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Transport Processes in Ionized Gases
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Based on kinetic theory of gases and on the combined method of Chapman-Enskog and
Grad, the laws of Ohm, Fourier and Navier-Stokes are derived for a non-relativistic fully
ionized gas. Moreover, the combined method is applied to the BGK model of the relativistic
Boltzmann equation and the Ohm's law is derived for a relativistic fully ionized gas.

I. Non-relativistic ionized gases

We may say that the objective of thermodynamics

of a non-relativistic ionized gas is the determination of

the �ve �elds of mass density %, velocity vi and temper-

ature T in all points of the uid and at all times. To

achieve this objective, we need �ve �eld equations that

are based on the balance equations of mass density %,

momentum density %vi and internal energy density %",

which read
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In the above equations Ii is the electric current den-

sity, pij the pressure tensor and qi the heat ux vec-

tor. Moreover, E?
i = Ei + (v �B)i with E denoting

the external electric �eld, B the external magnetic ux

density and � the electrical charge density. The system

of balance equations (1) is closed by considering Ii, pij,

" and qi as constitutive quantities that are related to

the values of the basic �elds in a materially dependent

manner through constitutives relations.

Here we are interested in a fully ideal ionized gas and

we shall base on the kinetic theory of gases to determine

the constitutive equations for Ii, phiji = pij �
1
3prr�ij

and qi, since in this case " and p = 1
3prr are known

functions of (%; T ). In kinetic theory of gases the state

of a fully non-relativistic ionized gas is characterized by

the set of one-particle distribution functions fa(x; c; t)

where a = E; I denotes the constituents of a mixture of

electrons and ions. The one-particle distribution func-

tion is such that f(x; ca; t)d
3xd3ca gives at time t, the

number of a particles in the volume element d3xd3ca

around the particle position x and velocity ca. The

one-particle distribution function of constituent a obeys

the Boltzmann equation:
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bab db d�d3cb: (2)

In equation (2) ea and ma denote respectively the electric charge and the mass of a particle of constituent a,

gba = cb� ca is the relative veloctiy of two particles before collision, b and � are impact parameter, and the primes

refer to after collision velocities, with f 0b denoting f(x; c0b; t) and so forth.

We characterize a macroscopic state of the ionized gas by the �elds of vi velocity of the mixture, %a partial mass

density, pahiji partial pressure deviator, Jai partial di�usion ux, and qai partial heat ux vector, which are de�ned

by

%a =

Z
mafad

3ca; with % =
IX

a=E

%a; (3)
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In the above equations % is the mass density of the mixture, vai the velocity of constituent a, k the Boltzmann

constant, Ca
i = cai � vai and �ai = cai � vi partial peculiar velocities, and we have supposed that the constituents in

the mixture are at the same temperature T .

The Grad distribution function [1] corresponding to the �elds de�ned above is:
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f (0)
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is the Maxwellian distribution function.

By applying the method of Chapman-Enskog [2] for the Grad distribution function (which is the scheme of the

combined method of Chapman-Enskog and Grad [3]), it follows an equation that relates the uxes (partial pressure

deviator, partial di�usion ux, partial heat ux vector) with the forces (gradient of velocity, gradient of temperature

and external electric �eld) that reads
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with

Iab[�a] =

Z
f (0)
a f (0)

b (�0a � �a) g
bab db d� d3cb: (10)

If we multiply equation (8) successively by ma

kT%a
�ai ,

m2
a

(kT )2%a

�
ma�

2
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2kT � 5
2

�
�ai ,

ma

kT
�ahi�

a
ji and integrate the resulting

equations over all values of �a, we get a system of linear equations for pahiji, J
a
i , q

a
i , which can be solved by inverting

second- and fourth-order tensors. The constitutive equations for the total heat ux vector qi, for the total electric

current Ii and for the pressure deviator phiji of the mixture in a linearized theory follow from:
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They read

qi = ��ij
@T

@xj
+ QijEj; Ii = �ijEj �

Q?
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; (13)

where Ei = E?
i �

mEmIT
eEmI�eImE

@
@xi

�
�E��I

T

�
is a combined electric �eld with �a denoting the chemical potential of

constituent a. Equation (12)1 represents the law of Fourier, while (12)2 the law of Ohm. In these equations �ij is

the thermal conductivity tensor, �ij is the electric conductivity tensor, while Qij, Q?
ij are coe�cients of cross e�ects.

Equation (13) is the mathematical expression of the Navier-Stokes law, with �hijihkli denoting the four-order tensor

of shear viscosity. The general expression for the second-order tensors in terms of the magnetic ux density is:

f�ij; �ij; Qij; Q
?
ijg = a1�ij + a2�ijkBk + a3BiBj ; (14)

while that for the four-order tensor reads:

�hijihkli = b1(�ik�jl + �il�jk �
2

3
�ij�kl)

+b2("jlrBr�ik + "jkrBr�il + "ilrBr�jk + "ikrBr�jl) + b3(�ikBjBl

+�ilBjBk + �jkBiBl + �jlBiBk �
4

3
�klBiBj �

4

3
�ijBkBl +

4

9
B2�ij�kl)

+b4("ikrBrBjBl + "ilrBrBjBk + "jkrBrBiBl + "jlrBrBiBk)

+b5(BiBjBkBl �
1

3
B2BiBj�kl �

1

3
B2BkBl�ij +

1

9
B4�ij�kl): (15)

In equations (14) and (15) a1 through b5 are scalar coe�cients, the expressions for these coe�cients in terms of the

collision integrals of the Boltzmann equation are given in [3]. Moreover, the following Onsager reciprocity relations

hold for the coe�cients:

�ij(B) = �ji(�B); �ij(B) = �ji(�B); (16)

Qij(B) = Q?
ji(�B) = Q?

ij(B) = Qji(�B): (17)

II. Relativistic ionized gases

The objective of thermodynamics of relativistic ionized gases is the determination of the �ve �elds of particle

four-ow N� and temperature T in all events x�. To determine the �ve �elds, we refer to the following balance

equations for the particle four-ow N� and for the energy-momentum tensor T�� :

@�N
� = 0; @�T

�� = �
1

c
F��J� ; (18)

where F�� is the electromagnetic �eld tensor and J� the charge four-vector.

Using the four-velocityU� (such that U�U� = c2) and the projector ��� = g��� 1
c2
U�U� (such that U���� = 0),

where g�� is the metric tensor with signature (1,-1,-1,-1), we introduce the following decompositions

N� = nU�; F�� =
1

c
(U�E� � U�E�) + B�� ; (19)

T�� = ph��i � (p+$)��� +
1

c2
(U�q� + U�q�) +

en

c2
U�U� : (20)

where: 8>>>>>>>><
>>>>>>>>:

n = 1
c2
N�U� - particle number density,

ph��i =
�
��

��
�
� �

1
3�

�����

�
T �� - pressure deviator,

p+$ = �1
3�

��T�� - pressure+dynamic pressure,
q� = ��

�U�T
�� - heat ux,

e = 1
nc2

U�T
��U� - internal energy per particle,

B�� = ��
�F

����
� - magnetic ux tensor,

E� = �1
c
F��U� - electric �eld.

(21)
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To close the system of balance equations (18) we have to consider ph��i, $, q� and J� as constitutive quantities

that are related to the basic �elds through constitutive equations, since for ideal gases p and e are known functions

of (n; T ).

We shall base on the kinetic theory of gases to get the constitutive equations. The state of a relativistic fully

ionized gas in kinetic theory is characterized by the set of one-particle distribution functions fa(x;pa; t) (a = E; I)

such that fa(x;pa; t)d
3x d3pa gives at time t, the number of a particles in the volume element d3x about x and

momenta in a range d3pa around pa. Here we are interested in a simple derivation of Ohm's law, and for that

purpose we write down the BGK model [4] of the Boltzmann equation for the electrons, which reads:

p�
E

@fE
@x�

�
eE
c
pE�F

�� @fE
@p�E

= �
1

�E
(fE � f (0)

E
); (22)

where �E is a relaxation time, (p�E) = (po
E
;pE) denotes the momentum four-vector for the electrons and

f (0)

E
=

nEc

4�(mEc)2K2(�E)kT
exp

�
�
p�EU�

kT

�
; �E =

mEc
2

kT
; (23)

is the Maxwell-J�uttner distribution function, with K2 = K2(�E) denoting the modi�ed Bessel function.

According to the kinetic theory of gases (see for example [5]), the electric current I� is de�ned in terms of the

di�usion ux J�a of constituent a by:

I� =
IX

a=E

eaJ
�
a ; J�

E
= �J�

I
; J�a = ��

�

Z
cp�afa

d3pa
poa

: (24)

The Grad distribution function for the constituent a by considering only the di�usion ux is given by:

fa = f (0)
a
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1 +

1
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a)

�
�(�a + 5Ga)J

�
a pa� +
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kT
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�pa�pa�

��
; (25)

where Ga = K3(�a)=K2(�a).

Now by applying the combined method of Chapman-Enskog and Grad it follows
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; (26)

where hE is the enthalpy per particle of the electrons.

If we multiply the above equation by p�
E
, integrate the resulting equation over all values of d3pE=p0E and eliminate

the time derivative of the four-velocity by the use of the balance of linear momentum of the mixture for a gas where

ph��i = 0; q� = 0 hold (which is the so-called Euler gas), i. e.

IX
a=E

manaGaDU
� = r�p+

IX
a=E

eanaE
� �

1

c
B��I� ; (27)
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we get �
eE

mEGE

�
eI

mIGI

�
E� =

"
(mInIGI)�1 + (mEnEGE)�1

�E(eE � eI)
g��

+
1

c(eE � eI)

�
eE

mEnEGE
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eI

mInIGI

�
B��

#
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In the above equations we have introduced the time derivative D = U�@�, the gradient r� = ���@� and

E� = E� +

�
eE

mEGE

�
eI

mIGI

��1� 1

mEnEGE

r�pE �
1

mInIGI

r�pI

�
: (29)

By solving equation (28) for the current four-vector, we get the mathematical expression of the relativistic Ohm's

law

I� = ���E�; (30)

where the electric conductivity tensor is given by

��� =
a

b(b2 � d2

2 B
��B��)

"�
b2 �

d2

2
B��B��

�
g�� � b dB�� � d2B��B�

�

#
: (31)

In equation (31) the coe�cients a, b and d read

a =

�
eE

mEGE

�
eI

mIGI

�
; b =

(mInIGI)�1 + (mEnEGE)�1

�E(eE � eI)
; (32)

d =
1

c(eE � eI)

�
eE

mEnEGE

+
eI

mInIGI

�
: (33)
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