper pairs configu-
rations at second order, Benfatto and Gallavotti
neglect the contribution of the exchange graph,
showing that it is small. In our formalism we are
able to cope with the exchange graphs and show
that they give important contributions at forward
scattering configurations. In order to separate in
an efficient way confributions from direct and ex-
change graphs, we define two coupling functions:
A for direct graphs and p for exchange ones. This

1s also 1n line with Shankar.

In spite of the simplifications, our beta functional
is still complicated, even at only second order, and a
completely rigorous analysis of the flow of the running
couplings was not possible and has to be postponed
to further work. Nevertheless, in section V we explain
some properties of the flow of the running couplings
determined by the beta functional and perform a par-
tially heuristic analysis of the flow. On the basis of this
analysis, as we explain there, we see no important dif-
ference between the cases d = 2 and d = 3 and no clue
for the appearance of the Kohn-Luttinger effect or any
other anomaly.

So, unleés there is some numerical phenomenon hid-
den in the contribution of irrelevant terms to the beta
functional (this might be perhaps checked in a careful
numerical experiment), then our renormalization group
should not flow away of the trivial fixed point, signaling
(in perturbation theory) that all repulsive Fermi liquids

in d > 1 are normal. We should notice that there is in-

1By the way, later in [14] he considers the contribution of one irrelevant term at second order in his beta function and concludes for

the existence of the Kohn-Luttinger effect in d = 3.



Armando G. M. Neves

deed an interesting rigorous partial result pointing to
refutation of this conjecture: Feldman e? al. show in
[18] that for the repulsive delta function interaction in
d = 2 a Kohn-Luttinger instability occurs within the
Bethe-Salpeter approximation at third order.

The case of non-spherical Fermi surface is techni-
cally more difficult, but similar arguments should hold
as long as the Fermi surface is non-nested,'¥l. Feldman
et al. have also implemented rigorously the same im-
provements beyond power counting of this paper in the
more general case of non-spherical, non-nested Fermi
surfaces'?). With these bounds, they can also prove

perturbative renormalizability of the theory, but they

where ki, ...,

cannot answer yet about normality or anomaly.

II. Multiscale decomposition and power count-

ing

The free-fermion propagator is given(*l by

dk
z—y) = /(QW)d+1

where e(g) = (k% — p%)/2m. Due to its (infrared) sin-

gularity at the Fermi surface kg = 0, |E| = pp, some

eiko(@o—yo)+ik (F-7)

1kg + e(i?)

3 (1)

Feynman graphs may be divergent. More exactly, if G
is some graph with 2n external legs, then its contribu-

tion to the effective potential is of the form

b = kg1 = o= kan) F(Ry, o kan) U, U e Y

koan are the momenta of the external legs and the function f, called form factor of the graph, can

be infinite due to the singularity of the propagator on the Fermi surface. The propagator is also singular in the

ultraviolet, but we will apply an UV cut-off in order to eliminate this technical problem which is expected to have

nothing to do with the Fermi surface in the interacting case.

The UV-cut-off propagator can be written in momentum space as

* y2
gun(k) = / dor[—iko + e(R)] e~ oCk+e(®?)
1/4
2—211, . ) 0
= ik —a(k24e(k)?) = o .
n__X—:oo/Z ., ol o+e(k)]e n;oo gn(k) (2)

As each §n(k) is peaked around |E] = pr, then §,(z) oscillates spatially with period pz', independently on n

as explicitly seen in the formulae for d = 1,3 in [4]. In order to have a good multiscale decomposition we further

decompose the propagator over the Fermi surface, introducing quasiparticle fields similar to those of [4].

By some simple calculations we get to

dkdd
Jus(2) = Z /(2 )d+1

n=-—00

with

(2—nk) ei[kot+(k1+PF)55'f] , (3)

1 n—1
. 2
gn(lﬂ') = dei.'—l/ da (kl + 2—on) [—Zko + ,Bkl(l + kl)]
1/4 Pr

n _ 2, 52},2 2" i
<1+§;kl>d-1€ ooz’ (4)

being 8 = pp/m the Fermi velocity, 4 the surface of the d-dimensional unit sphere, integration in k means
integration over real variables ko and k1, & is a unitary vector in d dimensions, integration over & means averaging

over the unit sphere and 6 is the step function.
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Notice from (3) that the &-variables above introduced act like the direction of a momentum (k; + pr )&, which

is near the Fermi sphere if |k;] <« pr. So, if we decompose our original particle fields 1, as a sum

dkds £() ilkat+ (b tpr)3 2l )
n_‘;oo / (2m)d+1 PRS0k +pr) (5)
of new independent Grassmann fields 1/) dlstrlbuted with covariance (¥ 5 (n) ,T,(Q) 6(d — &) e(27(k —
k'))2737g,((27™k)), then we can interpret the ¢k & as quasiparticle fields representing momentum scale 2", n <0,

(n)

around the Fermi surface. As ¢g,(k) depends weakly on n when n — —oo, then all fields (/N are distributed, up to -

a trivial scaling factor, roughly the same, as required by renormalization group methods.

Differently from the analogous decomposition in [4], we cannot interpret the fields

w:i:(n) dk

i(n) cEilkot+k10-%
N (@t Herth®a o(ky + pr)

as quasiparticle fields in position space at length scale 27", for their covariance does not decay appropriately due
to the f-function singularity in (4). This fact shows that our decomposition (5) seems not to be suitable for
renormalization group methods in position space.

‘The multiscale decomposition of the fields induces a factorization of the free grassmanian measure as Po(dy) =
Hn__oo P, (dy™), where P,(d(™)) naturally means the grassmanian measure with covariance §&—-a) (2" (k-
k') 273" ga((27"k)).

We may now define the effective potential at scale 2 (more exactly at momentum scale 2%, A < 0), as

0
VR (p(Sh)y = _1og/ H Po(dyp(™) e~V O @EN 44O gy @) (6)
R n=h+1

where V(%) is the interaction Hamiltonian rewritten in momentum space and Wick-ordered second-quantized form

as
v = / dpydps [: b 5. V%, ¢ 61 — p2)8(kT + pr)0(k; + pp)]
- /dpl .. .Clp4 P\Q(kl, ey k‘4,(.:)'1, .. .,54) . ql),':hal lﬁ:z,mgl/);s,@-slb;had :
8(p1 + p2 — p3 — pa)0(ki + pr) .. .0(k; + pr)] , ()
with

" . N S
Ao(kt, ... kg, @1, ..., 0s) = Z[)‘O(pl — Pa) — Aa(P1 — Pa)
+ do(Br — F3) — do(F1 — 73)] (8)

l

In these formulae vy can be easily obtained from 7y,
Ao is the Fourier transform of the pair potential X¢ and
we use the abbreviation p; for the spatial part of the
momentum ¢, i.e. (k} + pr)&;, p; for (k§,7;) and dp;
for dk;da;.

In order to generate a formal perturbative expan-

sion for the effective potentials V(*) one may use the

algorithm of expansion in Gallavotti-Nicol$ trees(2%. In
the resulting scale-decomposed Feynman graphs there
are two types of internal lines: hard and soft, see ap-
pendix C in [20]. To each internal line of frequency
h, in a scale decomposed graph is associated a prop-

agator, which is 27"g, (27"k) if the line is hard, or
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2=hvgs (27"k) if the line is soft, where

27"gs (27k) = ni 27 hgn(27 ") . 9)

h=—co
An important remark is that the function g2 also de-
cays exponentially at infinity and, in spite of its singu-
larity at k& = 0, possesses an L;-norm smaller than an
n-independent constant. In the rest of this paper we
will almost ignore soft lines, but the reader can verify
that their above mentioned properties are sufficient to
guarantee that all bounds that follow are unchanged if

they are present.
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ilar to the position space ones,[, can be used to bound
the form factor of any graph. Let G be a scale-
decomposed Feynman graph of perturbative order m,
originated by a certain tree T, with n® external legs.
Let v denote a cluster of T' having frequency h,. We
will denote v’ the cluster of T preceding v in the tree
order, i.e. the first cluster of T we find if we descend
from v towards the root. Let also vg denote the first
non-trivial cluster of 7', i.e., the first branching point of
T if we climb it beginning from the root. If we let fp,

denote the form factor of G, then its power counting

bound is
Power counting arguments in momentum space sim-
1
|Fhug (B1, -+, Tne, @1, ., Bpe)| < C™ M™ 9~ P v H 9= (ho=hy)éu (10)
v<vp
|
where Up to now all we have done is equally valid for the
by = =2 4+ may + ni/2 (11) Fermi liquids in d = 1 and d > 1, power counting being

is called dimension of the cluster v, C and M are con-
stants which do not depend neither on the graph nor
on the frequencies attached to its clusters, ma, is the
number of vertices of type vy contained in cluster v but
not contained in any of its subclusters and n; is the
number of lines external to the cluster ». The complete
proof of this bound can be found in [15].

As for each term of the product we have hy, > h,,
then a graph having 6, > 0 for all its clusters v con-
verges 2 and the bound for a graph in which some clus-
ter v has 8, < 0 diverges. Power counting is thus suffi-
cient to guarantee that some classes of graphs converge.
For example, any graph in which all clusters have 6 or
more legs is convergent. On the other hand, we see
that clusters with 2 or 4 legs may have non-positive di-
mension. Clusters with non-positive dimension will be
either given an improved finite estimate, or renormal-

ized.

III. Improvements beyond power counting

—h
20f course the dimensional factor 2 %0

convergent.

used also in bosonic problems to identify relevant and
irrelevant couplings. In this section we are going to ex-
ploit the different geometry of the d > 1 case to prove
the main technical results in this work, on which the
renormalization scheme of section IV is based.
Consider the graph of Fig. 1, for which we have
a divergent power counting bound. Its form factor is

given by

N
A

Figure 1. The simplest direct graph.

5‘" . 0 - . . . . . .
o % diverges if 5y, < 0, but the contribution to the dimensionless effective potential is
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- - dksdds
fh(kly ey k4,w1, cey w4) = / W )\0(1, 2, 5, 6) )\0(5, 6, 3, 4)

27 gn (27" ks) 277, (27" ke) | (12)
where Ao(i1,...,%4) is a short notation for Ao(pi,,...,P:,) and the variables ks and &s are to be considered as
functions of momenta 1,2 and 5 given by

R = ED4kd— kD
ke = |(ki+pr)d1+ (k3 + pr)dz — (ks + pr)ds| — pr (13)
-~ _ (Kl +pr)@1+ (k3 4 pr)ds — (kf + pr)Ts
W = kl
6 TPF

because of the integration of one momentum-conservation é-function. Integration of this §-function also changes

the propagator of line 6 to 2777, (27"k), where the new function § is defined as

n—171 _ 0N2, 32/ L1y2 om—1g13\2
] oerseontesser]

7. (k) = /1 do [—ik°+ﬁk1(1+
1/4

and is similar to g, (k). In a general graph there is a spanning tree,l4], of lines having §-propagators, which are all
bounded by constants in order to obtain power counting. If we exploit the & dependence of the propagator we can
obtain better bounds. Before stating the theorem which proves it, we introduce some definitions necessary for its
full formulation.

A graph 1s called direct if it has 4 external legs, if these external legs originate as pairs from only 2 vertices, if
both external legs at the same vertex have arrows pointing in the same direction and if it has no loops sharing an

internal line. In Fig. 2 we show some examples of direct graphs.

In Fig. 3 we show some 4-legged graphs which are not direct.

\
/

A

RN
A~

Figure 2. Some direct graphs.

I T
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>C oA >XCOCX

Figure 3. Non-direct graphs.

A graph is called an ezchange graph, see Fig. 4 for the prototype of them, if it has 4 external legs, if these legs

originate as pairs from only 2 vertices, if the external legs originating from the same vertex have arrows pointing

in opposite directions and if it has no loops sharing an internal line. Other examples may be obtained from direct

graphs by reversing some arrows.

L 2

k2’ 0‘)2

Figure 4. The simplest exchange graph.

If G is a direct graph let us number as 1 and 2 the
external lines exiting from one of the two vertices of G
from which external lines exit, see Fig. 1. We define

some important parameters:

T = (kI +pp)d+ (ki +pr)ds (15)
= || +]|T].

Analogously for exchange graphs: if 1 and 3 are ex-
ternal lines exiting from the same vertex, see Fig. 4, we
define

A = Aol + 4], (16)

where Ag = k% —kJ and A = (k1 +pr)d1— (k3 +pr)ds.

We can now state one of our main results:

Theorem 1 Let G be a direct graph with all its inter-
nal lines having frequency h, f, be its form factor, é
its dimension (11) and T be defined as in (15). Then,
if d > 1, given any constant p such that 0 < p < 2pp,
there exist constants C, C' and Ny dependent on p, but
independent of G, I' and h such that:

1. For "Ny < T' < 2pFp — p we have
9h
Ifal < C™ M™ 27 (17)

9. For 2pp —p < T < 2pp + p and 27T > Ny we
have

fal < G Mo ER (18)

8. ForT > QpF +p and 27T > Ny we have

ﬁhF2

fa] < C™ ™27tk gk e=C27 (19)
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In the above formulas, m stands for the number of
veriices in the graph and M s an estimate for the cou-
pling constants.

A completely analogous result holds for exchange

graphs by substituiing T by A.

The theorem shows, for sufficiently small h (suffi-
ciently small is here a I'-dependent concept) and for
some external-momenta configurations, i.e. T' # 0, an
improvement with respect to power counting for some
4-legged graphs already sufficient to transform a di-
vergent bound into convergent. If I' = 0, we get no
improvement at all and are left only with the power
counting estimate.

Notice that I' = 0 means a configuration of equal
and opposite external momenta 1 and 2 and, by total
momentum conservation, also equal and opposite mo-
menta 3 and 4; in other words a scattering process in

which two fermions of equal and opposite momenta, i.e.

|

[Fulks, ... ke, @1, .., @)| < C2Mze-72"‘ifol/dk;e—%w%ké)zf(k;),

where
Ik = /dgs e~ $1B72 T (IT-(2 ki +pr)0s|-pr)®
(21)
In the last formula, integration over s means inte-
gration over the d — 1 angles that localize the unitary
vector &s. But the integrand depends only on the angle
# between &5 and T'. We can then consider without loss
of generality only the case d = 2, the difference with
other dimensions being only a numerical factor, which

we can incorporate into the constant C and a factor
sin%"? @ that we bound by 1.

If we define
1 o
N = B (22)
_ o= 2
p(6) = ﬁg(lr—f’%l—w) (23)
r o= 2%kl 4pp, (24)

Brazilian Journal of Physics, vol. 27, no. 1, march, 1997

a Cooper pair, are annihilated and another Cooper pair
is created. We call T' = 0 a Cooper pairs configuration.

A completely analogous result holds for exchange
graphs with A in the place of I'. Notice that A = 0
means a forward scatiering configuration.

Sketch of proof for theorem 1 :

We will be referring to the simplest direct graph in
Fig. 1 as an example, but at the end the reader can
convince himself that the same reasoning will extend
trivially to each loop of the other graphs, being it pos-
sible to gain one extra improvement per loop.

We begin from the definition (12) of the form fac-
tor of the graph. If G} represents either gy or 7y,
then it can be easily seen from their definitions that
|Gr(k)] < 06"7[(k0)2+%ﬁ2(k1)2], where C and 7 are pos-
itive constants independent of h. Using this bound for
both ¢ functions in (12), bounding each of the running
couplings by a constant M, rescaling k5 = 27"ks and

integrating k2, we arrive at

(20)

then

. : 27
I(k}) = % /0 dg e=Np(0) (25)

Asymptotic values when N — oo, i.e. h — —o0, of
integrals of this kind can be calculated by Laplace’s
method?Y. There are three different cases, correspond-
ing to the three cases in theorem 1: 1. If |1:"[ <pr+r,
then p has two points of minimum and p(#) is zero in
these minima; 2. If |f] = pp + 7, then the unique point
of minimumis # = 0 and p is still zero at this minimum;
3. If |T| > pp + r, then again 6 = 0 is the unique point
of minimum and now the value of p at this minimum is
greater than zero.

Let us define 6y to be the position of the minimum
of p(#) (if there are two points of minimum we choose g
to-be the one with positive sine). If we apply Laplace’é

method in the first case we get to
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47r1/2pF oh

N—oo
I(kg) "~

By definition of asymptoticity, this implies that
there exists Ny such that for 2= *|T| > Ny we have

47r1/2pF oh

Ik3) <2~ = .
( 5) 71/2ﬁr|sm gol |P|

If we could use this result in (20), then the proof
of the first assertion in the theorem would follow eas-
ily. The problem is that in using “normal” Laplace’s

method to obtain the last formula, we have tacitly as-

0 < |F| < 2pr—p and

we guarantee that p(d) has two minima +6, with 6,
bounded away from zero. This is the key feature in the
first part of the theorem.

The proof goes as follows. Under conditions (27)
we prove in lemma 2 that p(f) has some uniformity
properties in |f| and r. Then we use these properties
in lemma 3 to show that I(kl) has a good bound if
|kt < %2_h[f|. Finally, lemma 4 shows that these
values of ki really give the dominant contribution and
resumes the proof of the first bart of the theorem for

the special direct graph in Fig. 1.

Lemma 2 (Uniformity lemma) Suppose conditions
(27). Under these, given any € > 0, there exists § > 0,
§ independent of |T| and r, such that for |0 — 65 < &

we have

[p(0) — 2"(6) (0~ 60)?] < € 58" (65) (0~ 00)" . (28)

Proof: Approximate p(6) by its 2nd. order Taylor
polynomial and use the differential formula for the re-

mainder to estimate it. Conditions (27) are used to

(3P (60)]?

pPF

—yl/Zﬂr]sin 00| |I‘| ( )

sumed that |f| and r are fixed, so that Ny in principle
depends on them. As we still have to integrate on ki,
which is related to r by (24) and we want Ny to be
independent of ]f|, we need a sort of Laplace’s method
uniform in |T| and 7.

We will proceed proving the first statement in the-
orem 1 and in the end comment on the differences in
applying the same method to the other two statements.

Imposing

1 = 1,
— ST < r <o+ 5T (27)

guarantee that each derivative of p(6), in particular the

third derivative, is bounded.

Lemma 3 (Uniform Laplace’s method) Under
conditions (27) (which imply |k3| < 127|T|), for any
given € > 0 there exists a number Ng independent 0f|f|
and v such that for N > Ny we have
orl/2 orl/?
<€

[ANp(60)] (30" (00)]
In  other words, I(ki) s
ort/2/ [%Np”(ﬁg)]l/z, asymptoticity being uniform in
IT| and r.

I(kg) —

/2

asymptotic  to

Proof: Just imitate the proof of the ordinary Laplace’s
method given in [21]. The only difference is that lemma
2 guarantees for any € > 0 existence of ¢ indepen-
dent of |T'| and r such that for all § € [fp, 6] we have
Ip(6) — 3p"(60) (6 — 60)*| < € 59" (fo) (8 — 0o)*. This
will be used to estimate
81 )
/ 40 (e—Np(o) _ =1 NP (80)(6-00) )
fo
somewhere in the proof, guaranteeing uniformity.
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Lemma 4 If0 < T < 2pr — p, where p is any positive
number given, there exists a number.Ng independent of
h and T' such that the form factor of the graph in Fig.
1 satisfies

oh

Ifal < C’EMZF. (29)

Proof: Use lemma 3 to show that there exists Np
such that for 27*|T| > No, 0 < |T| < 2pr — p and
|ki| < %2‘h|f] we have

47r1/2pF ok " oh

=+

Ik < 2 ————_ —
( 5) 71/2,37’181119()[ '1-\! ll-\l

with C* independent of k, || and k2.

In order tofinish the proof of the lemma, and thus of
the first part of the theorem we have to control the large
values |k%| > 127*|T| in the integration (20). This is
easy because we can use the easy power counting bound
I(k%) < 1 and exploit the smallness of e=378°(%3)° for
the large values. This ends the proof of the first part
of theorem 1.

The proof of the remaining two parts of theorem 1
is now a mere repetition of the ideas used to prove the
first part. We explain the differences.

The hypothesis |T| > 2pr + p of the third part to-
gether with r < pr + p/2 implies 6y = 0 and p(0) and
7"(0) bounded away from zero, so that we can prove an
analog of lemma 2 approximating p(6) near = 0 by
p(0) + $p"(0)6? uniformly in IT| and r. An analog of
lemma 3, shows that I(k}) is uniformly asymptotic to
C 2k e=C' 27T, Finally, the large values of k} such
that » > pp + p/2 are dealt with by an analog of lemma
4.

The proof of the second part of the theorem is a bit
more subtle, for when || is in a neighborhood of 2pp
and r is close to the dominant value pp, then both p(6,)
and p'(6) are small. There exists o > 0, o dependent
on p but independent of |T|, such that for |r — pp| < &
both are also non-negative and the fourth derivative
pIV)(6p) is positive and bounded away from zero. We
prove an analog of lemma 2 asserting that for any ¢ > 0
there exists 6 > 0, § dependent on p but independent
of |T| and r such that if 2pp — p < |T| < 2pr + p,
r < pr+p/2 and |§ — 0y| < 6, then p(f) is bounded
below by (1 — €) £ pV)(65)(6 — 6p)*. We can use then
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an analog of lemma 3 to show that I(ki) has an up-
per bound uniformly asymptotic to C/N/* = 0(22%).
Again, as in the other cases, an analog of lemma 4 con-
trols the values of ki such that |» — pp| > 0.

We will finish this section with one more improve-
ment theorem, corollary of theorem 1, for some classes
of graphs, whose prototype is the graph in Fig. 5, the
simplest 4-legged one which is neither direct, nor ex-

change.

~
[0 2]

2 3

Figure 5. The simplest graph which is neither direct, nor

exchange.

Theorem 5 (Loop improvements) Let G be a graph
in which all lines have the same frequency h and such
that there is at least one internal line being shared by
two loops. If 6 is the dimension of the graph, M is an
upper bound for the coupling constants, m is the number
of vertices and 0 < ¢ < 1, then there exists a constant
C independent of G such that the form facior f, obeys

Ifa] < C™*M™ 2~k 93(1=h (30)

In other words, for these graphs power counting can be

improved by a factor 25(1=)h,

Sketch of proof: Using the notation of Fig. 5, the
idea is to integrate internal lines 7 and 8 only in the
end. While they are fixed, integration of 5 and 6 leads
to the form factor of a direct graph with To = k¥ + k9,
T = (k} + pr)@1 + (k) + pp)d7, and T = |To + |T,
to which we can apply theorem 1, remembering that
T’ depends on the integration variables k7,&7. As the
measure of the region in k7, J7 where T' < 2* N, (no im-
provement in theorem 1) is O(2"), we can have an im-
provement independent of the external momenta con-

figuration. The final result is an improvement of only
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23(1=9h because the second case in theorem 1 gives
only 23" and a logarithmic correction due to integra-
tion of 1/T in the region where I' > 2" Ny but T is still
O(2") small accounts for the 27 <.

IV. Renormalization

In the usual position-space version of the tree
expansion(??4] renormalization is accomplished by sep-
arating the local (relevant) and non-local (irrelevant)

parts in the fields of each contribution to the effective

|
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potential. In our momentum-space formalism, the same
separation into irrelevant and relevant parts is achieved
by splitting each form factor fj, in parts fi* (irrelevant)
and fi (relevant) such that f& + ff = f), but local
will not be anymore a synonym of relevant. The separa-
tion scheme should be such that summing on frequency
attributions the R parts, one has no more divergences,
these being “hidden” in the relevant parts f}f‘

As in any scale h, LV(®)| the relevant part of V(¥
has to be a term with the same form as V(9 we may

write it explicitly as

LV® = /dpldp22h [1— (1—6*2"'“”)2] va(k1) 6(p1 = p3) ¥ 5 %5 . ¢

—h - - _9—h — -
-+ /dpl...dp4 [6_2 PAh(kl,...,k4,w1,...,w4) +e? Auh(lcl,...,k4,w1,...,w4)

8(p1+p2 = P — pa) U, 5,08 5,05, 53k oa (31)

where we are using the same p; convention used in (7).
The functions vp(k), Ap(ki,. .
pnky, .. .,W4) appearing at the formula

above as coefficients of the terms with 2 and 4 fields

.,k4,£d1,...,(34) and

'7k47w1)"

are the running coupling functions. In usual problems,
these functions do not depend on k and J and are called
running coupling constants. We will sometimes indi-
cate collectively all running couplings at scale h by vy.
In the process of constructing the R and £ operations
separating the irrelevant and relevant parts of the ef-
fective potentials it will become clear why we have run-
ning functions instead of running constants, why we
appended some strange factors to these functions and
why we used 2 running coupling functions A and p to
describe the 4-field interaction.

We begin now the task of defining the £ and R op-
erations. A very easy definition of fI and f® is the
one for a cluster with 6 or more external legs. As these
clusters are already convergent by power counting, then
and fff = f.

Let us now define the £ and R operations for a di-

we can define for them ff = 0

rect graph with all internal lines at frequency h. If we

use the pure power-counting prescription of Benfatto

|

and Gallavottill of taking as relevant only the local
part in position space, then we know it will work in
the sense Ei;h,+l fE is not diverging when h’ — —co,
but we also know from theorem 1 that power counting
may be treating as divergent some convergent configu-
rations. _

A good prescription should use theorem 1 and con-
tain the fact that only configurations with ' = 0 cause
divergence, but also the information that each T' # 0
configuration for a fixed I behaves as if it were relevant
while A is not small enough, i.e. 27T < Ny, and irrele-
vant when 2-"T > Ny. Physically, a configuration with
I' # 0 behaves as a Cooper pair, being thus relevant,
if the scale 2" of momenta considered is much greater
than I', passing smoothly to an irrelevant non-Cooper-
pairs configuration when 2% <« I'. We propose then to
define

== g (32)
In fact, we have ff ~ 0 and ff ~ f, if 27T < No
and f ~ f, and fL ~ 0if 27" > Ny. We show now
that this prescription does really exclude from f;lf all

divergences:
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Proposition 6 If f,fz s the renormalized form factor
of a direct graph with m vertices, all internal lines at
frequency h and root k', then, if all running couplings
are bounded by M,

0
| X <M,
h=h'+1
where C' is a constant independent of h', T and of the
graph.

Sketch of proof: In order to simplify things, take
p = pr in theorem 1, so for 0 < I' < pp we have an
improvement in the bound for f; of the form %, if
27h > Ny. If T' > pp, then, take ¢ = % and get an
improvement of at least 2% proving the proposition in
this case. Let us then concentrate on the less easy case
0<TI<pp.

Given T', let H be defined as the smallest integer
such that 2=HT < Ny. If A < H, then the factor
1— e 27" T is almost equal to 1, but we can use
the % improvement; summing it from A = —oo up to
h = H, we get %, which is O(1). If A > H, we can use
that the factor 1 — e=2~"""T is bounded by 2-(=DT
summing from A = H up to h = 0 we get again some-
thing of order 2=#T, which is again O(1). This ends
the proof.

Analogously, if f; is the form factor of an ezchange
graph in which all lines are at the same frequency A,

then we define its irrelevant part as

R = (1—e 2" Vg (33)

We are now able to explain some strange features of
(31). First of all, we define two running couplings Ay
and gy, because we want to keep separated the contri-
butions to the relevant part LV(*) coming from direct
and exchange graphs. So, A is by definition formed
from contributions of direct graphs and up from con-
tributions of exchange graphs. This separation means
that instead of having only one type of 4-line vertex in
the renormalized graphs, we now have two. Every time
we draw a graph we must also specify for each 4-line
vertex if that vertex isa A or a u.

Now the factors accompanying the vertices. As the

relevant part of the form factor fry; of a direct graph
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is L1 = ¢ "T fryq, then it is natural to define the
running coupling Ap so that the sum of all these contri-
butions is not A, but =2 "T' ;. The same for exchange
graphs.

But as we are talking of two different types of 4-line
vertices, we must now correct our renormalization pre-
scription for direct and exchange graphs to take into
account not only the two different types of vertices but
also the factors accompanying them. All our. preced-
ing estimates on direct and exchange graphs remain
correct, because the factors accompanying the A and
u functions are both less than 1, but we can improve
them in some cases.

Suppose for example that in a direct graph like
the one in Fig. 1 the vertex at the left is a A and
the other a y. Accompanying the pp function of the
right vertex we have a factor exp[—2-(*~DA]. As
we have to integrate momentum of line 5, on which
A = |k — k2| + |(k + pr)@s — (ki + pr)Ts| depends,
and as the factor containing A decreases very quickly
when A is greater than O(2"), then the effective size
of the integration region is reduced to O(2") around
k2 = kY and (ki + pr)ds = (k3 + pr)&s. We can then
gain an extra, momentum-independent, 2” factor with
respect to power counting and the graph can be con-
sidered as irrelevant and renormalized as fff = f;. An
analogous result holds for exchange graphs with some

A-vertex.

If a graph has 4 external lines, all internal lines of
the same frequency and is neither direct, nor exchange,
then, by theorem b, it is already convergent and we de-
fine f& = f, and f,f’ = 0. Of course these contribute

neither to A-, nor to p-couplings.

With all these observations we can now conclude
that the only graphs with 4 external lines and all in-
ternal lines with the same frequency that need to be
non-trivially renormalized are the direct ones in which
all vertices are A and the exchange ones in which all
vertices are p. For these graphs we use respectively
prescriptions (32) and (33).

This means that we have already shown how to
renormalize any graph with all internal lines of the same
frequency and 4 or more legs. We must still learn how

to do the same for 2-legged graphs with all lines at the
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same frequency and then how to deal with graphs hav-
ing lines of different frequencies.

By (11), the dimension of a cluster with 2 exter-
nal legs in which there is no 2-legged vertex inside (z.e.
my, = 0) is -1. It is usual in renormalization group to
define all running couplings to be dimensionless. This
means that the running coupling vp, associated to the
contribution of 2-lined graphs should be defined so that
each graph contributes to 9%y, . As the dimension of 4-
legged vertices is 0, their running couplings Ax and uj
are already dimensionless.

Of course, when we are using power counting to
bound renormalized graphs, in which vertices should
be thought of as representing not the bare constants
v but the running couplings vy, then it is necessary
to take into account the extra 2" factor accompanying
all the 2-legged vertices. That can be easily done and
the result is that the dimensions (11) of the clusters are
changed to )

b = =2+ gni, (34)

now dependent only on the number of external legs of

I

Q
| >0 ffl < cmumeref

h=h'+1
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the cluster.

Notice however that this argument is up to now
pure power counting. We showed for 4-legged clus-
ters some improvements beyond power counting which
proved that many of the configurations we thought were
relevant are indeed irrelevant. In the case of 2-legged
clusters, the (power counting) dimension -1 seems to
imply that these clusters are rele‘vant for any momen-
tum configuration. We now show easily that 2-legged
clusters are relevant only when their external momen-
tum is O(2") or smaller. More exactly, if k = (k°, k') is
the external momentum variable of a 2-legged cluster,
we define |k| = |k°|+ |k'| and the irrelevant part ff of
the form factor f3, of a 2-legged cluster is defined as

) = (1= W) gy @9)

A calculation analogous to the one in the proof of
proposition 6 now shows that prescription (35) does re-
ally work. If we define H as the smallest integer such
that 277 |k| < 1, then

1

m xrm v oh' g—h'
CmM™CI 2 2 ]k]—Q_HIkI

< CmM™ac’ 2 27 Mk

In this formula 2% is the correct dimensional fac-
tor for the sum, as it is a contribution to the 2-field
~ part in V() and the dimensionless factor 2~%'|k| of-
fers no problem, as it can be absorbed in the propaga-
tor of lines at scale k', defining an effective propagator
9if5(2 " k) = 277 |k|gn(2="'k) at that scale which
decays exponentially when k is O(2*"), just as the plain

propagator.

As a consequence of (35), the relevant part
of a graph with 2 external lines, root frequency
h — 1 and first non-trivial cluster at frequency h
is then fLi(k) = x(2~~DIk|)fs, where x(k) =
[1 - (1 — e‘lkl)zJ. It is then natural to define the run-

ning couplings v5—1 such that the sum of the contri-

butions coming from all graphs like the one considered
is 221y (2= =Dk )vp_1 (k). This explains the strange
form of the coefficient of the 2-field term in (31). As
it happened to the running couplings related to 4-field
interactions, vy, is also a function, not a constant. It
can be shown, by rotational invariance, that the v are

functions only of ¥ and not of quasimomenta &J.

In order to complete the renormalization prescrip-
tion, we now have to say how to renormalize graphs in
which there are internal lines of different frequencies.
The prescription is to begin by renormalizing the inner-
most clusters in the graphs, in which all lines have the
same frequency. Erase then these clusters and substi-

tute them for “effective” vertices with the same number
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of lines; in the resulting graph renormalize the inner-
most clusters again and continue the procedure until
you arrive at the outermost cluster. With this idea it

can be shown that all renormalized graphs are conver-

J

_ h,

~

1‘ h1/., 11’2’/3

x> -

2 N b\4
8 2
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gent.
As an example take the graph in Fig. 6, a contribu-
tion to RV(®) | generated by the tree in the same figure.

We renormalize it as follows.

R
h,
R
h B
R
k3

Figure 6. An example.

If we erase the clusters of frequencies h; and A, and substitute them for effective vertices we get the graph in

Fig. 7, which we call the graph of Fig. 6 seen at frequency hs.

.
/

2

7

8

3 3

e
AN

4

Figure 7. The graph of the previous figure seen at frequency hs.

As it is a direct graph, we may renormalize it at frequency hs as f,ﬁ =

obtained renormalizing clusters h; and hs, i.e.

fh3 = /dk7d67flﬁ(1>2}7)8) f}i(7)873)4) 2_2h3gh3(2—hsk7)§h3(2_h3k3);

with f£ = (1 - e~ 27T fy and fE = fa,.

V. The beta functional and properties of the

Fermi surface

Having renormalized our theory, now the (renormal-
ized) tree expansion gives us the running couplings at
each scale h as a perturbative series in the running cou-
plings at every preceding scale | > h, [22]. These evolu-
tion equations for the running couplings are called the

beta functional.

|

1

1
Sew(p) = ipo — e(P) * (ipo —¢(p)

2
) [Po@x@ k) + w®)]

(1—e"27"7YT) £, where f3, was

(36)

As we said at the beginning of this work, our main
concern is about normality or anomaly of the Fermi
surface. The answer to this question depends on the
behaviour of the running couplings predicted by the

beta functional, as we now explain.

From the relation between the effective potentials
and Schwinger functions, see [4] or [22], we know that

the 2-point Schwinger function is given as

(37)
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where S(>p) is the Schwinger function evaluated with
the infrared cut-off at frequency h, p is the momentum,
related to the k, & variables by the convention explained
after equation (8) and e(p) = (p2 —p%)/(2m) . The first
term in the right-hand side is the free 2-point Schwinger
function, whereas the second term is the contribution
of the interaction. In this second term there are also
two parts: the v term is the relevant part of the 2-field
term in V(® and the w term, which we do not write
explicitly, is the irrelevant part of the same 2-field term.

In order to have in the interacting case a Fermi
surface with the same thermodynamical properties as
the free case, i.e. a normal Fermi liquid, it is nec-
essary that the 2-point Schwinger function maintains
the {ipop — e(ﬁ')]‘l singularity of the free case. So, it
seems reasonable to define a normal Fermi liquid as
one in which the term with singularity proportional to
lipo — e(P)]~? in (37) vanishes. As wy(k) is the irrele-
vant part of the 2-field term in V(® then it is propor-
tional to (l — 3_2—(h—1)|k]>2, which goes quadratically
to 0 when £ — 0, causing then no singularity. The nec-
essary condition for a Fermi liquid to be normal is then
that the function Z(k) defined by

z(k) = lim [2wa(k)x@ *ORD] (38)

goes to zero when k& — 0 as [ipg —e(P)]”, withn > 1. In

particular, when k& = 0 this implies that we must have

21, (0) "5 0 (39)

® — 1
Vo=

0
+ 2 o
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Observe that this definition accounts for a possible
wave-function renormalization if it happens that n =1

above.

The counterterm vy should be thought of as a con- -
stant function vy(k) fixed from the beginning so that
the physical value of the Fermi momentum is pr. But
the natural definition of physical value of pp is the
position of the singularity in the 2-point Schwinger
function?, so that normality of the Fermi liquid depends
on the possibility of fine-tuning v such that (39) is sat-
isfied.

By standard renormalization group arguments, ver-
sions of the stable manifold theorem of Dynamical Sys-
tems, one can show existence of a unique Ag-dependent
value of vy such that v4(0) FZ28° 0. This fulfills con-
dition (39), which is part of the complete condition for
normality of the Fermi surface. The rest of the nor-
mality definition, including the possible wave function

renormalization, should then be checked a posterior:.

If we want to believe in our perturbative results,
then the other condition to be checked, necessary for
normality of the Fermt surface, is that the running cou-
plings do not grow unboundedly when h — —oo. This
1s what is called consistence of perturbation theory, to

which we now turn.

R
!

I=h+1

Figure 8. Tree expansion for V(®) to first order.

In Fig. 8 we show the renormalized tree expansion
for V(P=1) to first order in perturbation theory. As
usual, seel??l an end line of a tree attached to a fre-
quency label | means LV, In the formalism of Ben-
fatto and Gallavotti, where a R applied over a £ gives

a zero result, all the trees other than the first are null.

|

That does not happen in our formalism. As the sum
over [ in Fig. 8 is already convergent, as required for R
vertices in trees, it is natural to define the £ operation
at scale h for all the trees within that sum as 0; thus

only the first tree in the figure will contribute to the

3This is analogous to the definition of physical mass in Quantum Field Theory as the position of the pole of the 2-point Schwinger

function.



60 Brazilian Journal of Physics, vol. 27, no. 1, march, 1997

running couplings v,_;.*As a consequence, we have as the first-order beta functional

vi-1(k) = 2x(27"k|) va(k)
Mot (k1, e kg, @y, @a) = e T (k,y .. ke, By, ., Ba) (40)
pror(ks, . k@1, @)) = e A (b, ke, Dy, ., @)
From these, we see to first order that running couplings in configurations with non-zero k,I', A, respectively, are
strongly depleted to zero as b — —oo. As other terms depleting configurations with non-zero £,I', A are present
also at higher orders, it seems natural to conjecture that v, A, p for non-zero k,T', A, respectively, quickly converge to
zero as h — —oo. If this conjecture above is true, then we are left only with 14,(0), Ay at Cooper pairs configurations
and pp at forward scattering configurations to be concerned about. Of these three couplings, we already know that
it is possible to fine tune the initial value v such that vp(0) — 0. We are then left with A, and pp at Cooper pairs
and forward scattering, respectively.
At second order, the only contribution to the beta functional for the As_1 is given by the graph in Fig. 1, where
each vertex may contribute either as Ap, or as a renormalized cluster of frequency { > h, i.e. one of the trees within
the sum in Fig. 8. Accordingly, taking into account the multiplicities of the graphs and the possible soft lines, see

page 48, we have

Mo(,..,4) = e 27T, .. 4)

g2:27"T /dks dids Gu(ks,3s) An(1,2,5,6) An(5,6,3,4), (41)
where .
Gr(ks,ds) = WT%%(T%G) [gh(Q—h’%) + 292(2—%5)1 (42)
and .
Ah — /\h+ Z {(1—6—2_(1—1)F)6_2—1F/\1—|—(1-—6_2—(1_1)A)€-2_1A/l1} ) (43)
I=h+41

l

In (41) and (42), k¢ and & are functions of ks, ds A = 0 and, in this case, they will be null because of the

given by (13). factor 1 — e=27“7V4,

Equation (41) is a complicated evolution, but it L o
. . ) . Another simplification is that as A9 does not. depend
1s remarkably simplified for Cooper pairs configura- o .
on the zero components £; of the £ variables, then, for
I' = 0, it can be seen from (41} that A-1(1,3) does not

depend on kY and k3. Continuing the inductive proce-

tions. In order to simplify the notation, let us de-
fine a symbol for the A in Cooper pairs configurations:
Ar(1,3) = An(l,-1,3,-3), where —¢ means k;, —&;.

L . S dure, we have that to second order, ¢.e. evolution given
As a first simplification, the contributions to A,

by (41), the Ay in Cooper pairs do not depend on the

coming from renormalized A-vertices are null, if T' = 0. 0
_ kY variables.
We may also neglect the contributions from renormal-

ized p-vertices, because the g will be sizeable only if Another fact is that the imaginary part of the func-

40Of course that does not mean that the contribution of the remaining trees in Fig. 8 is zero. They contribute directly to the irrelevant
part of the effective potential and, at higher orders, they will also contribute to the relevant part.
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tion Gp(ks,ws) appearing in (41) is an odd function
of the variable k2. As the Aj; in Cooper pairs do not
depend on Icg, then the imaginary part of Gp{ks,ds)
integrates to zero. As the Ay are real numbers, then
this argument shows that the A_; are also real and, by
induction, the Ay in Cooper pairs are real for any value
of h. Of course the argument does not hold for configu-
rations which are not Cooper pairs. It can be seen that
this property is also easily extensible to any finite order

in perturbation theory.

We continue by noticing that for d = 2 we can ex-
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pand the Aj; in Cooper pairs in a Fourier series

i1(6,—03)

=00
[
M(L,3) = A;l(k%)ké)——\/a‘?__—a

l=—o0

(44)

where A} (ki, k3) are the Fourier coeflicients and, by ro-
tational invariance, Ap(1, 3) depends only on the differ-
ence of the angles 6y, 3 which the &’s make with some
axis. There is an analogous expansion in Legendre poly-
nomials in the case d = 3, seel¥]l| section 13, and all the
results we describe from now on remain valid also in
this case.

By Fourier expanding we can evaluate the angular
integral in (41), obtaining then that the evolution equa-

tions for the coefficients A, are diagonal in [:

Moo (k) = A () — VIR [ s Ga(ks) M (kY ) M (43, ) (45)

In order to arrive at this result, it has been used that kg
becomes independent of &y, for Cooper pairs, and then
G becomes independent of it, too, and can be taken

out of the angular integral.

This trick of Fourier expanding is very interesting,
because the complicated dependence of (41) on the 3
angles 01, 63 and 05 disappears and we have the same

evolution for any ! without ever mixing different values.

But there is more we can say. As a consequence of
the real-valuedness of Ax(1, 3) it follows that E =2
where the bar means here complex conjugation. As
Ao(1,3) is an even function of 6, then M) = /\al and, by
the evolution (45), A} = A;! for all I. This shows in
turn that A, (k},k3) is real for all 1.

As the real part of G (ks) is positive, the last result
shows, by the evolution (45), that for each set of values
Ik}, k3, we have AL _, (kT k3) < AL (ki) k3) if XL (K1, kD)
has the same sign for all values of ki, k3.

This means that if we begin with an attractive po-
tential Ag(Z — ), then all A} (k},k}) are going to be
negative and explode in the limit A — —oo. Thus,
attractive interactions cause an inconsistent perturba-

tion theory already at second order and our methods

can do no more in this case. This failure is in agree-
ment with the BCS theory of superconductivity, which
expects formation of bounded Cooper pairs even at ar-
bitrarily weak attraction. We could not hope that our
perturbative theory around the free Fermi gas could de-
scribe a superconductor, an object too different of the

Fermi gas.

On the other hand, if the interaction Ao(Z — ¥)
is repulsive, then, if we manage to prove that the
AL(k1,k3) never become negative, then they tend to
zero as h — —oo. In this case we have not only consis-
tence to second order, but also asymptotic freedom in

the infrared.

Stating it all again, we cannot solve the evolution
equations (41) for the A-couplings, yet, not even to sec-
ond order, but it can be seen that the equations for
the couplings at Cooper pairs configurations imply that
they are always real numbers and that their evolution
at-second order can be simplified by an angular momen-
tum expansion. They are also compatible with a failure
of the perturbative expansion even for arbitrarily weak
attractive potentials and asymptotic freedom for repul-

sive potentials, which by its turn is compatible with a
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normal Fermi liquid. Furthermore, it seems that the
A-couplings for all non-zero T', i.e non-Cooper pairs, go
rapidly to zero when h — —~co, as well as all g with
non-zero A and all ¥ with non-zero k.

The situation for the p-couplings with A = 0 is

|

16

6h(/‘75, ‘35) = @r—)‘ﬂ_l

has not any more a positive real part at forward scat-
tering configurations. This follows from the fact that at
these configurations we have ks = ks, instead of k} = ki
and k§ = —k2 of the Cooper pairs. As a consequence,
the evolution equations for the angular momentum co-
efficients do not have any more a clear behavior related
to the sign of the interaction potential, but that does
not rule out a bounded evolution (thus normality of the

Fermi liquid) of the pj at forward scattering.

Another important consequence of our different
renormalization procedure is that even to third and
higher orders in perturbation theory the A; and pp evo-
lutions are given respectively by direct and exchange
graphs. The simple form of these graphs implies, by
use of symmetry properties of the form factors, seell®!
section 5.4, that the diagonalization of the evolution at
Cooper pairs or forward scattering holds also to any
perturbative order. We think that this property will
be of fundamental importance when trying to analyze

further orders of the perturbative series.

At this point we can resume the discussion by not-
ing that, as all running couplings seem to flow to zero,
then it is possible that, to second order in perturbation
theory, Fermi liquids at dimensions d > 1 are normal
if the interaction potential is repulsive. This conjec-
ture means absence of the Kohn-Luttinger effect in any

dimension d > 1. It is confirmed to second order and

refuted at third in d = 2 in [18] for one particular model -

and in the Bethe-Salpeter approximation. We know yet
of no conclusive evidence either for the Kohn-Luttinger
effect, or to its absence, so the question to us is still

open.
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similar. We can show exactly the same real-valuedness
properties and diagonalization of the second order evo-
lution equations by an angular momentum expansion.
The only difference is that the function G} analogous

to the G, appearing in (45), given by

272 G, (27 ke) [gn(27"ks) + 205(27"ks)] (46)
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