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The nuclear reaction rate formula used in stellar evolution calculation is carefully examined.
A uniform expansion is performed up to fourth order in the relevant physical parameter.
The convergence of the series is assessed and a semianalytical expression is derived, valid
for all values of the expansion parameter. The formulae with electron screening and plasma
dissipative collision e�ects are also evaluated. The agreement of the approximate analytical
formulae with the exact result is excellent over a wide range of values of the parameters.

I. Introduction

To obtain the rate of nuclear energy production in

the stellar interior one integrates the nuclear reaction

cross section over the thermal distribution of nuclei.

Closed expressions for the rate formula are desirable

for speedy calculation of the stellar evolution and el-

ement abundances. It is a common practice to ob-

tain these expressions within the Gaussian approxima-

tion [1]. Recently, Anderson, Haubold and Mathai [2]

have developed a series expansion of the rate integrals

using the gamma function and complex integration. In

this paper we develop a new type of series based on

a judicious choice of Gaussian mapping and using the

method of uniform approximation. The series we obtain

are rapidly convergent and avoid several of the singu-

larities encountered in [2]. Further, the di�erent terms

in the series are explicitly given in terms of the param-

eters of the integral (electron screening energy, Gamow

energy, etc.).

Our results are certainly relevant for the calculation

of the rate of the reaction 12C (�; )16O ! in massive

stars with M = 25M� (T = 2:108K). This last reaction

is known to be dominated by nearby above-threshold

and sub-threshold resonances making the astrophysical

S-factor deviate considerably from a second order ex-

pansion in energy. It is known that the rate of this

reaction, which dominates the scenario of the evolution

of a massive star into a type II supernova, should be

known to better than 20% [1]. Thus more precise ana-

lytical closed formulae are welcome here.

The paper is organized as follows. In Section II the

reaction rate formula for bare nuclei are calculated to

fourth-order in the Gamow energy. The e�ect of elec-

tron screening and plasma collision loss are then con-

sidered and the corresponding integrals are evaluated in

Section III. Finally in Section V we discuss our result in

connection with the rates of several reactions and give

some concluding ramarks.

II. II. Expressions for the thermonuclear reac-

tion rate formula

The reaction rate formula is given by

c

R12 = 4�N1N2

� �m
2� kT

�3=2 Z 1

0

�(E) v3 e�
E
kT dv (1)

�Supported in part by the CNPq.
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where Ni is the number density of nucleus i, �m is the reduced mass of the two-nucleus system, kT is the thermal

energy and v is the relative velocity. Changing variables from v to E through v � p2�mE , and using the usual

low-energy form of the cross section,

�(E) =
S(E)

E

1

exp(2��)� 1
� S(E)

E
e�2�� ; (2)

where � � Z1 Z2 e
2

~v is the Sommerfeld parameter, we have, with x � E
kT

R12 = 2N1N2

�
2

� �m kT

�3=2 Z 1

0

S(x kT ) e
�
�
x+ a

x1=2

�
dx

a �
�
2�m
kT

�1=2
� Z1 Z2 e

2

~
:

(3)

For non-resonant reactions, S(E) is slowly varying and may be expanded

S(E) = S(0) +
dS(0)

dE
xkT +

1

2

d2 S(0)

dE2
x2 k2T 2 + � � � : (4)

Therefore Eq. (3) may be written as

R12 = 2N1N2

�
2

� �m kT

�1=2 �
S(0) f0(a) +

dS(0)

dE
kT f1(a) +

1

2

d2 S(0)

dE2
(kT )2 f2(a)

�
; (5)

where the functions fn(a) are de�ned by

fn(a) =

Z 1

0

xn exp
�
�x� a

x1=2

�
dx : (6)

Setting y � xn+1, we can rewrite (6) as

fn(a) =
1

n+ 1

Z 1

0

dy exp

"
�y 1

n+1 � a

y
1

2(n+1)

#

� 1

n+ 1
I1(n; a) : (7)

Thus an exact series representation of R12 is

R12 = 2N1N2

�
2

� �m kT

�1=2 1X
n=0

1

n+ 1

�
dn S

dEn

�
E=0

I1(n; a) : (8)

In the following, we develop the uniform series for fn(a). For this purpose we recall some known facts about the

uniform expansion of integrals of the general form [3],

I1(n; a) =

Z
e�H(un) du (9)

where Hn(u) is given by

Hn(u) = u
1

n+1 � a=u
1

2(n+1) ; (10)

which has an extremum at un =
�
a
2

� 2(n+1)
3 . Introducing the mapping

Hn(u) = Fn(0) + t2 (11)

where t = 0 correspondents to Hn(un) � Fn(0) with un being the position of the extremum, given above, we can

now write

I1(n; a) = e�H(un)

Z 1

�1

�
du

dt

�
e�t

2

dt : (12)
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Expanding du
dt in powers of t and integrating, we �nd

I1(n; a) = 2

�
�

2H2(un)

�1=2

e�H(un)
1X
i=0

Q
(n)
2i ; (13)

where the �rst four terms in the sum are

Q0 = 1

Q1 =
1

24H3
2

�
5H2

3 � 3H2H4

	

Q4 =
1

1152H6
2

�
385H4

3 � 630H2H
2
3 H4 + 105H2

2 H
2
4 + 168H2

2 H3H5 � 24H3
2H6

	

Q6 =
1

414720H6
2

�
425425H6

3 � 1126125H2H
4
3 H4 + 675675H2

2H
2
3 H

2
4

�51975H3
2H

3
4 + 360360H3

2H
3
3 H5 � 249480H3

2H3H4H5 (14)

+13608H4
2H

2
5 � 83160H3

2 H
2
3 H6 + 22680H4

2H4H6

+12960H4
2H3H7 � 1080H5

2H8

	
;

where Hj =
���dj Hduj

���
u=nn

. From Eq. (10), we then �nd

Q0 = 1

Q2 =
1

12�

�
12n2 + 18n+ 5

�
(15)

Q4 =
1

2!(12)2 �2
�
144n4 + 336n3 + 84n2 � 144n� 35

�

Q6 =
1

3!(12)3 �3
�
1728n6 + 4320n5 � 4320n4� 13320n3� 288n2 + 6210n+ 665

�
The integral of Eq. (6) can now be evaluated straightforwardly using the above formulae. The functions f0(a); f1(a)

and f2(a) are then easily found, up to the fourth order term,

f0(a) =
2

3
(�� )1=2 e��

�
1 +

5

12�
� 35

2!(12)2 �2
+

665

3!(12)3 �3

�

f1(a) =
2

3
(�� )1=2 e��

�

3

�
1 +

35

12�
+

385

2!(12)2 �2
� 5005

3!(12)3 �3

�
(16)

f2(a) =
2

3
(�� )1=2 e��

��
3

�2 �
1 +

89

12�
+

5005

2!(12)2 �2
+

85085

3!(12)3 �3

�

where

� � 3x0 = 3
E0

kT
= 3

�a
2

�2=3
= 42:54

�
Z2
1 Z

2
2

A1A2

A1 +A2

�1=3
T
�1=3
6 ; (17)

where E0 is the Gamow energy.

d

In Fig. 1 we show the relative error of (16) in com-

parison with the exact numerical result. It is clear that

(16) is an excellent approximation.

The expression for f0(a) up to the third term has

been evaluated by Salpeter [4] and is quoted in text-

books [1]. The �rst term in f1(a) was calculated by
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Bahcall [5]. The other terms in f0 and f1 and the

function f2(a) are new results. We feel that f1 and

f2 (and possibly other integrals) may be important for

stellar evolution calculation involving nuclear reactions

near threshold when S(E) would have signi�cant en-

ergy variation.

Figure 1. The relative error de�ned as jfn; exact(�) �
fn;Eq: (16)(�)j=fn; exact(�) vs. � . The small oscillations are
numerical uncertainty in the evaluation of fn; exact(�).

In order to assess the convergence of the series in

(6), we consider the complex solutions of the equation

that determines the position of the maximum in the

integrand of Eq. (6). The following discussion applies

to any n. We therefore consider the case n = 0. The

extremum condition reads

d

du

�
u+

a

u1=2

�
= 0 : (18)

We �nd one real solution, which was used previously in

evaluating the integral, x0 =
�
a
2

�2=3
, and two complex

conjugate solutions given by

u�1 = �u0
 
1

2
� i

p
3

2

!
: (19)

The function, H(u), acquires the following values at u0
and u�1

H(u0) = 3u0 � � (20)

H(u�1 ) = �e� i �3 � : (21)

The radius of convergence is measured by [3]

r � ��H(u�1 ) �H(u0)
�� = p3 � : (22)

Thus, the series is convergent up to the term of order

n � p
3 � , which is usually large for typical values of

the parameters � (say, 10). Recent work of Berry [6],

shows how to estimate the rest of the series starting at

the
p
3 � 'th term.

Figure 2. The integral I1(n; a) vs. a. The upper curve
is that exact result which is reproduced with our formula.
The lower curve in the result of Ref. [2].

In Fig. 2 we show the result of our calculation of

I1, for S = S(0), based on Equation (13), taking up to

the fourth order terms in f0(a), compared to the ex-

act numerical integration result (di�cult to distinguish

from the approximate one)for a wide range of value of

� . The lower curve in the �gure is the result of Ref. [2].

It is clear that our procedure is quite accurate.

III. E�ect of electron screening and plasma dis-

sipation

We turn now to the more realistic case that in-

cludes the e�ect of electron screening. This e�ect can

be taken into account by a shift in the energy of the

fusing nucleus, Ec:m: ! Ec:m:+Ue when Ue is roughly

given by Z1 Z2 e
2

Ra
, with Ra being the atomic radius.

The shielded nuclei clearly feel a lower Coulomb barrier

when they fuse, which is equivalent to the energy shift

above. The value of Ue varies with the system. For

p+ p, Ue � 29 eV, when as for �+12C, Ue = 2:07 keV.
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With screening, the thermonuclear reaction rate in-

tegral becomes (using the rotation of Ref. [2])

I3(n; a; t) =

Z 1

0
xn e

�x� ap
x+t dx ; (23)

where t � Ue
kT . The evaluation of (23) proceeds in

manner similar to that used for I1 albeit with a dif-

ferent mapping procedure. The details can be found in

Appendix I. The �nal result which we quote here is

I3(n; a; t) = et
nX

r=0

tn�r (�)r n!

(n� r)!r!
I 03(r; a; t)

where

I03(r; a; t) �
Z 1

t

yr e
�y� ap

y dy

= I1(r; a)
erfc(�t)

2
+
e��

2
t

2

1X
n=0

bn
(2)n

:(24)

In the above, erfc is the complementary error function

and

�t = �
p
F (t)� F (y0)

In Appendix I we give explicit forms of the �rst two co-

e�cients, b0 and b1. Note that �t = +
p
F (t)� F (y0)

if t > y0 =
�
a
2

�2=3
whereas �t = �

p
F (t)� F (y0) for

t < y0. Further, in the limit of no screening t = 0 and

�t = �1, which gives the desired check of Eq.(24)

I03(r; a; t) �!
t!0

I1(r; a)

The above form for I3 is calculated for n = 0 , up to

second order in the series of Eq. (24). The result is com-

pared with the exact (again not distinguishable) result

in Fig. 3. Also shown is the lowest order approximation

which is given by

c

I3 ' 2
��
3

�1=2
et
�a
2

�2=3
exp

�
�3
�a
2

�2=3���a
2

�2=3
� t

�n
(25)

d

From Fig. 3 we see clearly that by performing the inte-

gral using the uniform approximation and keeping only

the �rst two leading terms one approaches very closely

the exact result. The rough estimate of Eq. (25), di-

verges at t � �a2�2=3 .
Before ending this section we mention that dissi-

pative collision processes in the stellar plasma result

in a cut o� of the high energy part of the Maxwell-

Boltzamann distribution at a certain high energy Ed =

kTd . This means that the integral I1 , is modi�ed to

I2(n; a; d) =

Z d

0

nn e�x e�
ap
x dx (26)

The above integral is easily related to I1 , and I03
through

I2(n; a; d) = I1(n; a)� I03(n; a; d) (27)

or

I2(n; a; d) = I1(r; a)
erf(�d)

2
�e

��2d

2

1X
m=0

bm
(2)m

; (28)

where erf is the error function.

Figure 3. The integral I3(n; a; t) vs. a and t. See text
for details. The asymptotic result is shown as the broken
(lower) line. The upper full curve is the exact and our re-
sults including b0 and b1 . They are practically indistin-
guishable. The result with b0 only is the lower curve.
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IV. Discussion and conclusions

The mehod of calculation developed here allows a

fast computation of the thermonuclear reaction rate us-

ing analytical formulae and a simple way of estimating

the relative error when compared to the exact numer-

ical calculation of the integral. Further, our method

may allow a way of treating the wide resonance cases

encountered in, e.g., the 12c(�; )160 reaction in mas-

sive stars.

We �rst consider two reactions of great impor-

tance to the solar neutrino problem and the super-

nova event: p + p ! d + e+ + � (T6 = 15) and
3He + 4He ! 7Be +  (T6 = 5000) In the �rst re-

action the Gamow energy E0
kT = �

3 = 4:584 which gives

for a = 2
�
E0

kT

�3=2
= 19:63 , while the calculated S-

factor is given by [1]

c

S(E) =

�
4:07
3:8

�
� 10�22 (keV barn) + 4:52� 10�24 (barn) �E

The Q-value is 1:44 MeV.

In the second reaction, the Gamow energy is E0

kT
= �=3 = 14:15 and then a = 106:455 while the measured

S-factor in [1]

S(E) =

�
0:53
0:54

�
(keV barn) � 3:1� 10�4 (barn) �E

d
We have used our approximate formulae for the non-

resonant reaction rate, Eq. (5) with f0(a) and f1(a)

given by Eq. (16).

The values we obtain for the rate R12 are 1:1995 �
10�43cm3=s and 8:81� 10�35cm3=s respectively. It is

instructive to measure the relative error from Fig. 1.

For the p + p reaction, a = 19:63 and f0(19:63) =

5:101� 10�6 and f1(19:63) = 2:758� 10�5 . The rel-

ative error in f0 is (� = 13:691) about 8 � 10�6 ,

whereae in f1 it is 2 � 10�4 , quite small. In the
3He +4 He reaction, a = 106:455 and f0(106:455) =

2:85�10�18; f1(106:455) = 4:7�10�17 . The relative er-
ror in f0 is (� = 42:45) is 10�6 and f1 it is 2�10�5 ,

again quite small. The great accuracy of our approx-

imate formulae may be of value in the solar neutrino

problem [7] where it is expected that better accuracy

with which S(0); S0(0) and S00(0) are extracted from

the data will be attained in the future.

A more stringest test of our formulae is supplied to

the so-called wide resonance case such as the one en-

countered in the 17C(�; )160 reaction in massive stars.

Here the S-factor deviates considerably from the poly-

nomial of Eq. (4). In fact the measurement [8] shows

that over the energy range 1:3 < Ec:m:(MeV ) < 3:5

the S-factor has a Lorentzian shape. When extrapo-

lated to the relevant astrophysical energy (Gamow en-

ergy) of 0:3 KeV (T9 = 0:1 � 0:2 ) using, reasonable

theory, the �nal resulting S-factor has the shape of a

Lorentzian peaked at Ec:m: = 2:4 MeV which sits on

a background that has the shape of a Gaussian e�bE
2

.

The Gaussian background can be handeled using the

method of consecutive mappings while the Lorentzian

can be evaluated using the method of residues. We

leave full discussion of this problem to a future work.

c

Appendix | asymptotic series of the integral I3 =

Z
yn e�y e�a(y+t)

�1=2
dy

Although the value of the screening energy, t, relevant for stellar calculation is small compared t the Gamow

energy, it is still useful to �nd an analytical form for I3 (n; a; t) which is valid for a large range of values of t. The

result for I3 which we derived and discussed in Section,

I3(n; a; t) = I1(n; a)
erfc(�t)

2
+
e��

2
t

2

1X
m=0

bm
(2)m

�t = �
p
F (t)� F (y0) (A.1)
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is derived in this Appendix. The sum
1P

m=0

bm
(2)m is rapidly convergent. In fact the result shown in Fig. (3) was

obtained with only the �rst two terms.

The integral we wish to calculate is

I3(n; a; t) =

Z 1

0

xn exp

�
�x� ap

x+ t

�
dx : (A:2)

A change of variable y � x+ t renders I3 into

I3 = et
Z 1

t

(y � t)n e
�y� ap

y dy

= et
nX

r=0

tn�r (�)r n!

(n� r)!r!

Z 1

t

yr e
�y� ap

y dy : (A.3)

Thus what is needed is the calculation of

I03(r; a; t) �
Z 1

t

yr e
�y� ap

y dy : (A:4)

As was done in the calculation of I1 we introduce the following mapping

F (y) � y +
ap
y
= F (y0) + �2

where
dF

dy

����
y0

= 0 =) y0 =
�a
2

�2=3
and F (y0) = 3y0. Then

I03(r; a; t) = e�3y0
Z 1

�t

yr
�
dy

d�

�
e��

2

d� :

Let us call the function yr dy
d�
� G0(�). We introduce now another mapping

G0(�) = a0 + b0 � + � g1(�) (A:5)

with g1(�t) = 0. As we show below, explicit knowledge of the function g1(�) is not required. With (A.9 ) we have

I03(r; a; t) = e�3y0
�
a0

erfc(�t)

2
+
b0
2
e��

2
t +

1

2

Z 1

�t

g01(�) e
��2 d�

�
; (A:6)

where an integration by parts has been carried out which allowed writing the last term in its present form. By

repeated application of the mapping and integration by parts one can generate the series, vis

g01(�) = a1 + b1 � + � g2(�)

g02(�) = a2 + b2 � + � g3(�)

...

with g2(�t) = g3(�t) = � � � = 0 .

Thus

I 03(r; a; t) = e�3y0
�
(a0 + a1 + a2 + � � �) erfc(�t)

2
+

1

2

�
b0 +

b1
2
+
b2
22

+ � � �
�
e��

2
t

�
: (A:7)

Clearly in the limit t = 0; �t = �1 and the above function becomes

I03(r; a; 0) = e�3y0(a0 + a1 + a2 + � � �) ;
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which is nothing but I1(r; a). Accordingly we obtain Eq. (24). Now we turn for the calculation of the coe�cients

a0; a1; : : : and b0; b1; : : : .

Clearly

a0 = G
(0)
0 (0) = yn0

�
dy

d�

�
y=y0

an =
G
(n)
0

2
= 2n

Q2n

�n
a0 (A.8)

... (A.9)

and

b0 =
G
(0)
0 (�t) � a0

�t

b1 =
g
(1)
1 (�t)� a1

�t
=

G
(1)
0 (�t)� b0 � a1 �t

�2t

b2 =
g
(1)
2 (�t)� a2

�t
=

G
(2)
0 (�t)� 2(a1 + b1 �t) � �t b1 � �2t a2

�3t

...

where G(n) = dnG=d�n which can be calculated from the de�ning relations

G0 � yr
dy

d�
(A:10)

and

F (y) = y +
ap
y
= 3y0 + �2 :

For example, to evaluate a0; a1; b0 and b1 one needs to know G(0)(0); G(0)(�t); G
(1)
0 (�t) and G(2)(0). Then

G
(0)
0 = yr

dy

d�

G
(1)
0 = r yr�1

�
dy

d�

�2
+ yr

d2y

d�2

G
(2)
0 = r(r � 1)

�
dy

d�

�3
yr�2 + 3r yr�1

d2y

d�2
dy

d�
+ yr

d3y

d�3
: (A.11)

The derivatives
�
dy
d�

�n
can be obtained from F (y) . Since

���dFdy ���
y0

= 0 by de�nition, we have

�
dy

d�

�
�=0

=

vuuut 2

d2F

dy2

����
y0

=

r
2y0
3

dy

d�

����
�t

=
2�t
dF

dy

����
t

=
2�t

1� a=2

t3=2

=
2(�)pF (t)� F (0)

1� a=2

t3=2
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d2y

d�2

����
0

=

� d3F

dy3

����
0

�
dy

d�

�2

0

3
d2F

dy2

����
0

=
5

9

d2y

d�2

����
�t

=

2� d2F

dy2

����
�t

�
dy2

d�

�2
�t�

dF

dy

�
�t

=

2� 3

2

�y0
t

�3=2 1

t

�
dy

d�

�2

�

1� 9=2

t3=2

(A.12)

d3y

d�3

����
0

= �
6
d3F

dy3

����
y0

�
dy

d�

�2

0

d2y

d�2

����
0

+
d4F

dy4

����
y0

�
dy

d�

�4
0

+ 3
d2F

dy2

����
y0

�
d2y

d�2

�2

4
d2F

dy2

����
y0

dy

d�

����
0

=
5

27

r
3

2y0

d3y

d�3

����
�t

= �

d3F

dy3

����
t

�
dy

d�

�3

�t

+ 3
d2F

dy2

����
t

dy

d�

����
�t

d2y

d�2

����
�t

dF

dy

����
�t

:

In the above equations, dnF
dyn are given by

dF

dy
= 1 � a=2

y3=2
= 1�

�
y0
y

�3=2

and
dnF

dyn
= (�)n (2n� 1)!!

2n�1
(y0=y)3=2

yn�1
; n � 2 : (A:13)

The above formulae were employed in the derivation of the series expansion for I1(n; a) (Section II) and

I2(n; a; d) and I3(n; a; t) (Section III).
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