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The in
uence of viscoelastic properties in sound propagation is analyzed. A generalization of
Oldroyd viscoelastic model for incompressible solutions is made for the case of compressible

uids, introducing viscoelastic e�ects in normal stresses. This generalized model allows
us to obtain an integro-di�erential equation for the small oscillations of pressure in the
sound wave. The dispersion relations obtained from this equation are valid in any range of
frequency and contain as particular case results reported in the literature.

I. Introduction

Viscoelastic models are interesting because they �t

quite well the data found in experiments of many poly-

meric 
uids. The simplest model that accounts for

viscoelastic properties is the so-called Maxwell model

in which only pure viscoelastic e�ects are included [1].

An extension of Maxwell model that allows to �t data

of many polymeric solutions was introduced by Ol-

droyd [2]. This model is made by the superposition

of a Maxwell component and a Newtonian one. More

complex models have been proposed in order to ob-

tain frame invariant equations [3,4]. These models ac-

count for the viscoelastic behavior of incompressible


uids. They have been successfully used in problems

where only shear stresses are important, such as: 
ow

through tubes [5,6], 
ow trough porous media [7], shear

waves [4], convection [8,9], and so on. In this paper we

deal with the propagation of sound waves in viscoelas-

tic media, and include the in
uence of the viscoelas-

tic properties in normal stresses. An extension of the

Oldroyd model to the case of compressible solutions

is made in section II. With this generalized model an

integro-di�erential equation for the small oscillations of

pressure in the sound wave is obtained in section III.

The dispersion relations derived from this equation are

analyzed in section IV.

II. Oldroyd model for compressible solutions

The relation between stress and deformation is the

so-called constitutive equation, whose determination in

complex 
uids (polymers, etc.) is the main object of

rheology. A viscoelastic model which describes quite

well the behavior of polymeric solutions is the Oldroyd

model. In this model the equation of motion can be

written as [4]

�d�=dt = �rp+ �Sr
2� +r � � : (2:1)

where � is the liquid density, �S is the solvent viscosity

characterizing the purely viscous (Newtonian) compo-

nent of the stress, and � is the viscoelastic extra stress

tensor. Here

d=dt = @=@t + (� � r) (2:2)

is the total or substantial time derivative and � = �(r; t)

is the velocity in the point r of the 
uid at time t.

In the Oldroyd model the viscoelastic extra stress

tensor is given by the following tensorial generalization

of the Maxwell model [4]

� + �1��=�t = 2�1D ; (2:3)
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where D is the deformation rate tensor de�ned as

D = (r� +r�T)=2 ; (2:4)

(2.4) and �1, �1 are the shear relaxation time and vis-

cosity, respectively. The symbol T indicates transposi-

tion. Then D is the symmetric part of the tensor r�.

�=�t is a di�erential operator which is introduced in

order to obtain a frame invariant constitutive equation

[4]. This operator is not unique, it can be written in

the following general form

��=�t = d�=dt�W� + �W + a(D� + �D) ; (2:5)

where W is the antisimetric part of the tensor r�; i.e.

W = (r� �r�T)=2; (2:6)

and a is a parameter. The cases a = 1 and a = �1 cor-

responds with the lower and upper convected invariant

derivatives, respectively, and the case a = 0 with the

corrotational rate.

Besides, since in the Oldroyd model the 
uid is con-

sidered incompressible [4] then the continuity equation

is given by

TrD = r � � = 0 (2:7)

which consequently implies, from Eq. (2.3), that Tr� =

0 for t� �1.

In order to introduce viscoelastic e�ects in normal

stresses this model is generalized as follows. We will as-

sume that Tr� also satis�es Eq. (2.3), but with �2 and

�2 as the relaxation time and the viscosity associated

to normal stresses, i.e.

Tr� + �2dTr�=dt = 2�2 TrD; (2:8)

Here we have used the total derivative instead of the

di�erential operator �=�t because the quantity Tr� is a

scalar.

On the other hand, if the 
uid is compressible the

continuity equation is now given by

d�=dt+r � �� = 0; (2:9)

where the density variations were considered.

The system of equations (2.1, 2.3, 2.8, 2.9) is com-

pleted by the equation of state

p = p(�; x) (2:10)

where x may be the temperature or the entropy. If


uctuations of 
uid variables like pressure, density and

velocity have large periods then the process will takes

place under thermal equilibrium and the temperature T

may be considered constant. In this case a convenient

choice is x = T . On the other hand, if they have a very

short period the process may be considered adiabatic

and, therefore, isoentropic. Now the best choice will be

x = s, s being the entropy. In both cases it is obtained

that

p � p(�) (2:11)

that is, the pressure depends only on liquid density.

Notice that Eq. (2.11) is valid only in these limit

cases. In the general case the 
uctuations of x, the

temperature for instance, must be taken into account

introducing the heat conduction equation. However, in

this paper, heat conduction e�ects are neglected and

only viscoalestic processes are considered.

III. Equation for the small oscillations of pres-

sure

The equations presented in the previous section can

be linearized when �, p and � perform small oscillations

around the equilibriumvalues �0, p0 and 0, respectively.

If T and L are the characteristic time and length of

temporal and spatial variations, respectively, and l the

mean displacement of the 
uid particles in the sound

wave, then

j@�=@tj � l=T 2 ; (3:1)

j� � r�j � l2=T 2L ; (3:2)

jj@�=@tjj � jj� jj=T ; (3:3)

jj�r�jj � jj� jjl=TL ; (3:4)

where jj jj is some norm of second rank tensors.

Thus, if l � L, from these relations and Eqs. (2.2)

and (2.5), we have

d=dt = @=@t ; (3:5)

@=@t = @=@t ; (3:6)
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In this approximation the equation of motion is reduced

to

�0@�=@t = �rp+ �Sr
2� +r � � : (3:7)

and the equations for shear (2.3) and normal (2.8) stress

are now �rst order linear di�erential equations. The

integration of this equations leads to the linear consti-

tutive relation

c

� =

Z
1

0

ds

�
2G(s)D(t� s) +

�
K(s) �

2

3
G(s)

�
ITrD(t� s)

�
; (3:8)

d

where I is the identity tensor, and

G(t) = (�1=�1) exp(�t=�1); (3:9)

K(t) = (�2=�2) exp(�t=�2); (3:10)

are the shear and normal stress relaxation functions,

respectively.

Besides, the continuity (2.9) and state (2.11) equa-

tions have, in the linear approximation, the form

@�=@t + �0r � � = 0 ; (3:11)

@�=@t = (Kx=�0)@�=@t ; (3:12)

where Kx = �0(@p=@�)x is the compressibility modulus

at constant x.

Now, eliminating � ,D, � and � from equations (2.4,

3.7, 3.8, 3.11, 3.12) one obtains

�0
@2p

@t2
= Kxr

2p+�s
@

@t
r2p+

Z
1

0

dsM (s)
@

@t
r2(p(t�s);

(3:13)

where

M (s) = K(s) + 4G(s)=3 (3:14)

is the relaxation function of longitudinal stresses. The

�rst term in (3.13) is due to the compressibility of the

solution at equilibrium, the second one to the Newto-

nian component of the solvent, and the last one to the

viscoelastic e�ects in the longitudinal stress, which has

some component of shear and normal stresses. In the

next section we are going to study the in
uence of these

three terms in the dispersion relations.

IV. Dispersion relations

In order to analyze the frequency dependence of the

absorption coe�cient and the sound velocity a plane

harmonic wave is proposed, i.e. the pressure has the

form

p = p0 + A exp[i(k � r+ !t)]; (4:1)

where A is the amplitude of the oscillations around p0;

and ! is the cyclic frequency. k, the module of the wave

vector, is related to the absorption coe�cient � and the

sound velocity V through the equation

k = !=V + i� : (4:2)

Substitution of (4.1) into the equation for the small os-

cillations of pressure (3.13), gives

V =

s
2

�0

M2(!) + !2�2(!)p
M2(!) + !2�2(!) +M2(!)

; (4:3)

� = !

s
�0
2

M2(!) + !2�2(!) �M2(!)

M2(!) + !2�2(!)
; (4:4)

Here

M (!) = K0 +
�2
�2

!2�22
1 + !2�2

2

+
4�1
3�1

!2�21
1 + !2�2

1

(4:5)

and

�(!) = ns +
�2

1 + !2�2
2

+
4�1=3

1 + !2�2
1

(4:6)

are the frequency dependent longitudinal modulus and

viscosity respectively.

Frequently, shear and normal relaxation times are

approximately equal. From now on we will assume

�1 � �2 = �. In this approximation the longitudinal

modulus (4.5) and viscosity (4.6) are reduced to

M (!) = K0 +
�0�s
�

!2�2

1 + !2�2
; (4:8)

�(!) = �s +
�0 � �s
1 + !2�2

; (4:9)



382 O. Sotolongo et al.

where

�0 = �s + �2 + 4�1=3 (4:10)

is the static longitudinal viscosity.

For low frequencies, !� � 1, M (!) � K0 and

�(!) � �0. So, for frequencies such that K0 � !�0

from (4.3) and (4.4) it is obtained

V 2

0
= K0=�0 ; (4:11)

�0 = !2�0=2�0V
3

0
; (4:12)

which are the expressions for a viscous compressible


uid [11].

At low frequencies the polymer solution behaves like

a viscous compressible 
uid with compressibility modu-

lus K0 and a longitudinal viscosity �0, given by (4.10).

In this case the only in
uence of the added polymer

phase is to increase the viscosity of the solution.

On the other hand, for high frequencies, !� � 1;

M (!) � K0 + (�0 � �s)=� and �(!) �= �s. So, for fre-

quencies such that K0 + (�0 � �s)=�� !�s from (4.3)

and (4.4) it is obtained

V1 =

r
2!�s
�0

; (4:13)

�1 =

r
�0!

2�s
; (4:14)

which corresponds to the behavior of a viscous incom-

pressible 
uid at high frequencies [11,12]. At high fre-

quencies the added polymer does not exert any in
u-

ence on the behavior of the solution. The sound prop-

agation is determined by the solvent viscosity �s:

At intermediate frequencies, when !� � 1, the lon-

gitudinal modulus and viscosity are frequency depen-

dent through Eqs. (4.5) and (4.6), respectively. This is

a consequence of viscoelastic e�ects. At low frequencies

the contribution of the polymer is Newtonian accord-

ing to Eq. (4.6), at high frequencies elastic according

to (4.5), and at intermediate frequencies it will be a

mixture of both limiting cases. In this region it is nec-

essary to use the general expressions (4.3) and (4.4)

for the sound velocity and the absorption coe�cient,

respectively.

V. Conclusions

The propagation of small amplitude sound waves

in an Oldroyd compressible 
uid was analyzed. The

Oldroyd model for incompressible solutions was gener-

alized to the case of compressible ones, by including

viscoelastic e�ects in normal stress through Eq. (2.8).

This paper is original in this aspect.

In the linear approximation the model leads to an

integro-di�erential equation for the small amplitude os-

cillations of pressure in the sound wave. Three funda-

mental factors are included: the compressibility of the

solution, the Newtonian component due to the solvent,

and the viscoelastic contribution due to the polymer,

characterized by the relaxation function of longitudinal

stress, Eq. (3.12).

The obtained dispersion relations are valid in any

range of frequency, which give a great generality to our

results. They are given by Eq. (4.3) for the sound ve-

locity and (4.4) for the absorption coe�cient. These

expressions contain two important limiting cases, at

low frequencies the solution behaves like a viscous com-

pressible 
uid with compressibilityK0 and longitudinal

viscosity �0, and at high frequencies the behavior of the

solution is determined by the Newtonian viscosity of the

solvent �s.
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