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We consider the solution of the Lorentz-Dirac equation of Classical Electrodynamics in the
two cases of a harmonic force and a constant magnetic �eld. We compare the spectrum
and linewidth to the ones predicted by the quantum theory and �nd that they agree for
large quantum numbers. We review some predictions of the Lorentz-Dirac equation for the
isolated hydrogen atom.

I. Introduction

Historically, the understanding of the Electrody-

namics of a charged particle interacting with its own

electromagnetic �eld[1, 2, 3, 4, 5, 6], came very late.

A classical solution to the self-interaction of a charged

particle of very small radius is described by the Lorentz-

Dirac equation of motion, henceforth called LDE. The

derivation of this equation was �rst presented in a

lecture by Lorentz in 1906, and �rst published in

1909[1, 4]. Lorentz's theory had many di�culties[6],

and a major progress came only in 1938, when Dirac[2]

produced a covariant derivation without mention to the

structure of the particle. Dirac was also the �rst to

recognize and understand the runaway solutions to the

LDE. Dirac's derivation still su�ered from an arbitrary

mass term[4]. In 1948, the regularization approach, in-

vented to treat the Lamb shift, o�ered a satisfactory so-

lution to the divergent mass renormalization[3]. Since

its derivation up to today this equation has been the

subject of numerous publications dealing with its the-

oretical peculiarities. For example, non-uniqueness of

solutions [7], pre-acceleration[6] and runaway, to cite a

few. It is interesting to mention that runaway-like be-

havior has recently been observed in plasma physics[8].

There are many other alternative proposals of radia-

tion reaction forces in the literature[11, 12, 13]. How-

ever, some of these alternative forces do not agree with

quantum electrodynamics (QED) for the prediction of

linewidths[11]. In part I of this letter we show that

the LDE predicts a linewidth in agreement with QED

for the two cases of a harmonic force and a constant

magnetic �eld. In part II we discuss the predictions of

the Lorentz-Dirac equation for the impossible isolated

hydrogen atom.

Part I

Linear Potentials

The usual way to use the LDE in most physical situ-

ations is that one considers only non-runaway solutions

[5], unless there is an external plasma to feed energy

for a runaway. Since the LDE is a third-order ordi-

nary di�erential equation, the asymptotic non-runaway

condition makes it necessary to specify only the initial

position and velocity, as usual with Newtonian mechan-

ics. The non-relativistic version of the LDE equation

for an electron of charge e can be written as

2e2

3c3
:::
x e= me�xe � Fext; (1)

where xe is the position of the electron, me is the

renormalized[4] electronic mass, Fext is the external

force acting on the electron, and c is the speed of light.

For an external linear force given by Fext = �me!
2

oxe,

equation (1) is a third-order linear di�erential equation

with a general solution given by

xe = A exp(�t) + exp(�
t)(Bcos(!ot) +Csin(!ot)); (2)
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where A, B and C are constant vectors, � is the pos-

itive real root of 2e2

3c3
�3 = me�

2 + !2o , and 
 is given

by


 =
e2!2o
3mec3

: (3)

The physical condition that the solution must not be a

runaway implies A = 0. Notice that because 
 � !o

for physical values of !o (e.g., atomic physics), this so-

lution describes a harmonic oscillation with slowly de-

creasing amplitude. According to the above solution, a

gas of \classical" harmonic oscillators would emit light

of frequency !o with a linewidth given by 
. The total

energy of the electron, kinetic plus harmonic potential,

decreases approximately according to

E(t) = E(0) exp(�2
t); (4)

for the non-runaway solution.

In the quantum description of this system, the elec-

tron originally in a highly excited eigenstate of the har-

monic oscillator, of quantum number n, can sponta-

neously decay because of interaction with the electro-

magnetic vacuum. The probability per unit time of

decaying to the lower level f = n� 1 is given by [14]

� =
4�!3o
3c2

j < f jrjn > j2; (5)

where < f jrjn > is the matrix element of the position

operator r and � = e2=~c is the �ne-structure con-

stant. The above matrix element is easily evaluated to

j < n� 1jrjn > j2 = ~n=(2me!o) [14]. Of course, from

the level n�1 the electron decays to n�2 and so on until
it reaches the ground state of the harmonic oscillator.

This relaxation process is controlled by the probability

of not decaying to the lower level after a time t, which

for small times is[15]

p = exp(�nDt) � 1� �t; (6)

where D � �=n = 2�~!2o=(3mec
3). According to the

statistical treatment of the interaction with the radia-

tion, done in reference[15], the probability of decaying

from the level m to the ground state after a time t is

given by

Pm!0 = (1 � exp(�Dt))m: (7)

From the above we can de�ne the average time to decay

from the level m to the ground state by

tw =

Z 1
o

t
dP

dt
dt; (8)

which evaluates to �t = (1=D)
Pm

1
(1=k). For large val-

ues of m this sum can be approximated by [16]

tw = (1=D)(C + ln(m)); (9)

where C = 0:5771 : : : is Euler's constant. The energy

of the mth level of the harmonic oscillator is given by

Em = (m + 1

2
)~!o, so that we can write

ln(Em=Eo) = ln(m +
1

2
) + ln(2); (10)

where Eo is the ground-state energy. Substituting (10)

into equation (9) we obtain

tw = (1=D) ln(Em=Eo) � (1=D)(
1 + 0:24m

2m
): (11)

To compare this with equation (4), we must remember

that (11) is the time to arrive at the ground state en-

ergy Eo = ~!o=2. Of course classicaly the energy will

decrease to zero, wich is a di�erence between the the-

ories. With that in mind, if we substitute E(tw) = Eo

and E(0) = Em into equation (4) we obtain

tw = (1=2
) ln(Em=Eo): (12)

Both results agree for large values ofm because D = 2
.

Notice that D = 2�~!2o=(3mec
3) depends only on the

combination �~ = e2=c and, therefore, our results fol-

low independently of the value of ~ (or �, if one prefers).

The agreement is exact only for large values of m, but

even at a low value as m = 11 the agreement is within

5%.

We now turn to another simple linear problem of

an electron in a constant external magnetic �eld. The

equation of motion for an electron in a constant mag-

netic �eld along the ẑ direction is

2e2

3c3
:::
x= me�x+

eB

c
_x ^ ẑ; (13)

where B is the magnitude of the magnetic �eld. The

general non-runaway solution to (13) has a translation

with constant velocity along the ẑ direction, which sep-

arates out from the dynamics on the xy plane. We

disregard this trivial motion and look for a solution

on the xy plane of the form _x = vx(0) exp�t and
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_y = vy(0) exp�t. Substituting the above solution into

equation (13) we obtain the homogeneous system�
�2� � � �!c
!c �2� � �

��
vx(0)
vy(0)

�
=

�
0
0

�
; (14)

where !c = eB=(mec) and � = 2e2=(3c3). The above

equation has nontrivial solutions only if the determi-

nantal condition (��2 � �)2 + !2c = 0 is satis�ed. To-

gether with the non-runaway condition the solution for

� is

� = �i!c � 1

2
�!2c ; (15)

which describes an electron slowly spiraling to the cen-

ter. The kinetic energy of the electron decays as

E(t) = E(0) exp(��!2c t); (16)

which is radiated in the form of light of frequency !c,

and linewidth �!2c = 2e2!2c=(3mec
3). For the quantum

description of an electron in a constant magnetic �eld

we use the usual Hamiltonian[17]

H =
1

2me

jp� e

c
Aj2; (17)

where A = �B
2
(x ^ ẑ) is the usual vector potential in

the Coulomb gauge and p is the 2-dimensional momen-

tum vector operator conjugate to the 2-dimensional po-

sition operator. It is interesting to mention that there

are many di�erent hamiltonians for this problem, which

produce di�erent results upon quantization[18, 19]. In

this letter we will keep to the Hamiltonian of equation

(17). This Hamiltonian can be written as

H =
1

2me

(p2x + p2y) +
!c
2
Lz +

!2c
8
(X2 + Y 2); (18)

which describes a 2-dimensional harmonic oscillator

with an extra angular momentum coupling term. Now

we follow reference [17] and de�ne the mixed annihila-

tion operators

ad =
1p
2
(�x +

ipx
~�

� i�y +
py
~�

) (19)

ag =
1p
2
(�x � ipx

~�
+ i�y � py

~�
); (20)

where � =
p
�!c=2~ and x; y and px; py are the posi-

tion and momentum operators respectively. It is easy

to check that the operators ad and ag commute and

satisfy the usual bosonic commutation relations

[ad; a
y
d] = 1; (21)

[ag; a
y
g] = 1: (22)

The Hamiltonian of equation (18), written in terms of

the a and ay operators, is

H = ~!c(a
y
dad +

1

2
); (23)

which is the usual Landau quantization of the levels

in the magnetic �eld. The position operator x can be

written in terms of the a and ay in the usual way

x =
1

2�
(ad + ayd + ag + ayg): (24)

From the above we can calculate the matrix element to

enter in formula (5),

< ndjxjnd � 1 >= nd

s
~

2�!c
; (25)

and the probability to decay to the level nd�1 per unit

time calculated from equation (5) is

� =
2nd�~!

2

o

3mec3
: (26)

Again, the theory for the decay is the same [15], as out-

lined bellow equation (6) and formula (9) holds for the

quantum decay with D = 2e2!2c=(3mec
3) and m = nd.

The quantum linewidth corresponding to equation (11)

agrees with equation (16) in the same way.

Since there are so many alternative proposals for

classical radiation reaction forces, it is of interest to

check that they agree with QED in the large quan-

tum number limit. For example the proposal of refer-

ence [11] does not agree with QED in this limit exactly

because of the nonlinearity of the proposed radiation-

reaction force. It would be of interest to do the same

comparison for nonlinear potentials, but we are not

aware of nonlinear cases where solutions to the LDE

are known.

Part II

LDE and the Hydrogen Atom

In the following we discuss some predictions of the

LDE for the case of a hydrogen atom. First, let us men-

tion that for a hydrogen atom the linewidth of sponta-

neous emission, calculated from the dynamical decay
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of the semi-classical orbits with the radiation damping,

agrees well with the quantum values. The time for the

electron to spiral down from the classical circular or-

bit corresponding to the nth Bohr radius to the one of

the (n� 1)th radius, is calculated in reference[20]. The

linewidth agrees with QED, even down to the small-

est quantum numbers. Despite this success, in the case

of hydrogen it is well known that the electromagnetic

model fails in explaining how is it that only one fre-

quency is emitted by the isolated atom. As the electron

spirals down, it continuously oscillates with all the in-

termediate oscillation frequencies, which is the generic

case in a nonlinear potential. Of course, if the atom is to

emit a single frequency we must have the electron oscil-

lating with the same frequency for the time correspond-

ing to the linewidth (typically 106 turns for a hydrogen

atom). As it was �rst argued by Bohr[21], a single

isolated hydrogen atom can not emit a sharp frequency

because radiation losses produce dramatic changes in

the frequency over this time. To examine this in de-

tail, let us write the Coulomb force as F = �@V=@xe
and multiply the LDE equation (1) by the electron's

velocity. The result can be arranged as

d

dt
[
me

2
j _xej2 + V (xe)� 2e2

3c3
_xe � �xe] = �2e2

3c3
j�xej2: (27)

If a periodic solution to the LDE equation existed,

the left side of (27)(which is an exact di�erential) would

integrate to zero over the period of this periodic orbit

xe(t). This is seen to be impossible because the right

side would integrate to a negative number. We can

also show that a quasi-periodic orbit, with a �nite num-

ber of incommensurable sharp frequencies, is impossi-

ble: Just integrate (27) over a time that is an approx-

imate minimum multiple of all the periods. Because

the periods are not rationally related, one needs to use

increasingly better rational approximations to the peri-

ods. The above arguments can be made relativistic by

using the relativistic version of equation (27)[4]. Let us

now review the dynamics predicted by the LDE in the

case of a single hydrogen atom with an in�nitely heavy

proton. For one-dimensional motion, (zero angular mo-

mentum) we have the counter-intuitive result that the

electron will always runaway from the proton, even at

distances much larger than the classical electronic ra-

dius (Eliezer's Theorem)[23, 24]. Since runaway solu-

tions are not physical, one can not have physical solu-

tions of the LDE for one-dimensional motion in a hydro-

gen atom. One is then naturally led to consider the case

of nonzero angular momentum. For this nonzero angu-

lar momentumcase, recent results on singular perturba-

tion theory of scattering[22], (as described by the LDE

with a Coulomb potential), predict a minimum angular

momentum for the existence of \quasi-mechanical" mo-

tions. This result suggests that below a critical angular

momentum the electron will also display runaway-like

behavior for 2-dimensional motion in a hydrogen atom,

according to the LDE. The value of this critical angu-

lar momentum, found in reference[22], is 6e2=c, some

twenty times smaller than ~.

One could conjecture that the electron in an iso-

lated hydrogen atomwould ultimately fall onto the pro-

ton because of the radiative self-interaction. What can

actually be proved from equation (27) is that a non-

runaway orbit staying inside a bounded region of space

(and avoiding the origin) for all times is impossible.

Again, this is done by integrating equation (27) over

an arbitrarily large time interval: the left side would

integrate to a bounded result while the right would

be an arbitrarily large negative number (because there

would be a minimumvalue for the acceleration). Notice

that it is incorrect to conclude from this that the elec-

tron falls onto the proton, since spatially unbounded

runaway-like orbits also satisfy (27). It is interesting to

notice that Bohr could not know about the LDE and

the possibility of runaway-like motions, and in his work

of 1913[21] he mentions only that an accelerated charge

should continually loose energy by \Larmor losses". In

any case, as we know now, a satisfactory understanding

of the problem came only in 1938. Eliezer's theorem is

of 1948. A word of caution should be said about the

name \runaway-like" for orbits: a better name would

be \non-mechanical" orbits, describing the fact that

they are not small perturbations of mechanical orbits.

There are many modi�cations that could make these

low-angular momentumorbits more \physical". To cite

a few, a �nite radius in the electron[25], and a �nite

mass in the proton. We refer to chapter seven of [3] for

an excellent discussion of the large literature of electron

models and chapter six for Lorentz-Dirac theory and

references to the enormous and ever growing literature.

After a hundred years of research, no electromagnetic
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model is available that will have bound states at the cor-

rect atomic magnitude for the isolated hydrogen atom.

The reason for this is that the Coulombic orbits always

have a nonzero dipole that is constantly producing radi-

ation (unless the electron is so far from the proton that

the acceleration vanishes). Di�erently than hydrogen,

a two-electron atom like helium can have orbits with a

zero dipole that do not radiate, and classical electrody-

namics will produce interesting results in this case (and

sharp spectroscopic lines), but we will not develop this

here (this is also possible for the hydrogen molecule).

The full runaway is the result in the idealized case

of an isolated atom. For the case of a hydrogen gas, be-

cause of interatomic interaction, the orbit might start

as runaway-like and then be captured by the neighbor-

ing atom. This atom has now two electrons, the naked

proton is then attracted and the hydrogen molecule is

formed. As any chemist knows, hydrogen is very re-

active and is found in nature in the form of hydrogen

molecule. It has been only 16 years since atomic hydro-

gen has been stabilized in the laboratory, at cold tem-

peratures and strong magnetic �elds[26]. It is found ex-

perimentally the tendency to form hydrogen molecules

at highly excited states[26].
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