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This paper describes the theoretical models and the method used in the design of the poloidal
�eld coils system for the ETE (Experimento Tokamak Esf�erico) small-aspect-ratio tokamak.
The method is illustrated with the equilibrium con�gurations obtained for ETE.

I. Introduction

As it is usually done in the design of the poloidal

�eld coils for tokamaks, the plasma cross section shape

is the given input and the coils currents and positions

are the desired output. The solution of this problem re-

quires a mixed approach, combining synthesis and anal-

ysis of diverse magnetostatic �eld sources. In the design

of the ETE tokamak, presently under construction in

our laboratory, a minimal set of coils was adopted to

attain the small-aspect-ratio plasma equilibrium con-

�guration. It consists of: (1) the plasma magnetizing

coils system, formed by the ohmic heating solenoid and

two pairs of compensation coils; (2) a pair of equilib-

rium �eld coils; and (3) a pair of elongation coils. Fig.

1 illustrates the equatorially symmetric poloidal �eld

coils system for ETE.

Since the numerical solution of the Grad-Schl�uter-

Shafranov equation, that describes the plasma equilib-

rium, is both computer time consuming and brings di�-

culties in the treatment of small-aspect-ratio con�gura-

tions, we used an extension of the semi-analytic direct

variational method [1] to solve the equilibrium equa-

tion. This method is appropriate for use in personal

computers and was implemented with the Mathemat-

ica package [2]. In the following sections we will �rstly

describe the technique used in the optimization of the

magnetizing coils system, which does not require a so-

lution of the plasma equilibrium equation, and then the

integrated design of all the poloidal �eld coils for the

required equilibria.

Figure 1. Illustration of the poloidal �eld coils system for
the ETE tokamak.

II. Magnetizing coils system

The purpose of the magnetizing coils system is to

produce the poloidal magnetic ux which is necessary to

establish the toroidal plasma current by transformer ac-

tion. During the raise of the plasma current the plasma

temperature increases as a result of ohmic heating. In

ETE a long central ohmic heating (OH) solenoid pro-

duces most of the required ux. However, for successful

initial ionization of background neutrals and in order to

avoid interference with the plasma position and shape

during the discharge, the residual magnetic �eld pro-

duced by the OH solenoid must be reduced to a min-

imum in the region where the plasma is formed and
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sustained. The creation of a region of su�ciently small

magnetic �eld near the plasma center is accomplished

by means of the two pairs of compensation coils which

constitute, with the OH solenoid, the magnetizing coils

system.

Since the compensation coils in ETE are in series

with the OH solenoid (passive compensation), the re-

duction of the error �eld can be attained only by ad-

justing the coils positions and the integer number of

windings per coil. Employing a multipole moment ex-

pansion for the magnetizing ux on the geometrical cen-

ter of the plasma cross section, we can calculate directly

the free parameters of the compensation coils that lead

to cancelation of the moments to a prescribed order

and, therefore, to a reduced error �eld near the center.

Constraints on the problem are imposed by accessibility

for diagnostics plus space and engineering limitations,

involving the size of the coils and available power sup-

plies.

The multipole expansion for the poloidal ux �M of

the magnetizing coils system on the geometrical center

R0(a) of the plasma cross-section is given by (R and Z

are the cylindrical coordinates)

�M(R;Z) = �0 +M0 +M1 +M2 + :::
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where �0 is the ux due to an ideal (in�nitely long)

ohmic solenoid. The ux due to the �nite OH solenoid

was obtained by the superposition of the ux produced

by an in�nite equivalent current sheet minus the uxes

due to two semi-in�nite current sheets that represent

the e�ect of the solenoid ends. The inner pair of com-

pensation coils was also modeled by two equivalent cur-

rent sheets while the outer pair was modeled by circu-

lar current loops. In this way the coe�cients M0, M1,

M2,... were calculated in terms of algebraic and elemen-

tary transcendental functions of the coils geometrical

parameters (with strengths proportional to the current

per turn in the system). Taking into account all the de-

sign constraints, it was found that a satisfactory com-

pensation could be obtained by cancelling M0, M1 and

M2, respectively the dipole, quadrupole and hexapole

moments in the multipole expansion (this involves op-

timizing only three of the free geometrical parameters).

Actually, higher order compensation would require an

outer pair of coils located too far from the toroidal �eld

coils and an unattainable precision in the coils posi-

tions. Fig. 2 shows the compensated ux contours on

the poloidal plane and Fig. 3 shows the correspond-

ing vertical error �eld on the equatorial plane, near the

condition of maximumux swing operation of the mag-

netizing system in ETE. Fig. 2 shows also the plasma

boundary, vacuum vessel and toroidal �eld coils out-

lines.

Figure 2. Magnetizing ux contours on the poloidal plane.
The heavy contour indicates a poloidal ux of 0.25Wb
(2�7.8MA-turns in the OH solenoid for double-swing op-
eration) with a 2% ux increment between contours. The
plasma boundary, vacuum vessel and toroidal �eld coils out-
lines are also displayed.

Figure 3. Vertical error �eld on the equatorial plane, near
the condition of maximum ux swing operation of the mag-
netizing system in ETE.
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III. Equilibrium �eld and elongation coils

The equilibrium �eld coils provide the radially in-

ward force that balances the outward force produced

by the interaction of the plasma current with its self-

�eld. The dynamics of the plasma requires that the cur-

rent in the equilibrium coils opposes and varies with the

plasma current. Similarly, the elongation coils produce

a predominantly vertical force that provides some con-

trol of the plasma cross section shape. To stretch the

plasma cross section, the currents in these coils must

run parallel to the plasma current.

In order to optimize the design of the complete set

of poloidal �eld coils, the plasma equilibrium has to be

solved both for a given boundary shape and for speci-

�ed parameters such as the plasma current, the external

toroidal induction and the peak pressure at the plasma

center. Then, the coils currents can be adjusted to �t

the vacuum poloidal ux function consistently with the

assumed plasma boundary and positions of the coils.

These positions can also be adjusted to some extent,

but are essentially determined by accessibility and en-

gineering constraints. The magnetic ux contribution

of all poloidal coils has to be taken into account in these

calculations, since there is no clear separation between

the coils contributions to equilibrium.

An approximate solution to the plasma �xed bound-

ary equilibrium problem can be e�ectively obtained us-

ing variational techniques and a spectral representation

of the ux surfaces [3][4]. Furthermore, the problem can

be greatly simpli�ed by the introduction of trial func-

tions for the spectral amplitudes, allowing the use of

direct variational methods [1]. The starting point is

given by the variational principle which states that the

internal energy of the plasma
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logical radius �,
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for �xed boundary conditions:

�(0) = �(a) = 0:

In this expression �P (�) and V (�) are, respectively, the

poloidal magnetic ux and the plasma volume enclosed

by a magnetic surface denoted by �, a is the minor

radius of the plasma, p(�) is the plasma pressure pro-

�le, and BP , BT are the poloidal and toroidal com-

ponents, respectively, of the magnetic induction (BT;0

is the external �eld contribution); I(�) is the total

poloidal current which ows through a disk centered

on the symmetry axis (the poloidal plasma current is

IP (�) = I(0) � I(�)); L(�) is the inductance of the

toroidal solenoid which coincides with a magnetic sur-

face; and K(�) is the inverse kernel to calculate the

internal inductance of the plasma loop [5][1]. The Eu-

ler equation for the functional U [�P ] leads to the equi-

librium equation (ux-surface averaged Grad-Schl�uter-

Shafranov equation) [5]
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while the integral forms of Amp�ere's law give the rela-

tions between the toroidal plasma current pro�le IT (�)

and �P (�)

IT (�) = K(�)
d�P

d�
;

and between the toroidal magnetic ux �T (�) and I(�)

d�T

d�
= I(�)

dL

d�
:

We next represent the nested magnetic surfaces by

the truncated Fourier expansions for the inverse map-

ping (�; �)! (R;Z) [6]

R(�; �) = R0(�) + �cos� � �T (�)

2
sin2�;

Z(�; �) = �E(�)

�
1� T (�)

2
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�
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where � is the poloidal angle coordinate. The Fourier

coe�cient R0(�) corresponds to the geometric centers of

the ux surfaces, E(�) to the elongation and T (�) to the

triangularity. It can be shown that the geometric coe�-

cients V (�), L(�) and K(�) of the equilibrium equation

can be calculated analytically for an arbitrary number

of terms in the spectral representation for R(�; �) and

Z(�; �), and for an arbitrary dependence of the spectral

amplitudes on �, e�ectively reducing the �xed bound-

ary equilibrium problem to a one dimensional varia-

tional problem.
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Following the approach for direct variational prob-

lems (the Ritz procedure), we introduce trial functions

for the Shafranov shift, elongation and triangularity

pro�les. The trial function for the geometric centers

of the ux surfaces has the simple parabolic form

R0(�) �= Rm � [Rm �R0(a)] (�=a)
2

and the triangularity coe�cient has a linear dependence

on �

T (�) �= T (a) (�=a) :

The elongation coe�cient is approximated by the bino-

mial form

E(�) �= Em
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which reproduces many di�erent pro�les for various val-

ues of . It was found that the results for small and

large aspect ratio tokamaks are best reproduced by val-

ues of  � 50 that do not allow large variations of the

elongation. These approximations improve previous re-

sults [1] and lead to a problem with two variational pa-

rameters, namely, the position R0(0) = Rm of the mag-

netic axis and the value E(0) = Em of the elongation

at the axis. In this way, the variational procedure con-

sists in the determination of a stationary point for the

plasma internal energy U as a function of the param-

eters Rm and Em. This semi-analytic approach allows

simple computations of all the ux surface quantities,

such as the safety factor and the macroscopic plasma

quantities related to the speci�ed pressure and current

density pro�les. In particular, the plasma equilibrium

parameters of ETE listed in Table 1 were calculated for

the pro�les
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with �p = 2 and �I = 1=2. Work in progress indi-

cates that more appropriate forms for the elongation

coe�cient can be attained, and better �ttings obtained

by the introduction of quadrangularity corrections in

the ux surfaces. These corrections must lead to con-

sistent expansions of the spectral amplitudes near the

magnetic axis when the elongation is varied.

The direct variational procedure gives an approxi-

mate global solution of the plasma �xed boundary equi-

librium problem. A further advantage in the present

problem is that the equivalent surface current density

on the plasma boundary has a simple analytic form,

suggesting a direct application of the vector analogue

of Green's theorem [7] to calculate the external �eld

for equilibrium (this is equivalent to the virtual cas-

ing principle [5]). The surface current density can be

calculated from the solution of the internal problem ac-

cording to the formula (bn denotes the normal direction

to the plasma surface)

�!
K = bn��!B (�)=�0;

which leads to the expression for the toroidal compo-

nent
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According to the Green's theorem, the internal

poloidal ux in the vacuum region (produced by the

plasma current) is given by the integral over the plasma

surface current density

�int(
�!r ) = ��0

I
KT (

�!r 0

)G(�!r ;�!r 0

)d`(�0)

and the external ux (produced by the poloidal �eld

coils) is given by the sum over the coils currents

�ext(
�!r ) = �M � �0

X
k

IkG(
�!r ;�!rk );

where G is the Green's function of the Grad-Schl�uter-

Shafranov equation (� is the toroidal angle coordinate)

G(�!r ;�!r 0

) = �
*

�RR 0����!r � �!r 0
���
+
�0

:

Finally, the total poloidal ux at the plasma edge is

given by

�P (a) = �int(
�!r (a)) + �ext(

�!r (a));
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where �P (a) is known from the solution of the �xed

boundary equilibrium problem. This explicit expres-

sion for the poloidal ux function allows the calculation

of �M and Ik by means of a least squares approxima-

tion and without any iterative procedure, simplifying

the determination of the external currents distribution

necessary to sustain the given plasma shape. In the

present paper we adopted the usual representation of

the Green's function in terms of elliptic integrals [8].

Alternatively, an expansion in terms of toroidal multi-

poles [9] can be utilized which, coupled with the spec-

tral representation for the ux surfaces, leads to an

analytic approximation of the ideal external �eld for

equilibrium. This latter approach can be used with ad-

vantage in a free boundary formulation of the plasma

equilibrium problem for magnetic reconstruction pur-

poses.

Figure 4. Vacuum ux produced by the poloidal �eld coils
in ETE.

The method briey described in the previous para-

graphs was applied to the small-aspect-ratio con�gura-

tion of ETE. The equilibrium and elongation coils were

modeled by circular current loops and the magnetiz-

ing coils system was modeled by an ideal transformer,

since the error �eld in the plasma region (according

with the calculation in Section II) is much smaller than

the vertical equilibrium �eld. In this way, the best �t

of the currents in the coils gives, besides the equilib-

rium �eld, the Ampere-turns in the magnetizing sys-

tem necessary to drive the plasma current (neglecting

the resistive losses). Fig. 4 shows the vacuum poloidal

ux contours generated by the coils and Fig. 5 shows

the equilibrium ux contours for the initial phase of

operation of ETE [10].

Figure 5. Equilibrium ux for a -220kA plasma current
in ETE. The separatrix lies between 1.1 and 1.2 times the
poloidal ux at the plasma edge.

The minimal set of coils in ETE �ts the constant

ux requirement at the plasmaboundary within�1.5%.

From Fig. 5 we verify that this error, which is larger

at the outer plasma edge, can be reduced by the intro-

duction of quadrangularity corrections in the plasma

boundary shape. This improvement will be imple-

mented in a future free boundary version of the present

model.

IV. Results

Table 1 lists the main plasma parameters deter-

mined by the direct variational solution for the ETE

tokamak equilibrium in the initial (ohmic) and ex-

tended (auxiliary heated) phases of operation. Table

2 lists the geometrical parameters and currents of the

poloidal �eld coils consistent with the plasma equilib-

ria and optimized using the method described in this

paper.
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Plasma parameter Initial operation Extended operation
Major radius R0(a) [m] 0:30 0:30
Minor radius a [m] 0:20 0:20
Elongation �(a) 1:6 1:8
Triangularity �(a) 0:3 0:3
External toroidal induction B0 [T] 0:4 < 0:8
Toroidal plasma current IT (a) [kA] 220 440
Pressure on the magnetic axis p(0) [kPa] 8 80
Internal inductance `i 0:57 0:53
Current diamagnetism �I 0:47 0:16
Current beta �I 0:20 0:55
Plasma beta � 0:036 0:092
Toroidal beta �T;0 0:047 0:118
Safety factor on the magnetic axis q(0) 0:98 0:98
Safety factor at the plasma edge q(a) 5:55 7:04

Table 1: Parameters of the ETE tokamak equilibrium con�gurations. The extended operation lists maximum

parameters that can be attained with auxiliary heating and near the Troyon and Greenwald limits.

Coil denomination R [m] Z [m] �R [m] �Z [m] NR� NZ I �N [kA-turns]
Ohmic Heating Solenoid 0:0725 0 0:021 1:300 2� 130 3640 (6760)
Internal Compensation Coils 0:1025 �0:707 0:021 0:100 2� 10 280 (520)
External Compensation Coils 0:650 �0:871 0:010 0:020 1� 2 28 (52)
Equilibrium Coils 0:700 �0:390 0:040 0:040 4� 4 90 (202)
Elongation Coils 0:200 �0:830 0:040 0:040 4� 4 �24 (�299)

Table 2: Geometrical parameters and currents of the poloidal �eld coils in ETE. The values of the currents in

parenthesis correspond to preliminary results for the extended operation.
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