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The structure of in�nite nuclear matter is studied with two of the Zimanyi - Moszkowski
(ZM) models in the framework of a relativistic approximation which takes into account
Hartree terms and beyond and is compared with the results which come out of the relativistic
Hartree - Fock approach in the linear Walecka model. The simple treatment applied to these
models can be used in substitution to the more complicated Dirac - Brueckner - Hartree -
Fock method to perform future calculations in �nite nuclei.

Conventional many- body calculations which do not

consider mesonic degrees of freedom are not reliable for

the study of nuclear matter where high densities are

present. For these purposes, a relativistic calculation

must be performed. Quantum chromodynamics (QCD)

is the fundamental theory of the strong interaction and

hence it should explain possible modi�cations of hadron

properties in the nuclear medium. However, typical

nuclear phenomena at intermediate and low energies

cannot be analitically derived from QCD although one

hopes that QCD will be solved numerically on the lat-

tice in a near future. Meanwhile we are left with the

construction of phenomenological models in order to

try to describe nuclear phenomena and bulk properties.

Walecka and collaborators used such a kind of theory

for the �rst time around 1974 to describe the nucleon -

nucleon interaction [1]. Since then the Walecka model

[2] has been widely used to describe the properties of

nuclear matter as well as some properties of �nite nu-

clei. This model is based on a phenomenological treat-

ment of the hadronic degrees of freedom and, because of

this fact, it is also known as QHD-I (quantum hadrody-

namics), which consists in a renormalizable relativistic

quantum �eld theory. The early version of this model

considers a scalar (�) meson �eld and a vector (!) me-

son �eld coupled to the baryonic (nucleon) �eld. Be-

sides the relativistic mean �eld calculation, the Walecka

model has also been used in a more complete treatment,

the relativistic Hartree- Fock approximation [2], [3], [4].

Some of the drawbacks of the model are that the

e�ective nucleon mass obtained at high densities is too

small and its incompressibility at the energy density

saturation is too large. To avoid this problem, Zimanyi

and Moszkowski [5] introduced an alternative coupling

between the scalar meson and the nucleon (which is

a scalar derivative coupling) and another coupling be-

tween the scalar and vector mesons. The inclusion of

these couplings renders the model non renormalizable.

We should stress that a microscopic foundation for

derivative scalar coupling models has been derived from

the relativistic SU (6) model [6]. It has already been in-
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vestigated, in a mean- �eld approximation [7],[8], how

this derivative coupling Zimanyi - Moszkowski (ZM)

model di�ers from the usual Walecka model when the

e�ective nucleon mass, the energy density, the incom-

pressibility and other important features are calculated.

To try to solve the above mentioned drawbacks of

the Walecka model, more sophisticated treatments have

also been developed. Boguta and Bodmer [9] intro-

duced two non - linear terms (cubic and quartic terms in

the scalar �eld) to the original Walecka Lagrangian and

obtained more reasonable results for the compression

modulus and the e�ective mass at the saturation den-

sity. In their work they used the semi - classical Thomas

- Fermi approximation and showed that it is equivalent

to the quantal mean �eld approximation. Another work

[10] refers to a relativistic Hartree - Fock approximation

in a non - linear Walecka model for nuclear matter and

�nite nuclei which considers �, !, � and � mesons. In

this work, the non linear character of the Hamiltonian

makes the calculation of the exchange contributions to

the energy rather complicated, which required an ap-

proximation for the calculation of the Fock - like terms,

where the � - meson mass was considered to be momen-

tum independent. Even though, the inclusion of the ex-

change terms and the isovector mesons (�, �) turned out

to be important for the description of the energy and

the incompressibility in nuclear matter and of the spin -

orbit interaction. Another successful treatment utilizes

the so called Relativistic Dirac-Brueckner-Hartree-Fock

method (RDBHF ) [11]. In this case the coupling con-

stants for the sigma and omega mesons become density

dependent and they actually decrease with increasing

energy. The computational e�ort also increases con-

siderably since self - consistency for the self energies is

obtained by considering di�erent coupling constants at

each density. Nevertheless this sort of calculation has

proved very good when applied to �nite nuclei [12] and

the authors concluded that Fock terms are small but

important and should not be neglected. The di�cul-

ties of the original Walecka model and the way they are

corrected in the nonlinear treatment is also discussed in

[13], where the incompressibility and the nucleon e�ec-

tive mass are obtained consistently with the required

description of spin- orbit splittings and nuclear defor-

mation.

It is important to stress that the ZM models also

belong to the category of descriptions involving density-

dependent coupling constants [8]. The description un-

derlying the approach known as relativistic density-

dependent Hartree-Fock [14] reproduces �nite nuclei

and nuclear matter saturation properties using coupling

constants that are �tted, at each density value, to the

RDBHF self- energy terms. The good agreement ob-

tained for the ground state properties of spherical nu-

clei lends support to this sort of description involving

density dependent coupling constants. Recently, a �-

nite nuclei calculation has been performed with the ZM

models and the energy levels and ground-state proper-

ties of the 16O, 40Ca, 48Ca, 90Zr and 208Pb are in good

agreement with the experimental results [15]. One of

the main conclusions of this analysis is that a modi-

�ed version of the model, refered in this paper as ZM3

model, produces better results than the original ZM

model regarding the energy splitting of levels due to

the spin-orbit interaction.

The ZM model has also been studied in a semi- clas-

sical approximation [16] and its results were compared

with the non linear Walecka model suggested in [9]. In

contrast to the non linear Walecka model, the non lin-

earity in the ZM model does not introduce extra free

parameters.

In the present work, we propose an alternative way

of considering in a very simple manner direct and ex-

change terms in the in�nite nuclear matter to obtain the

properties of the ZM models mentioned above and com-

pare them with the results which come out of the rel-

ativistic Hartree - Fock approximation for the Walecka

model. We would like to point out that, to our knowl-

edge, no complete quantum Hartree Fock calculation

has been performed in a non linear relativistic model,

although many works with quantum MFT (constant

scalar and vector meson �elds) or Thomas - Fermi ap-

proximation can be found yielding good results for nu-

clear matter bulk properties and/or �nite nuclei (see

some of the references already mentioned above).

In the recent literature three di�erent possibilities

have been considered for the coupling of the nucleon

with the mesons in the Zimanyi - Moszkowski (ZM)

model (for a review, check ref. [7]). In this letter we

consider two of them. The �rst one is known as the

original ZM model and the second one has been cho-
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sen because is the one which gives better results for the

nuclear matter in the mean �eld approximation and

we call it ZM3 (to be consistent with the de�nition in

other published material). To start with, we write the

Lagrangian density for the ZM and ZM3 models respec-

tively as [5]:

Lzm = � � M + (m�

zm)
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where

m�

zm = (1 +
gs�

M
)�1 (3)

and  , � and V � are �eld amplitudes for the nucleon,

the scalar-isoscalar meson, the vector-isoscalar meson,

F�� = @�V � � @�V � and M is the bare nucleon mass.

Notice that these derivative coupled Lagrangians are

Lorentz invariant, but they are not renormalizable. The

physical meaning of this modi�ed couplings is that the

kinetic fermionic term describes the motion of a parti-

cle with an e�ective massM� instead of the bare mass

M present in the conventional Walecka model.

In ref. [5], a rescaled Lagrangian is obtained from

the above equations, with the rescaling of the fermion

wave function as  ! p
m�

zm in eqs.(1) and (2) and

the rescaling of the �eld V� as V� ! m�

zmV� in eq.(2)
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where, for the Walecka model � = 0, � = 0, for ZM

� = 0, � = 1 and for ZM3 � = 2, � = 1.

In a very simple description of the ZM and ZM3

models they can be viewed as models with non-linear

e�ective scalar coupling constants g�s and g�v in such

a way that the new Lagrangians and related quantities

can be obtained simply by substituting the old coupling

constants in the Walecka model by the new ones [8],i.e.:

Lzm = LWalecka(gs ! g�s )

and

Lzm3 = LWalecka(gs ! g�s ; gv ! g�v);

where g�s = m�

zm � gs and g�v = m�

zm � gv. Instead of the

above substitutions, which can be cumbersome to be

carried out in the self energy expressions, we utilize a

new prescription which introduces modi�cations in the

meson masses only [18]:

Lzm = LWalecka(ms ! m�

s) (5)

and

Lzm3 = LWalecka(ms ! m�

s;mv ! m�

v); (6)

with m�

s = ms=m
�

w and m�

v = mv=m
�

w, where, in this

case,

m�

w = 1� gs�

M
: (7)

The above prescription is exact only in the mean �eld

approximation. In this work we apply this equivalence

directly in the expressions obtained from the Walecka

model, creating an e�ective model out of the ZM3 and

the Walecka models.

In the Walecka model the relativistic Hartree-Fock

equations [3],[4] are obtained by using Dyson's equa-

tion to sum to all orders the self-consistent tadpole and

exchange contributions to the baryon propagator

G(k) = G0(k) + G0(k)�(k)G(k); (8)

where � is the proper self-energy. Because of transla-

tional and rotational invariances in the rest frame of

in�nite nuclear matter and the assumed invariance un-

der parity and time reversal, the self-energy may be

written as [3],[17]

�(k) = �s(k)� 0�
0(k) + ~ �~k�v(k): (9)
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Coupled integral equations are then solved for the

self-energies in the so-called Dirac-Hartree-Fock ap-

proximation [3]. In this approximation just the contri-

butions from real nucleons in the Fermi sea are kept in

the baryon propagators. The e�ects of virtual nucleons

and anti-nucleons on the medium are neglected [2], [3].

The nucleon propagator reads G(k) = GF (k) +GD(k),

where

GF (k) =
1

6k� �M�(k) + i�
(10)

is the part which has to be taken into account if vac-

uum contributions are to be considered. In the Walecka

model exchange contributions from the Dirac sea can

be calculated at the two - loop level and they give bet-

ter results when form factors (or vertex corrections)

are considered [19], [20]. In this case renormalization

is, of course, necessary. For renormalizable models the

optimized � - expansion is also a possibility for calcu-

lating vacuum contributions. Direct terms are easily

computed but the inclusion of exchange terms requires

a lengthy and cumbersome calculation [21]. In the ZM

model, which is not renormalizable, a 'cut-o�' would

be required with the introduction of a renormalization

prescription and this could raise controversial discus-

sions. Hence, to avoid this technical di�culties and

bearing in mind that we are looking for a method sim-

pler than the DBHF, we have decided to leave vacuum

contributions out of this calculation. Notice that vac-

uum e�ects would just add a small contribution to our

results and they may be incorporated in the adjustment

of the coupling constants.

The baryon propagator in a Fermi sea with Fermi

momentum kF is written as (the nuclear density is

�B = 2k3F=3�
2)

GD(k) = (�k
�� +M�(k))

�i

E�(k)
�(k0 �E(k))�(kF � j~kj); (11)

where

k�� = k� +��(k) =
�
k0 + �0(k); ~k(1 + �v(k))

�
; (12)

E�(k) =

q
(~k�)2 +M�(k)2 (13)

M�(k) = M +�s(k); (14)

and E(k) is the single-particle energy, which is the so-

lution of the transcendental equation

E(k) = [E�(k) ��0(k)]k0=E(k) : (15)

Performing the q0 and angular integrals in the expres-

sions for the various components �s, �0, �v of the self-

energy, three coupled nonlinear integral equations are

then obtained. For the Walecka model, the equations

for the self - energies are given in ref. [2], (pg. 131) and

we do not reproduce them here. In the ZM model the

very same steps are performed in order to obtain these

three components of the self energy, with the exception

that we have included an approximation. This approx-

imation amounts to considering m�, de�ned in eq. (7),

as a function only of the momentum, i.e.,

m�

w(k) =
M�(k)

M
: (16)

In MFT, the above expression is exact, since �s =

�gs�. Because of this approximation the Hartree terms

are exactly calculated, but the Fock ones are somewhat

approximated as in ref. [10]. The exact calculation

would imply in considering m� as a function of the �eld

operator � and this is complicated. However, we still

have an improvement on the Hartree calculation with

the introduction of the exchange terms, albeit it is done

in an approximate way, which amounts in considering

the most important part of the exchange graphs, as in

the chain approximation. The nonlinear integral equa-

tions for the ZM3 model are the same expressions as

obtained in the Walecka model with the following mod-

i�cations:

1.) All ms are substituted by m�

s and all mv are

substituted by m�

v;

2.) As a consequence of 1.), the functions �i(k; q)

and �i(k; q) are modi�ed because of their dependence

on Ai(k; q), which becomes

Ai(k; q) = ~k2 + ~q2 +m�

i
2 � [E(q)�E(k)]2 ; (17)

where i = � or v.
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For the ZM model just the modi�cations related

to the mass of the sigma meson are carried out. All

self-energies are evaluated at the self-consistent single-

particle energies, q0 = E(q) and the equations for �s,

�0 and �v are solved by a direct iteration procedure.

We choose to normalize the model parameters us-

ing the bulk binding energy and saturation density of

nuclear matter as usual. As normally done in calcula-

tions with the Walecka model, we identify the vector

meson with the ! whose mass is mv = 783 MeV and

set ms = 550 MeV for the scalar meson mass. For the

nucleon mass we take M = 939 MeV. The energy den-

sity for the ZM3 model once the substitution given in

eq. (6) is performed yields:

E =
2

�2

Z kF

0
k2E(k)dk � g2v

2m�

v(kF )
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where the Ii, i = �; v are integrals of the following form
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with the functions Fi and Hi given by

Fi(k; q) = 1=2� (E(k)� E(q))2D0
i (k � q); (20)

H�(k; q) = k��q
�� +M�(k)M�(q);

Hv(k; q) = k��q
�� � 2M�(k)M�(q); ; (21)

and the Di
0s are the meson propagators

D0
i (k) =

1

k2� �m�

i
2 + i�

: (22)

To saturate the binding energy per nucleon at

�16:15 MeV at the Fermi momentum of 1:14fm�1 we

use g2s = 100 and g2v = 60 for the ZMmodel. In the ZM3

model, the energy saturates at �17:0 MeV at 1:40fm�1

for g2s = 114 and g2v = 119. In the Walecka model,

the energy saturates at �15:75 MeV at 1:42fm�1 for

g2s = 83:11 and g2v = 108:05. One of the reasons for

the introduction of the derivative coupling used in the

ZM and ZM3 models is the small value of the e�ective

nucleon mass at saturation density obtained with the

Walecka model (M�=M = 0:5). We have observed that

this problem is corrected in the new models. At the sat-

uration densities found for each model,M�=M is 0.8 in

the ZM model and 0.69 in the ZM3 model. �0 and �v

in terms of the momentum also decrease much less in

the ZM and ZM3 models than in the Walecka model.

We can produce results compatible with the ones sug-

gested in ref. [13], i.e. an incompressibility between

180 and 360 MeV and M�=M between 0.58 and 0.64

by choosing a di�erent set of parameters and a slightly

deeper energy density at the saturation point, but this

does not improve our results for the scalar and vector

potentials. (see below and also the table).

Table 1

Scalar, vector potentials and incompressibility at nuclear matter saturation density are shown for the Walecka and

the ZM models. MF stands for mean-�eld and HF for Hartree-Fock approximation.

models S (MeV) V (MeV) V + S (MeV) V - S (MeV) K (MeV)
Walecka - MF -431.02 354.12 -76.87 785.18 550.82
Walecka - HF -458.31 379.01 -79.30 837.32 585.00
ZM - MF -140.64 82.50 -58.13 223.13 224.71
ZM - HF -177.5 109.24 -68.26 286.74 298.47
ZM3 - MF -267.00 203.71 -63.28 470.71 155.74
ZM3 - HF -281.00 190.29 -90.71 471.71 174.38
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Other important quantities to be analyzed are the

scalar and vector potentials and the incompressibility.

To derive expressions for the potentials, we start from

the Dirac equation:

�
(1 + �v)~� � ~k + 0(M +�s)� �0

�
 = E ; (23)

and after some simple algebraic manipulations, it can be rewritten as�
~� �~k + 0(M +

�s �M�v

1 + �v
) +

��0 +E�v

1 + �v

�
 = E ; (24)

from where we may de�ne in a natural way

S =
�s �M�v

1 + �v
(25)

as the scalar potential and

V =
��0 +E�v

1 + �v
: (26)

as the vector potential, where E given by eq.(15) can be

written as E = E=� at the saturation density. In table

1 these potentials are displayed for the Walecka and the

ZM models in the mean �eld and Hartree - Fock cal-

culations. The V � S quantity is related to the spin-

orbit splitting in �nite nuclei and the V + S quantity

corresponds to the real part of the optical potential for

the zero three-momentum. There is some evidence for

the strong potentials of the Walecka model, and as we

can see from table 1 the ZM3 potentials are stronger

than the ZM ones explaining why the ZM3 model gives

a better description of the nuclear spectra [15].

Concerning the incompressibilityK, it has also been

calculated for the three models, where

K = 9�20
@2

@�2
E
�
j�=�0 (27)

with �0(k) = �B(k=kF )3. The results are also shown in

table 1. According to ref [22], the expected incompress-

ibility value is K = 210 � 30 MeV, which means that

the results obtained for the ZM and ZM3 models are

of great improvement in comparison with the results

coming from the Walecka model.

To conclude, we would like to comment that we have

calculated some relativistic features which are impor-

tant for the understanding of nuclear matter within the

context of the ZM and ZM3 models. For the present cal-

culation we have taken into account the Hartree terms

(related to the direct diagrams for the baryon propa-

gator) and Fock - like terms (related to the exchange

diagrams) given by eq.(16). We have calculated the ef-

fective mass, the incompressibility and the scalar and

vector potentials and obtained good results out of the

ZM3 model. The same treatment applied to these mod-

els can be extented to �nite nuclei calculation in sub-

stitution to the more complicated relativistic Dirac -

Brueckner - Hartree - Fock approach. This investiga-

tion is under way.
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