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We introduce the intermediate pure-mixed state of the light �eld, which interpolates between
a pure state b�(P ) [Tr(b�(P ))2 = 1]and a mixed state b�(M) [Tr(b�(M))2 < 1], allowing us the
investigation of the in
uence of the mixing e�ects upon some properties exhibited by a pure
state when isolated. Following this strategy we show in what fashion the presence of a
thermal state degrades the sub-Poissonian statistics and the squeezing e�ect exhibited by a
pure state. Intervals of parameters preserving these nonclassical e�ects are discussed.

I. Introduction

Since the pioneer theoretical work by Glauber[1], af-

ter the discovering of the maser and the laser, extensive

study of the quantized radiation �eld has been devel-

oped in the literature, with remarkable interest in the

interaction process between photons and atoms. In this

line, considerable e�ort was done to get a more precise

understanding of the structure and dynamics of atoms

and molecules, to better control of their internal and

external degree of freedom, and also the realization of

novel radiation sources[2] allowing one to prepare new

states of the quantized radiation �eld. The research in

this area of quantum optics has increased after the de-

tection of various nonclassical properties of the light

�eld, as antibunching[3], sub-Poissonian statistics[4],

squeezing[5], etc. There are also other nonclassical ef-

fects which emerge from the interaction between light-

�eld and atoms, theoretically treated in the so called

Jaynes-Cummings model[6]. Examples of these states

are: the collapse and revival e�ect[7] in the atomic in-

version; oscillations in the photon distribution[8]; en-

tanglement of the atom and �eld states, leading to de-

coherence of a wavefunction[9]; formation of a macro-

scopic superposition of quantum states[10] (Schr�odinger

cat); teleportation[11]; etc.

As the most usually investigated states in quantum

optics one can cite: the number state[12], eigenstate

of the photon number operator bn; the coherent state[1]
j�i,eigenstate of the annihilation operator ba; the (Pegg-
Barnett) phase state[13] j�mi, eigenstate of the phase

operator b�� = Pm �mj�mih�mj; the squeezed-coherent

state[5] jz; �i , eigenstate of the (quasi-particle) an-

nihilation operator bb = (cosh r)ba + ei�(sinh r)bay,
z = rei�; etc.

Besides these \standard" states of quantum optics

there are also states which are intermediate between

two of these states. Among them, one can cite: the

binomial state, introduced by Stoler et al[14], which

interpolates between the number state jni and the co-

herent state j�i in two di�erent limits; the intermedi-

ate number-phase state (INPS), introduced recently by

Baseia et al[15], which interpolates between the num-
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ber state jni and the (Pegg-Barnett) phase state j�mi;

the intermediate number-squeezed state (INSS), more

recently introduced by Baseia et al[16], which interpo-

lates between the number state jni and the squeezed

state jz; �i; etc.

While these intermediate states are assumed to be

generated by a single light source[14] - [18], alterna-

tive intermediate states generated by two light sources

were also introduced in the literature. Among them

one can cite the superposition of two number states, in-

troduced by Wodkiewicz[19]; the superposition of two

coherent states, by Schleich et al[20]; the even and

odd coherent states, by Malkin et al[21]; the even and

odd squeezed states, by Xin et al[22]; the interme-

diate number-coherent state (alternative to binomial

state[14]), by Baseia et al[23]; the intermediate number-

squeezed state (alternative to INSS[16]), by Baseia et

al[24]; etc. A uni�ed approach to these states was pre-

sented in the Ref.[25]

In all these cases, interesting nonclassical proper-

ties displayed by such states, as those mentioned be-

fore, have been extensively studied in the literature.

Also, the interaction of an atom with a light �eld

initially in one of such states is a subject of current

investigation[4, 7].

In the present paper we will follow our previous pro-

cedure(Refs. [23]-[25]), introducing a convenient inter-

mediate state which interpolates between a pure state

b�(P ) = j ih j [tr(b�(P ))2 = 1], and a mixed state b�(M)

[tr(b�(M))2 < 1]. We call it as Intermediate Pure Mixed

State (IPMS) of the quantized radiation �eld. Besides

constituting a theoretical tool allowing a compact treat-

ment incorporating both components, b�(P ) and b�(M),

the IPMS allows one to investigate the possible oc-

currence of new properties of a �eld in such state, as

shown in Refs.[14]-[24]. It should be emphasized here

that intermediate states may exhibit interesting prop-

erties, even if they are not exhibited in their limiting

states. For example, the binomial state shows quadra-

ture squeezing, althought its extrem states, jni and j�i,

do not show this e�ect.

Di�erently from our previous strategies[23]-[25], the

main aim here is to investigate the in
uence of mix-

ing e�ects upon the properties of a pure state. Mix-

ing originates, e.g., from thermal in
uences coming

from the environment that always surrounds a cavity.

These thermal in
uences disappear only in the limit

of zero temperature where thermal excitation vanishes:

�nT = 1=[exp(~!=kT ) � 1]! 0, if T ! 0. The present

treatment allows us to investigate in what fashion the

(controlled) presence of mixing e�ects erase nonclassical

properties exhibited by a pure state. It also allows us

to determine the intervals of the involved parameters in

which the degradation of some nonclassical property is

negligible, thus being preserved. For each property in-

vestigated we choose the (pertinent) pure state, which

exhibits this property when isolated.An interpolating

parameter � 2 [0; 1], stands for the partial contribution

of each component state, b�(P ) and b�(M) [Cf. Eq.(1)].

At �rst sight it would seem that the present ap-

proach constitutes a (very) simpli�ed alternative to

other treatments in the literature, as that employing

the Caldirola-KanaiHamiltonian[26], or that employing

a Hamiltonian including a thermal reservoir[27]. In the-

ses cases the treatment is much more complicated since

the state describing a system (acted upon by thermal

in
uences) is time-dependent, its stationary solution

being obtained for assymptotic times, t >> �o, where �o

is a characteristic relaxation time of the system. How-

ever, in these treatments the thermal presence enters

as a consequence of the inclusion of dissipation in the

system - which is not the case in the present scenario.

As an exemple, a paper by Voudras et al[28] studied

the destruction of oscillatory feature in photon-number

distribution caused by small amount of noise. An al-

ternative approach, by Takahashi et al[29], was applied

by Lee[30] to study the in
uence of thermal noise on 2-

mode squeezing. This latter approach is similar to ours

in the sense that no dynamical evolution is considered.

Another similar procedure in this respect, introducing

thermal noise, can be seen in Ref.[31] in wich a clas-

sical �eld is written as ~E(~r; t) = ~E0(~r; t) + ~ET (~r; t),

where ~E0(~r; t) stands for a classical �eld at tempera-

ture T = 0, whereas ~ET (~r; t) represents a thermal �eld

component, at T 6= 0. Related topics and treatments

can also be found in Ref.[32].
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This paper is arranged as follows. In the Sect.2 we

introduce the IPMS, de�ned as in the Eq.(1). In the

Sect.3 we investigate the (destructive) in
uence of mix-

ing e�ects upon the sub-Poissonian statistics shown by

a pure state, when isolated. In the Sect. 4 we investi-

gate the same for squeezing. The Sect. 5 contains the

comments and conclusion.

II. Intermediate pure mixed state(IPMS)

We introduce the IPMS as the superposition

b�(�) = �b�(M) + (1� �)b�(P ) (1)

where � 2 [0; 1] is the interpolating parameter: b�(0) =
b�(P ) and b�(1) = b�(M). The component states b�(M)

and b�(P ) stand for the mixed state and the pure state,

respectively:

b�(M) =
1X
n=0

pnjnihnj; (2)

b�(P ) =
1X
n=0

1X
n0=0

CnC
�
n0 jnihn0j: (3)

Note that b�(M) is diagonal in the basis fjnig whereas

o�-diagonal terms of b�(P ) are not zero. Also, note that
tr(b�(�)) = 1 if tr(b�(M)) = tr(b�(P )) = 1: The prob-

ability of �nding n photons in the IPMS is given by

pn(�) = �p(M)
n + (1� �)p(P )n (4)

with
1X
n=0

pn(�) =
1X
n=0

p(M)
n =

1X
n=0

p(P )n = 1:

c

An useful formula is obtained from the average value of an arbitrary operator bO, calculated in the IPMS. We

have,

h bOi(�) = tr [b�(�) bO] = � tr[b�(M) bO] + (1� �) tr [b�(P ) bO]
= � h bOi(M) + (1� �) h bOi(P ): (5)

From this result we easily obtain,

h bO2i(�) = � h bO2i(M) + (1 � �) h bO2i(P ): (6)

and, from Eqs.(5) and (6), we obtain the dispersion (variance) in the arbitrary operator bO,

� bO2(�) = �� bO2
(M) + (1� �)� bO2

(P ) + �(1 � �)[h bOi(M) � h bOi(P )]2 : (7)

d

Note that the dispersion in an arbitrary operator bO
is not only the (weigthed) sum of the dispersions in the

components b�(M) and b�(P ). There is also the presence

of an \interference" term (last term in Eq.(7)), which

is proportional to the squared di�erence of the averages

h bOi(M) and h bOi(P ). When this di�erence tends to zero

the total dispersion tends to the (weighted) sum of the

partial dispersions. From the general expression(7) we

obtain the dispersions in the number operator bn and in

the quadrature operators, bXi;

bX1 = (ba+ bay)=2 ; (8)

bX2 = (ba � bay)=2i : (9)

The dispersion in the number operator bn allows us

to investigate the occurrence, or not, of sub-Poissonian

statistics, whereas the dispersions in the quadrature op-

erators bX1 and bX2 allows us to investigate the occur-

rence of the squeezing e�ect. In the present case we will

take a pure state b�(P ) exhibiting one of such nonclassi-

cal e�ects and investigate in what fashion the presence

of a mixed state degrades this e�ect. In the next section

we will study the sub-Poissonian e�ect.
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III. In
uence of mixing upon sub-Poissonian

statistics

One operational ingredient showing sub-Poissonian

statistics is the Fanos's factor F , de�ned as[4]

F (�) = �bn2(�)=hbn(�)i (10)

where

�bn2(�) = hbn2(�)i � hbn(�)i2 (11)

is the dispersion in the number operator bn. If F (�) < 1

the state is said to be sub-Poissonian. For a single-

mode and stationary �eld, as in the present case, sub-

Poissonian and antibunching are concomitant e�ects,

hence the study of only one of them is su�cient in the

present context.

The application of the Eqs. (5) and (6) for bO = bn,
in the Eq. (10), gives

c

F (�) =
�(�nM )2 + (1� �)(�bnP )2 + �(1� �)(hbniM � hbniP )2

�hbniM + (1� �)hbniP : (12)

d

Note that F (0) = F (P ) and that F (1) = F (M), with

F (P ) = �bn2P=hbniP , F (M) = �bn2M=hbniM , respectively -

as it should. At this point we will assume a pure state

component b�(P ) which exhibits the sub-Poissonian ef-

fect, i.e., F (P ) < 1. We take

b�(P ) = jN0ihN0j (13)

since an arbitrary number state exhibits maximumsub-

Poissonian (F = 0). Also, to be more speci�c, we will

assume that the mixed state component b�(M), is a ther-

mal state [see Eq.(2)]

b�(M) = b�(T ) =X p(T )n jnihnj (14)

where p
(T )
n is the Bose-Einstein distribution

p(T )n =
1

1 + �nT
(

�nT
1 + �nT

)n (15)

with[33],

�nT =
1

e� � 1
; � =

~!

kBT
; (16)

and

�bnT2 = �nT + (�nT )
2: (17)

For the number state component [Eq.(13)], we have that

hbniP = �nP = N0; �bnP 2 = 0 : (18)

The substitution of Eqs. (13), (18) in the (12) gives,

F (�) =
��nT (1 + �nT ) + �(1 � �)(�nT �N0)2

��nT + (1� �)N0
: (19)

The most favourable situation to maintain sub-

Poissonian statistics in the IPMS, as we �nd for � = 0,

comes from the condition �nT = N0, in which both com-

ponents have the same (average) excitation. In this case

we obtain

F (�) = �(1 + N0); (20)

hence F (�) < 1, if 0 < � < 1=(1 + N0). For ex-

ample, for N0 = 1 the IPMS will be sub-Poissonian if

0 < � < 1=2 . Fig. 1 shows the Fano's factor F (�) as

function of the involved parameters, �, N0 and �nT .

IV. In
uence of Mixing upon the squeezing ef-

fect

The operational ingredient showing squeezing is the

dispersion in the (Hermitean) quadrature operators, bX1

and bX2, as mentioned before[cf. Eqs.(8) and (9)],

� bXi

2
= h bX2

i i � h bXii
2
; ; i = 1; 2: (21)

Squeezing occurs when � bXi

2
< 1=4, with i = 1 or

2(not both simultaneously, to preserve the Heisenberg

uncertainty relation). The application of Eqs. (5) and

(6), with bO = bXi, gives for the quadrature bX1, say,
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� bX1
2
(�) = � (� bX1

2
)M + (1� �) (� bX1

2
)P + � (1 � �)(h bX1iM � h bX2iP )

2 : (22)

d

Note that � bX1
2
(0) = (� bX1

2
)P and � bX1

2
(1) =

(� bX1
2
)M , as it should, since the IPMS interpolates

between the limiting states, b�(M)and b�(P ).
At this point we will assume a pure state compo-

nent, b�(P ), which exhibits the squeezing e�ect. Without

loss of generality, we will also assume that the quadra-

ture bX1 is squeezed, namely, (� bX1
2
)P < 1=4. Now,

a natural candidate for a pure state exhibiting squeez-

ing is the squeezed-coherent state jz; �i = bS(z)j�i ,

bS(z) = exp[(bzbay2 � bz�ba2)=2] . Hence we set

b�(P ) = jz; �ihz; �j (23)

with,

z = rei� ; � = j�jei�: (24)

The mixed state component is assumed to be the same

as in Sect. 3[Cf. Eqs. (14)-(16)]. In this con�guration,

we have in the Eq.(22), for z real [subscript T (z; �)

stands for thermal(squeezed-coherent)],

(� bX1
2
)M = (� bX1

2
)T =

1

4
(2�nT + 1) ; (25)

(� bX1
2
)P = (� bX1

2
)z;� =

1

4
e�2r ; (26)

h bX1iM = h bX1iT = 0 ; (27)

h bX1iP = h bX1iz;� = j�j cos(�) e�r ; z real: (28)

The substitution of Eqs.(25)-(28) in the Eq.(22)

gives,

c

� bX1
2
(�; �nT ; Re(�); r) =

1

4
f�(2�nT + 1) + [(1� �)(1 + 4�(Re(�))2)]e�2rg : (29)

d

This result shows that � bX1
2
(0) < 1=4 for r > 0,

as it should, since we have chosen the pure state com-

ponent as a squeezed-coherent state[Eq.(23)]. If � 6= 0

the IPMS shows squeezing if �nT and � are su�ciently

small. For example, for � = 0 (squeezed vacuum) and

�nT << 1, such that 2�nT + 1 ' 1; we have

� bX1
2
(�) '

1

4
[� + (1� �)e�2r ] < 1 (30)

for any � in the interval 0 � � < 1. Fig.2 is for variance

� bX1
2

� as function of the involved parameters, �; �nT ; �

and r.

V. Comments and conclusion

We have introduced the IPMS, an intermediate

state of the quantized radiation �eld, which interpo-

lates between a pure state b�(P ) and a mixed state b�(M)

[Eq.(1)]. The treatment is general since the components

b�(M) and b�(P ) are arbitrary. We calculate general ex-

pressions for the Fano's factor F (�)[see Eq.(12)] and for

the expression of variances of quadrature operators bXi,

� bXi

2
(�) [see Eq. (29)], the �rst (latter) allowing us

to study the in
uence of mixing upon sub-Poissonian

(squeezing) e�ect. In both cases the greater or smaller

presence of mixing is controlled by the parameter �.

For sub-Poissonian we have taken the pure state com-

ponent b�(P ) as a number state [Cf. Eq.(13)], due to

the fact that this state is the one exhibiting maximum

sub-Poissonian (F = 0). On the other hand, in the case

for squeezing we have taken the pure state component

b�(P ) as a squeezed-coherent state [cf. Eq. (23)], since it
is the \natural" state exhibiting quadrature squeezing.
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Figure 1a. Fanos's factor as function of the interpolating
parameter � and the excitation number N0, for �nT = 0:1:

Figure 1b. Vertical cuts in the Fig. 1a, for various values of
N0:

Figure 1c. Horizontal cuts in Fig.1a for various values of
Fano's factor.

Figure 1d. Fano's fa ctor as function of the interpolating
parameter �, for N0 = 1 and various values of the thermal
excitation �nT :

Figs. 1 show the plots of Fano's factor [see Eq.(19)]

as function of the involved parameters �, N0 and �nT .

Fig. 1a shows the Fano's factor as function of � and

N0, for �nT = 0:1. In this �gure we can note that: (i) for

� = 0 =) F (0) = 0, corresponding to the limit of num-

ber state; (ii) for � = 1 =) F (1) = 1 + �nT = 1:1, cor-

responding to the limit of thermal state, for �nT = 0:1.

Fig. 1b is the Fano's factor as function of �, for various

values of N0 and �nT = 0:1, showing vertical cuts in the

Fig.1a, for various values of N0. Note that in this �gure

the interval of � in which the system is sub-Poissonian

diminishes when N0 increases. Also, note that for

N0 > 1 all curves for Fano's factor have a maximum

about � ' 0:9 (maximum super-Poissonian statistics).

For N0 = 1, maximum super-Poissonian is attained at

the limit � = 1, the statistics being sub-Poissonian in

the most part of the interval. Fig. 1c shows horizon-

tal cuts in the Fig. 1a, for F = 0:5; F = 1:0; F = 1:5

and F = 3 . Note that these curves decrease mono-

tonically for each �xed value F < 1 (sub-Poissonian)

whereas reaching a minimum at � ' 0:9, when F > 1

(super-Poissonian). Fig. 1d is the Fano's factor as

function of �, for various values of the parameter �nT

and N0 �xed (N0 = 1), showing the in
uence of tem-

perature, or the average photon-number �nT , on the

statistics of the �eld. Note that in the limit �nT ! 0

then F (�) ! �N0, the IPMS being sub-Poissonian for

0 < � < 1=N0, N0 = 1; 2; 3::: . For �nT ' N0 then

F (�) ! �(1 + N0). In this case the IPMS is sub-

Poissonian for 0 < � < 1=(1+N0). We see that in both
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cases ( �nT ! 0 , �nT ' N0 ) the the Fano's factor in-

creases linearly with �, and when we pass from �nT ! 0

to �nT ' N0 the interval in which � is sub-Poissonian

is reduced from 0 < � < 1=N0 to 0 < � < 1=(1+N0).

This di�erence is relevant if N0 is small (N0 < 5).

For �nT � N0 the Fano's Factor exhibits a maximum

about � =
p
2N0=n. In this case the statistics is sub-

Poisonian only for very small values of �.

Figure 2a. Plot of variance � bX2

1 as function of � and the
squeezing parameter r, for � = 0 (vacuum).

Figure 2b. Horizontal cuts in the Fig. 2a, for various values

of variance � bX2

1 .

Figs.2 show the plots of dispersion in the (squeezed)

quadrature bX1, as function of the interpolating param-

eter �, for various values of the parameters �nT , � and

r. These �gures, obtained from the Eq.(29), are for

the IPMS with components b�(M) and b�(P ) given in

Eqs.(14) and (23), namely, for a thermal state compo-

nent and a squeezed-coherent state component. Note

in the Eq.(29) that the mixed state b�(T ) introduces two
terms which destroys squeezing: one of them (�rst term

in Eq.(29)) being proportional to the average photon-

number �nT in the termal state; the second (last term

in Eq.(29)), being independent of the average photon-

number �nT . For low thermal excitations (�nT � 1) in

such a way that 2�nT + 1 ' 1, and � not too large

(�e�r < 1) the IPMS preserves squeezing: we must

have � < er , which gives � < 2:7 for r = 1; � < 150

for r = 5; etc. In this case squeezing is preserved

for certain ranges of the parameter �. Fig. 2a shows

the plot of variance � bX2
1(�) as function of � and r, for

� = 0(vacuum) and �nT = 0:1. Note that for � = 0 and

r running from r = 0 to r = 4 the variance � bX2
1 (� = 0)

becomes squeezed, as it should; on the other hand, for

r=0 and � running from � = 0 to � = 1 the variance

� bX2
1(�) increases from 0:25 to 0:3, then anti-squeezing

occurs due to the presence of the thermal state, as ex-

pected; for r > 0, say r = 2, the variance � bX2
1(�)

goes from � bX2
1 (�) ' 0:01 to � bX2

1 (�) = 0:3, in the in-

terval � 2 [0; 1]. In this case squeezing is maintained

if � < 0:85. This can be seen in Fig.2b, which corre-

sponds to horizontal cuts in the Fig.2a, for some �xed

values of the variance � bX2
1 (�). Note in Fig.2b that, for

very large squeezing (� bX2
1 (�) = 0:01 � 0:25), the ef-

fect is mantained in the presence of thermal noise only

for very small values of � (� � 0:04) and for large val-

ues of the squeeze parameter r (r > 1:5). For squeezing

not too large( � bX2
1 (�) = 0:1) the e�ect is maintained

for � < 0:25, if r ' 1 and for � < 0:3, if r � 2. For

a small amount of squeezing (� bX2
1 (�) = 0:2) the ef-

fect is mantained for � < 0:6, if r > 1. These results

show that to maintain a certain amount of squeezing

in the presence of the thermal component, this requires

increasing the squeeze parameter r. It should also be

mentioned that, for � � 0:85 no squeezing results: a

thermal �eld with weight � = �0 = 0:85 and average

photon number �nT = 0:1 will destroy all squeezing ef-

fect in the squeezed-vacuum. When �nT increases, this

upper bound �0 decreases, thus diminishing the interval

� in which squeezing e�ect is preserved.
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Figure 3a. Same as in Fig.2a, for � = 5:

Figure 3b. Same as in Fig.2b, for � = 5:

Figs.3 are the same as in Figs.2, except that � = 5.

Note that for r = 0 the varience � bX2
1 (�) runs from

� bX2
1 (0) = 0:25 to � bX2

1 (1) = 0:3, as it should. On

the other hand, for � = 0, this variance runs from

� bX2
1 (r = 0) = 0:25 to � bX2

1 (r � 1) = 0, as it should.

For � = 0:5 variance reaches its maximum, for each

�xed value of r. When r increases, this maximum in

variances decreases. Fig.3b corresponds to horizontal

cuts in Fig.3a, for some �xed values of variance � bX2
1 (�).

A comparison between Figs.(2b) and (3b) shows that,

in both cases a given squeezing, say � bX2
1 (�) = 0:2(0:1),

is mantained if � < 0:6(� < 0:3) the limitation in the

interval � being the same in both �gures, the di�erence

being that, to maintain the same squeezing when � 6= 0

requires a larger value of r. This results comes from the

condition �e�r < 1, built-in the Eq.(29), as mentioned

before. Another di�erence between Fig.2b (� = 0)

and Fig.3b (� 6= 0) comes from the fact that, for

� 6= 0 the curves distinguish two regions: one which

� bX2
1(�) < 0:25; the other in which � bX2

1 (�) > 0:25.

As we have seen, the IPMS constitutes an easy tool

to investigate the (erasing) in
uence of mixing upon

nonclassical e�ects, as sub-Poissonian (or antibunch-

ing) and squeezing. Other nonclassical e�ects in quan-

tum optics, such as the collapse and revival e�ect in

the atomic inversion, hb�zi, can also be investigated

throught the application of the IPMS. Such studies are

in progress and will be published elsewere.
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