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We �nd exact analytical expressions for mixing angles in matter in the context of three gen-
eration neutrino oscillations in matter to discuss the role of resonances in this phenomenon.
We show that some knowledge from conventional two neutrino MSW e�ect, which has been
extended to approximated solutions to three neutrino oscillations, has to be abandoned in
this exact approach. We observe that maximal values for the mixing angles in matter are
found in nonresonant regions and stationary phases do not coincide anymore with resonances
in this simple extension of the MSW e�ect. We present a general way to identify a resonance
and discuss what we can physically expect in these regions.

I. Introduction

Resonant regions are previleged zones for neutrino

conversion. Concerning solar neutrinos, the importance

of a resonance can be appreciated remenbering that the

standard MSW solution to the solar neutrino problem

requires values for the mixing angle in vacuum � and

for the squared mass di�erence � = m2
2�m2

1 such that

sin22� < 10�3 and �sin22� � 10�8 eV2 [1] which im-

ply a resonance in the neutrino trajectory inside the

sun when the approximately exponentially decreasing

standard solar matter distribution is assumed [2]. This

is the so-called nonadiabatic solution to the solar neu-

trino problem and the role of the resonance is evident

in such situation once that it is well known that the adi-

abaticity parameter [3] presents its smallest values in a

resonance region, which imply that neutrino transitions

are less adiabatic in that region.

Resonances in two family MSW e�ect [3, 5] are as-

sociated with maximum mixing between the two a-

vor eigenstates. This can be appreciated investigat-

ing the behavior of the matter mixing angle when the

relevant matter density varies along the neutrino tra-

jectory. The mixing angle in matter ~� is introduced

as the parameter that characterizes a rotation of the

two-dimensional neutrino space from the basis of the

current eigenstates (�e; ��) to the basis of the physical

eigenstates (�1; �2):

�1(t) = �e(t)cos~�(t) � ��(t)sin~�(t);

�2(t) = �e(t)sin~�(t) + ��(t)cos~�(t):
(1)

It can be calculated [4]:

sin22~�(t) =
sin22�h

2E
p
2GFNe(t)
� � cos2�

i2
+ sin22�

; (2)

where E is the neutrino energy and GFNe(t) is the

consequence of electron neutrino coherent forward scat-

tering from electrons in matter, the number density of

which at the region reached by neutrinos at instant t is

Ne(t).

From Eq. (2) it is possible to see that ~� is substan-

tially modi�ed by the neutrino coherent scattering from
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the medium. If Ne(t) ! 0, ~� ! � and we recover

vacuum expressions. When Ne(t) is extremely large,

~� ! �=2 and �1 ! ��� while �2 ! �e. An interesting

intermediate case occurs when

Ne(t) =
1

2
p
2GF

�

E
cos2� (3)

and the brackets in the denominator of Eq. (2) van-

ishes. In this point the mixing of avor eigenstates is

maximal, i.e., from Eq. (1) we see that the probabil-

ity of �nding an electron or a muon neutrino in any

of the mass eigenstates is 1/2. This feature has been

used to characterize a resonance: the maximum of the

bell-shaped sin22~� �Ne graph indicates a resonance.

The resonance condition given by Eq. (3) coincides

also with the position where the di�erence of the two

squared matter eigenvalues of the corresponding time

evolution matrix in matter ~m2
2 � ~m2

1 is a minimum,

suggesting that the resonance is the region where tran-

sitions between matter eigenstates are most likely to

happen.

Finally, it was noticed in reference [6] that the res-

onance condition (3) coincides also with the condition

of existence of a stationary phase [7] in the two neu-

trino time evolution equations. Such fact allows to in-

vestigate the evolution of this neutrino system around

a resonance calculating, through the stationary phase

method [7], the related Green function. Employing this

method it was possible to evaluate [8] the level crossing

probability, i.e., the probability of nonadiabatic tran-

sitions between matter eigenstates �1 and �2 as an al-

ternative approach to Landau-Zener [9] or Petcov [10]

methods.

In this paper we investigate how is the behavior of

mixing angles in matter and how to identify a reso-

nance in the context of a three neutrino system oscil-

lating in matter. We assume standard electroweak in-

teractions of neutrinos with matter as well as nonvan-

ishing vacuum mixing angles and nondegenerated mass

eigenstates (in vacuum). Therefore we are analysing

the simplest extension of the conventional MSW e�ect

[3, 5] to the case where three families are present. We

verify that the above mentioned three criteria usually

used to de�ne a resonance in two neutrino matter oscil-

lations, namely, maximalmixing angles in matter, min-

imal eigenvalue di�erence and the presence of a station-

ary phase, do not lead anymore to the same region in

the neutrino trajectory. Note also that these same cri-

teria have been used in approximated solutions to three

neutrino oscillations in matter [11, 12]. Consequently

some of them have to be abandoned. We present, there-

fore, based on exact analytical expressions for mixing

angles in matter, how we can use our previous knowl-

edge coming from two neutrino matter oscillations to

arrive to a solid condition de�ning resonances in three

neutrino oscillations and, therefore, an accurate ana-

lytical description of the physical consequences around

such regions.

II. Analytical solution

A general time evolution equation describing a three

level system can be written as an equation for a three-

component spinor �(t) � (�1;�2;�3):

i
d

dt
�(t) = h(t)�(t); (4)

where the hamiltonian h(t) is a 3 � 3 matrix which

elements are speci�ed according to the dynamical situ-

ation from which a boundary condition �(to) is given.

A general solution of Eq. (4) can be written in the the

form

�(t) = Exp

�
�i
Z t

t0

h(t0)dt0
�
�(to); (5)

where the symbol Exp represents a sum of multiple

time ordered integrals [13].

For a time-independent hamiltonian, the solution

of Eq. (4) can be obtained by means of the Laplace

transformation. Introducing the Laplace transformed

	(p) = L [�(t)], then

p	(p)� �(to) = �ih	(p) (6)

and

�(t) = L�1
�
(p1 + ih)�1

�
�(to): (7)

The solution �(t) depends on the elements of the h ma-

trix and on the roots �i (i � 1; 2; 3) of the characteristic

polynomial of the h matrix

det [p1+ ih] = 0: (8)
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In the particular case we are interested in, where a

three neutrino system oscillates in matter, interacting

with it through standard electroweak interactions, the

h matrix is given by

h =
1

2E

�
UM2U�1 +A

�
; (9)

where M2 is a diagonal matrix given by

(M2)ij = m2
i �ij ; (10)

m2
i are the three neutrino squared mass eigenvalues in

vacuum,

U = ei �7�ei��5ei!�2 (11)

is the 3� 3 mixing matrix where �i are the Gell-Mann

matrices,  ; � and ! are the mixing angles in vacuum

and � is a matrix containing complex phases that we

will ignore since we assume CP conservation (� � 1):

Since we consider here only standard neutrino in-

teractions with ordinary matter, A matrix has its �rst

element A11 given by

A11 = 2
p
2GFNeE (12)

and all others are zero. Note that neutral current con-

tributions to A are proportional to the unit matrix, giv-

ing only irrelevant overall phases to the �nal solution

of Eq. (4). GF , E and Ne were previously introduced.

For neutrino propagating in vacuum, A = 0, and

the solution of Eq. (4) is trivial and simply given by

�(t) = Um2U�1�(to); (13)

where m2 is a diagonal matrix with elements

(m2)ij = exp

�
�i t

2E
m2
i

�
�ij : (14)

The solution of Eq. (4) in matter, with A being

a time-dependent matrix, is given by Eq. (5) and it

depends on the speci�c Ne function describing the elec-

tron density. However, when A can be considered a

constant matrix, as it is supposed in the adiabatic ap-

proximation, Eq. (4) has an exact analytical solution,

obtained by Laplace transformation. Furthermore, the

A matrix is invariant under a ei �7 rotation, then, in-

troducing now

	(t) = e�i �7�(t); (15)

we observe that 	(t) satis�es the following di�erential

equation

d

dt
	(t) = �iH	(t); (16)

with boundary condition 	(to) = e�i �7�(to) and

H =
1

2E

�
ei��5ei!�2M2e�i��5e�i!�2 +A

�
; (17)

which can be explicitly written as

c

H =
1

4E

0
@ �cos2�+ 2m2

3sin
2�+ 2A �sin2!cos� (m2

3 � �
2 )sin2�

�sin2!cos� �+ �cos2! ��sin2!sin�
(m2

3 � �
2 )sin2� ��sin2!sin� �sin2�+ 2m2

3cos
2�

1
A (18)

where � = m2
2 �m2

1, �1 = m2
2 +m2

1 � 2m2
3, � = m2

2 +m2
1 and � = ���cos2!.

On the Laplace space we have

	(p) = [p1+ iH]�1	(to): (19)

To calculate 	(t) we have to obtain the roots of the characteristic polynomial of the matrixH, det [p1+ iH] = 0;

which are given by [14]

�1 =
m2
1 +m2

2 +m2
3 + A

6E
� 1

E

r
�Q
3

cos
�

3
; (20)

�2 =
m2
1 +m2

2 +m2
3 + A

6E
+

1

2E

r
�Q
3

cos
�

3
� 1

2E

p
�Qsin�

3
; (21)
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�3 =
m2
1 +m2

2 +m2
3 + A

6E
+

1

2E

r
�Q
3

cos
�

3
+

1

2E

p
�Qsin�

3
; (22)

where

� = arccos
�R

2
q

�Q3

27

; (23)

Q =
�1

(2E)2

�
�2

4
+

�2
1

12
+
A2

3
� A�cos2�cos2!

2
+
�1A(cos2�� 2sin2�)

6

�
(24)

and

R = � 1

27(2E)3

�
�3
1

4
� 2A3 � 9�2�1

4
+

3�2
1A(cos

2�� 2sin2�)

4

�
+

� 1

27(2E)3

�
9

2
A2�cos2�cos2! � 9

4
A�2(cos2�� 2sin2�)

�
+

� 1

27(2E)3

�
9

2
�1A�cos

2�cos2! � 3

2
A2�1(cos

2�� 2sin2�)

�
: (25)

Note now that in vacuum we have

�v1 =
m2
3

2E
; �v2 =

m2
1

2E
and �v3 =

m2
2

2E
; (26)

and the Laplace anti-transformation of Eq. (19) reproduces the corresponding solution given by Eq. (13). The

roots �i of the characteristic polynomial are the squared mass eigenvalues in matter. Because of the arbitrariness

in the choice of the order of the roots, we use the above vacuum limit to order the roots in terms of the squared

mass eigenvalues in the matter. We de�ne:

�1 =
~m2
3

2E
; �2 =

~m2
1

2E
and �3 =

~m2
2

2E
: (27)

Finally, we can write the solution of Eq. (4) in terms of a T transition matrix such that

�(t) = ei �7Te�i �7�(t0); (28)

where the elements of the T matrix, given in terms of the �i roots and of the elements of the H matrix, can be

written as:

i) diagonal elements:

Tii =
3X

m=1

Cm
�
(�m �Hjj)(�m �Hkk)�H2

jk

�
e�i�mt; (29)

ii) non diagonal elements (Tij = Tji):

Tij =
3X

m=1

Cm [Hij(�m �Hkk) �HikHjk] e
�i�mt; (30)

where

Cm = [(�m � �`)(�m � �n)]
�1 (31)

with m 6= ` 6= n and n; `; n � (1; 2; 3):

d
Note also that all well known results for a two neu-

trino system oscillating in matter can be straightfor-

wardly obtained from the solution given by Eq. (28).

III. Mixing angles in matter

It is well known that the knowledge of the mixing
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angles in matter is important to study resonant tran-

sitions between avor neutrino states [4]. In order to

explicitly write an exact expression for these angles, we

de�ne ~ ; ~� and ~! as the mixing angles in the matter.

We can write therefore the �nal solution of Eq. (4) in

terms of mixing angles in matter in analogy with what

we did in the vacuum case, Eq.(13), using now the �-

nal solution given by Eq. (28). This solution can be

written in the following way

�(t) = U ( ~ ; ~�; ~!)M2
mU

�1( ~ ; ~�; ~!)�(t0) (32)

where

(M2
m)ij = exp[�it�i]�ij (33)

and

U ( ~ ; ~�; ~!) = ei
~ �7ei

~��5ei~!�2 : (34)

In order to get the matter mixing angles we sim-

ply compare Eq. (32) with Eq. (28), and after some

algebra, we obtain

c

sin2 ~� =
�21 � (H22 +H33)�1 +H22H33�H2

23

(�1 � �2)(�1 � �3)
; (35)

tan2 ~! =
[�23 � (H22 +H33)�3 +H22H33 �H2

23](�1 � �2)

[�22� (H22 +H33)�2 +H22H33�H2
23](�3 � �1)

(36)

and

tan ~ =
(H12�1 +H13H23 �H12H33)cos + (H13�1 +H12H23 �H22H13)sin 

(H13�1 +H12H23 �H22H13)cos � (H12�1 +H13H23 �H12H33)sin 
: (37)

d
IV. Analysis of the results

Similar results for the mixing angles in matter were

found in Ref. [15]. Note however that Eqs. (35)-(37)

are general and exact. Furthermore their physical con-

sequences have never been completely analysed. Based

on these equations, we show in the following that some

knowledge from conventional two neutrino MSW e�ect,

which has been extended to approximated solutions to

three neutrino oscillations, has to be abandoned in this

exact approach. We observe that maximal values for

the mixing angles in matter are found in nonresonant

regions and stationary phases do not coincide anymore

with resonances in this simple extension of the MSW

e�ect. We present a general way to identify a resonance

and discuss what we can physically expect in these re-

gions.

In Fig. 1 it is presented a comparison of the behav-

ior of the quadratic matter eigenvalues ~m2
i and the rel-

evant matter mixing angles ~! and ~� as a function of the

parameter A for specially chosen values of vacuum pa-

rameters (see the corresponding caption for details. A is

given in units of m2
1). There are two resonances clearly

indicated by the minimumdi�erence between the shown

quadratic masses. We observe that ~! presents a max-

imum value in the lower resonance (where ~m2
2 � ~m2

1 is

minimum) while ~� shows a maximum in the region of

the higher resonance ( ~m2
3� ~m2

2 is a minimum). Interest-

ing enough, di�erently from what is expected in the two

avor neutrino oscillations in matter, the conventional

MSW e�ect, and also from what was found in previous

approximated analyses of the three neutrino oscillations

[11, 12], a second peak for the mixing angle ~! is found

after the higher resonance [16]. In Fig. 2 we show the

same graphs presented in Fig. 1 to evidenced this unex-

pected behavior of the mixing angle ~! for larger values

of A. It is clear from this �gure that the criterion of

de�ning a resonance by means of localizing the maxi-

mal mixing angle in matter, which can be safely used in

two neutrino conventional MSW e�ect, leads to some

ambiguity in the context of three neutrino oscillations

and therefore has to be abandoned.

Instead, we can improve this criterion analysing the

content of Figs. 3 and 4. Note that the admixture of

avor eigenstates in each of the matter eigenstates can
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be obtained through ~�i =
P
� Ui���, where i = 1; 2; 3,

� = e; �; � and Ui� is given by Eq. (11). Let us write

now, as an example, the linear combination of avor

eigenstates in the �rst matter eigenstates:

~�1 = cos~�cos~!�e + cos~�sin~!�� + sin~��� : (38)

Figure 1. Squared matter eingenvalues ~m2

i and the relevant
matter mixing angles ~! and ~� as a function of the param-
eter A are presented. The values of the parameters �;!;

and m2

i in vacuum: m2

3 = 5m2

2 = 25m2

1; sin
2� = 5 � 10�4;

sin2!cos2� = 5� 10�2 were chosen in order to well demon-
strate the behavior of these parameters as a function of A.
The eingenvalues ~mi and the quantity A are given in units
of m2

1.

In Figs. 3 and 4 we show therefore the coe�cients

of this admixture (values of the vacuum parameters are

shown in the corresponding captions). From Fig. 3 we

observe that in the lower resonance the mixing of elec-

tronic and muonic avor eigenstates is maximal (when

cos ~�cos~! = cos~�sin~!), while, from Fig. 4, we see that

the higher resonance coincides with the maximum ad-

mixture of �� and �� , when cos ~�sin~! = sin~�.

Figure 2. Mixing angles ~! and ~� as a function of the A for
larger values of A. The parameters �;!; and m2

i are the
same as that of the Fig. 1.

Therefore, although we detected maxima of the mix-

ing angles in matter in regions far from resonances, it

is still possible to identify a resonance region searching

for maximal mixing between avor eigenstates. Note

also that such maximum are not anymore related with

values of
p
2=2 for avor coe�cients jUi�j in the way it

happened in the conventional MSW phenomenon. This

is because there could be nonnegligible contributions

from the avor eigenstate that does not participate in

the resonant process. From the unitarity of the mix-

ing matrix, we know that ~Uiej2 + j ~Ui�j2 + j~Ui� j2 = 1,

for i = 1; 2; 3. Therefore, in the case where i = 1
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and j ~U1� j is not vanishing, the maximal mixing is

such that j ~U1ej = j ~U1�j <
p
2=2. A similar situa-

tion occurs for the higher resonance where we obtain

j ~U1�j = j~U1� j <
p
2=2. We can say that in three neu-

trino oscillation phenomenon the mixing between avor

eigenstate around a resonant region is as maximal as

possible, although not in the same way as in two neu-

trino oscillations, where maximummixing implies that

each one of the neutrino avor eigenstate participat-

ing in the resonant process contributes with 50% to the

matter eigenstates.

Figure 3. The squared mass di�erence ~m2

2 � ~m2

1 , and
the quantities cos~�sin~! and cos ~�cos~! quantities are pre-
sented as a function of the energy of neutrinos. The val-
ues of the parameters �;! and m2

i in vacuum are: m2

3 =
1:445�10�4eV 2;m2

2 = 10�8eV2;m2

1 = 0; sin2� = 5�10�4;
sin2! = 0:050025: The squared masses are given in units of
m2

2:

A �nal issue to be discussed is the criterion of iden-

tifying a resonance looking for a stationary phase in the

neutrino evolution equations (4), in the same way it was

proposed in reference [6] in the context of two neutrino

MSW e�ect. A stationary phase is given by the smallest

di�erence of any two diagonal elements of the relevant

evolution matrix when one of these elements is time

dependent. As an example, we quote solar neutrinos

where the matter density considerably varies along the

neutrino trajectory from the center of the sun, where

neutrinos are created, to the solar surface. Although

in two neutrino oscillations this criterion can be safely

used, it does not work anymore in the presently anal-

ysed three neutrino MSW e�ect. Stationary phases do

not coincide with the minimum squared mass di�er-

ences or maximum avor admixture.

Figure 4. The squared mass di�erence ~m2

3 � ~m2

2 , the e�ec-
tive cos~�sin~! and sin~� quantities are presented as a function
of the energy of neutrinos. The values of the parameters �,
! and m2

i in vacuum are the same ones used to draw Fig. 3.

Note however that it is still possible to use the sta-

tionary phase method to calculate level crossing prob-

abilities in the three neutrino oscillations. Making con-

venient SU(3) transformations on the evolution matrix

(9) it is possible to conciliate resonances and stationary

phases. This is because resonances are invariant under

similarity transformations, while stationary phases do

not. Therefore the matrix

H1 = e�i��5Hei��5 (39)
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presents a stationary phase for the minimum of H1
11 �

H1
22 coinciding with the minimum of the squared mass

di�erence ~m2
2 � ~m2

1, and it can be used to calculate

the level crossing probability [8] around the lower reso-

nance. To obtain the correct stationary phase to anal-

yse the higher resonance, we rotate the evolution matrix

given in Eq. (4) in the following way:

H = e�i �7hei �7 (40)

Now the minimum of the di�erence H33 � H11 indi-

cates a stationary phase which now coincides with the

required resonance.

V. Conclusions

Resonances represent a crucial region in the time

evolution of neutrinos oscillating in matter. They are

closely related with the nonadiabatic character of the

oscillation. We investigated a general criterion to de-

�ne a resonant region when three neutrino are present

in the oscillation phenomenon. We observed that two

of the three commonly employed criteria to identify a

resonance in two neutrino oscillations are not valid any-

more in its simplest extension to three neutrino MSW

e�ect. For instance, mixing angles can present maxi-

mal values far from resonant regions and therefore this

criterion to de�ne a resonance has to be abandoned.

Furthermore, stationary phases do not necessarily coin-

cides with resonant regions. The safest way to identify

such resonance regions is to investigate the behavior of

the squared matter eigenvalue di�erences, looking for

their minimum values.
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