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The motion of neutral atoms in quadrupole magnetic traps is considered using an accurate
method for solving nonlinear systems of di�erential equations. This approach, called the
method of scale separation, does not involve the adiabatic approximation, thus, allows to
analyze nonadiabatic regimes of motion. A new regime is found when atoms are con�ned
from one side of a trap but are not con�ned from another side. Possible experimental
applications of the semi-con�ning regime are discussed.

I. Introduction

The properties of neutral atoms in magnetic traps

have recently attracted much attention in connection

with the realization of the Bose condensation of alkali

atoms (see review[1]). The motion of trapped atoms,

as is generally believed, can be described in the adia-

batic approximation. Although it has been argued that

trapping can also occur in a nonadiabatic regime of res-

onant cooling[2]. What is certainly true is that in the

more general picture, when atoms are permitted to es-

cape from the trap, one has to give up the adiabatic

approximation.

The aim of the present paper is to give an accurate

solution to the equations of motion for neutral atoms

in quadrupole magnetic traps, without using the adi-

abatic approximation. For this purpose, the method

of scale separation[3�5] will be applied. The mathe-

matical foundation of this approach is based on the

Krylov{Bogolubov averaging method[6]. The method

of scale separation has been successfully employed for

describing dynamical processes in spin mazers[4;7;8], po-

larized targets[9] , and nuclear magnets[5;10]. Its accu-

racy was con�rmed by good agreement of found solu-

tions with experimental data[11;12] and with computer

simulations[13�15].

II. Basic Equations

The dynamics of neutral atoms in magnetic �elds

can be described in the semi{classical approximation

which presupposes that the space variation of the mag-

netic �elds is su�ciently slow, so that the spin and

real{space degrees of freedom can be separated. In

the quantum{mechanical language this means that the

wave function can be factorized into a product of a spin

and a real{space wave functions[16].

The equations of motion in the semi{classical ap-

proximation are

d2
!
r

dt2
=

�

m

!

r (
!

S
!

B) +

!

f

m
(1)

for the real{space variable
!
r= fx; y; zg , and

d
!

S

dt
=

�

~

!

S �
!

B (2)

for the spin variable
!

S= fSx; Sy; Szg . Here m is a

mass of an atom and � is the magnetic moment, that

is, the product of the Bohr magneton and the hyper�ne

g {factor. The vector
!

f in (1) represents the average

force
!

f= �
NX

j(6=i)

h!r �iji; (3)
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with h: : :i meaning the quantum{mechanical averag-

ing, acting on an atom from other N � 1 atoms inter-

acting through the potential �ij . The total magnetic

�eld is
!

B . The evolution equations (1) and (2) are to

be complimented by the initial conditions

!
r (0) = fx0; y0; z0g;
!
v (0) = fvx0 ; vy0 ; vz0g; (4)

!

S (0) = fSx0 ; Sy0 ; Sz0g;
in which

!
v (0) � d

!
r =dt at t = 0 .

The total magnetic �eld

!

B=
!

B1 (
!
r )+

!

B2 (t)+
!

B3 (t) (5)

consists of three parts: The �rst is the quadrupole �eld

!

B1 (
!
r ) = B01(

!
r �3z !e z) (6)

typical of quadrupole magnetic traps, such as the Io�e{

Pritchard traps with a static bottle �eld[17�19] or dy-

namical traps with a rotating bias �eld[20;21]. The sec-

ond term in (5) is the rotating bias �eld

!

B2 (t) = B2(
!
e x cos!t+

!
e y sin!t); (7)

as in the dynamic trap[21]. Finally, the third term is a

cooling radio{frequency �eld

!

B3 (t) = B3
!
e z cos!rt (8)

serving for removing fast particles from the trap.

For what follows, it is convenient to deal with the

dimensionless space variable
!
r measured in units of

the characteristic length

L � B2

B01
: (9)

The latter roughly de�nes the linear size of the atomic

cloud in a trap. Therefore, in dimensionless units we

have

j !r j < 1: (10)

To return to the dimensional space variable, we need to

put
!
r!!

r L .

De�ne the characteristic frequencies

!1 �
r
�B01
mL

; !2 � �B2

~
(11)

of atomic and spin motions, respectively, and use the

notation

� � !3

!2
; !3 � �B3

~
: (12)

Also, introduce the collision rate  given by the rela-

tion


!

��
!

f

mL
: (13)

In what follows we shall treat
!

� as a random variable.

Then, Eq.(1) for the space variable takes the form

d2
!
r

dt2
= !2

1(Sx
!
e x +Sy

!
e y �2Sz !e z) + 

!

� ; (14)

and Eq.(2) for the spin variable can be written as

d
!

S

dt
= !2Â

!

S ; (15)

where the matrix Â = [A��] with �; � = 1; 2; 3 ,

consists of the elements

A11 = A22 = A33 = 0;

A12 = �A21 = �2z + �cos!rt;

A13 = �A31 = �y � sin!t;

A23 = �A32 = x+ cos!t:

Eqs.(14) and (15) are the basic evolution equations to

be considered.

III. Scale Separation

To apply the method of scale separation[3�5] for

solving the system of nonlinear equations (14) and

(15), let us take the characteristic parameters as in

experiments[21;22]. Then !1 � 102s�1; !2 � 5 �
107s�1 , the value of !3 may be somewhere in the

interval between zero and 106s�1; ! � 5�104s�1; !r

is of the order of !2 and  � 1 s�1 � 10 s�1 . Thus,

the following sequence of inequalities holds:

 � !1 � ! � !2; (16)

with !3 � !2 and !r � !2 .

The inequalities in (16) show thath the space vari-

ables can be treated as slow while the spin variables as

fast. Therefore, the former can be considered as the

quasi{integrals of motion for the latter. Eq.(15), under

�xed
!
r , can be solved exactly, and the solution writes

!

S (t) =
3X

i=1

ai
!

S i (t); (17)

where
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c

ai =
!

S 0

!

b
�

i (0);
!

S 0�
!

S (0);

!

S i (t) =
!

b i (t) expf'i(t)g;
!

b i (t) =
1p
Ci

h
(�iA13 + A12A23)

!
e x +(�iA23 �A12A13)

!
e y +

�
�2
i +A2

12

� !
e z

i
;

Ci = (j�ij2 �A2
12)

2 + (j�ij2 + A2
12)(A

2
13 +A2

23);

�1 = i�; �2 = �i�; �3 = 0; � �
q
A2
12 + A2

13 + A2
23;

'i(t) =

Z t

0

�
!2�i(t)�

!

b
�

i (t)
d

dt

!

b i (t)

�
dt:

Substitute the solution (17) into Eq.(14) averaging the right{hand side of the latter according to the rule

�F � lim
�!1

1

�

Z �

0

F (t)dt: (18)

Take into account that !3 � !2 , so � � 1 , and make use of the inequality (10). Then Eq.(14) reduces to

d2
!
r

dt2
=
!

F +
!

� ; (19)

with the force
!

F=
!2
1

2
[(1 + x)Sx0 + ySy0 + (� � 2z)Sz0 ] (x

!
e x +y

!
e y +8z

!
e z): (20)

d
If initial conditions are such that Sx0 = S and

Sy0 = Sz0 = 0 , then (20) trivializes to the adiabatic

force
!

F ad=
S

2
!2
1(
!
r +7z

!
e z):

In the latter case, atoms are con�ned inside the trap

for S < 0 and uncon�ned for S > 0 or S = 0 .

IV. Nonadiabatic Motion

Consider nonadiabatic motion with the initial con-

ditions for the spin variables in the form

Sx0 = 0; Sy0 = 0; Sz0 = S: (21)

Because of the isotropy of the interaction potential, the

force of interatomic interactions is to be an isotropic

vector, so that for the corresponding random variable

describing atomic collisions we may write

!

�= �(
!
e x +

!
e y +

!
e z): (22)

Under these conditions, from Eq.(19) we have for

the variable x the equation

d2x

dt2
+ S!2

1

�
z � �

2

�
x = �: (23)

The same equation, with the replacement of x by y ,

follows for the variable y . And for z we get

d2z

dt2
+ 8S!2

1

�
z � �

2

�
z = �: (24)

If � is not too small, there can appear oscillatory

solutions when atoms oscillate about the point �=2 .

This can be shown by putting

u = z � �

2
; juj � 1;

and linearizing Eq.(24), which results in the equation

d2u

dt2
+ !2

effu = �;

with the e�ective oscillation frequency

!eff = 2!1

r
S!3

!2
:
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However, for very small � ! 0 the life is more

complicated. Let us put � = 0 in Eqs.(23) and (24).

Keeping in mind that  � !1 , we may write the

solutions as the sums

x = x1 + x2; z = z1 + z2: (25)

The equations for the functions x1 and z1 are

d2x1
dt2

+ S!2
1z1x1 = 0 (26)

and, respectively,

d2z1
dt2

+ 8S!2
1z

2
1 = 0: (27)

The corresponding initial conditions are

x1(0) = x0; _x1(0) = vx0 ;

z1(0) = z0; _z1(0) = vz0 : (28)

The functions x2 and z2 are due to the existence of

random collisions and satisfy the equations

d2x2
dt2

+ S!2
1(z1x2 + x1z2) = � (29)

and, respectively,

d2z2
dt2

+ 16S!2
1z1z2 = �: (30)

The related initial conditions are

x2(0) = 0; _x2(0) = 0;

z2(0) = 0; _z2(0) = 0: (31)

The procedure of handling Eqs.(26), (27), (29), and

(30) is as follows. First, we solve Eq.(27) whose exact

solution is

z1(t) = � 3

4S!2
1

P(t � t0); (32)

where P(t) is the Weierstrass function with the delay

time

t0 = �0

Z z0

�1

dzp
z3m � z3

; (33)

in which

�0 �
s

3

16S!2
1

; (34)

the spin S is assumed to be positive, and

z3m = z30 + (vz0�0)
2: (35)

Then, the solution (32) is substituted into Eq.(26)

yielding the Lam�e equation of degree 1=2 . The exact

solution of the latter is

x1(t) =

�
c1P

�
t� t0
2

�
+ c2

�
E
�1=2
3

�
t� t0
2

�
; (36)

with E3(t) � dP(t)=dt being a Lam�e function of de-

gree 3 , of the �rst kind, and with c1 and c2 being

integration constants.

Solving Eqs.(29) and (30), the functions x2 and

z2 , due to random collisions, can be treated as fast,

as compared to x1 and z1 . The stochastic variable

� is modelled by the white Gaussian noise with the

stochastic averages

hh�(t)ii = 0; hh�(t)�(t0)ii = 2D�(t � t0); (37)

where D is a di�usion rate.

From Eq.(30) we have

z2(t) =

Z t

0

Gz(t � � )�(� )d� (38)

and from (29) we �nd

x2(t) =

Z t

0

Gx(t � � )[�(� ) � S!2
1x1z2(� )]d�; (39)

the transfer functions being

Gx(t) =
sin("t)

"
; Gz(t) =

sin(4"t)

4"

with the e�ective frequency

" = !1

p
Sz1:

The realization of stochastic averaging is based on

(37), which gives

hhx2(t)ii = 0; hhz2(t)ii = 0: (40)

For the mean{square deviation of the axial variable,

Eq.(38) yields
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c

hhz22(t)ii =
2Dt

16"2

�
1� sin(8"t)

8"t

�
: (41)

Using (41) in (39), we obtain the mean{square deviation for the radial variable

hhx22(t)ii =
2Dt

"2

�
1� sin(2"t)

2"t

�
+

+
2Dtx21
3600"2z21

�
1� cos("t)cos(4"t) +

sin(4"t)

4"t
[cos("t) � cos(4"t) � 16"tsin("t)]

�
: (42)

d
To analyze the behaviour of the found solutions,

take, for concreteness, S > 0 . For the negative S ,

the situation is symmetrical. Then Eq.(32) shows that

z1 is bounded from above by the maximal value (35)

and diverges to �1 as t! t0 by the law

z1(t) / �jt� t0j�2: (43)

Such a motion, con�ned from one side of the z {axis

and decon�ned from another side, can be called semi{

con�ned.

The radial variable in (36) diverges together with

the axial one following the law

x1(t) / jt� t0j�1=2: (44)

The axial divergence is much faster than the radial one,

so that the aspect ratio

�
x21(t)

z21(t)

�1=2
/ jt� t0j3=2 (45)

tends to zero, as t! t0 . Thus, the atomic cloud would

acquire the ellipsoidal shape stretched in the axial di-

rection.

For the random variable z2 , Eq.(41) gives

hhz22(t)ii / jt� t0j3 exp
�
4
p
3

t

jt� t0j
�
; (46)

as t! t0 . And from Eq.(42) we get

hhx22(t)ii / jt� t0j6 exp
�
4
p
3

t

jt� t0j
�
: (47)

The aspect ratio for the random variables,

� hhx22(t)ii
hhz22 (t)ii

�1=2
/ jt� t0j3; (48)

also tends to zero, as t! t0 . However, this anisotropy

is due to the preexponential factors, while the values

(46) and (47) diverge by the same exponential law, that

is the divergence is practically isotropic.

What kind of regime establishes in a trap, either

isotropic exponential expansion or anisotropic semi{

con�ned motion, depends on the relation between the

parameters ; D , and !1 . If 2D � !3
1 , then

the inuence of the random terms x2 and z2 is

small, and the atomic motion is characterized by the

regular terms x1 and z1 . In the opposite case, when

2D � !3
1 , the motion is governed by the random

terms. The crossover point between these regimes is

de�ned by the equality

2D = !3
1: (49)

Assuming that the di�usion rate D � kBT=~ we ob-

tain from (49) the crossover temperature

Tc =
~!3

1

kB2
: (50)

For the parameters typical of experiments[21;22],

Eq.(50) gives Tc � 10�7K .

V. Conclusion

Dynamics of neutral atoms in quadrupole magnetic

traps is analysed by solving the evolution equations

with the help of the method of scale separation[3�5].

This method is more general than the adiabatic ap-

proximation and, thus, permits to explore nonadiabatic

regimes of atomic motion. A new semi{con�ned regime
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of motion is discovered, when atoms are con�ned from

one side of the trap but are not con�ned from another.

During this regime, occurring at low temperatures, the

cloud of atoms acquires ellipsoidal shape stretched in

the axial direction and moving to one side of the z {

axis.

The semi{con�ning regime can be exploited for

studying the relative motion of one atomic component

through another. The possibility of the simultaneous

trapping of two di�erent atomic species, sodium and

potassium, has been recently reported[23] . The rela-

tive motion can be achieved if one of the components

is con�ned while another is semi{con�ned. A variety of

unusual phenomena can happen in mixtures with rela-

tive motion. For example, in such a binary mixture the

e�ect of conical strati�cation[24] can occur. Another

plausible application of the semi{con�ning regime is for

atom lasers that are being discussed in literature[25].

One of the necessary conditions for the e�ective opera-

tion of such a laser is the directed motion of atoms. The

semi{con�ning regime, providing the directed atomic

motion, can serve as a dynamical mechanism for the

atom laser.
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