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We have solved numerically the quasilinear Fokker-Planck equation which models the critical
power for lower hybrid wave current drive. An exact value for the critical power necessary for
current saturation, for tokamak current drive experiments, has been obtained. The nonlinear
treatment presented here leads to a final profile for the parallel distribution function which
is a plateau only in a part of the resonance region. This form of the distribution function is
intermediate between two well known results: a plateau through out the resonance region
for the linear strong-source regime, Dy gve > Deonr and no plateau at all in the resonance
region for the linear weak-source regime, Dygye < Deonr [1]. The strength of the external
power source and the value of the dc electric field are treated as given parameters in the

integration scheme.

I. Introduction

The principle of the lower hybrid current drive
(LHCD) was demonstrated in the Japanese tokamak
JFT-212) in this experiment ohmic heating was present.
The start up of a plasma without the aid of inductive
ohmic current was later proved possible by Kubo et
all®l. The theoretical basis for this scheme of current
generation was proposed by Fischl¥ and since then a
vast amount of research work both theoretical and ex-
perimental has been dedicate to this subject. See for
instance references [1] - [12], and the references cited

therein.

There are, in general, two approaches to study the,
radiofrequency (xf) current drive. In the first model,
the Fokker-Planck equation is solved for fixed radio fre-
quency diffusion coefficient, in this case one has to solve
a linear differential equation with respect to the distri-
bution function f, we call this model here non self-
consistent:"3. The second approach, considers the
Injected radio frequency power density fixed with given
spectral shape due to the antenna. In this approach,

the diffusion coefficient depends on the derivative of the

distribution function f, the differential equation that
models f then becomes nonlinear with respect to f, we
label this model as self-consistent with respect to the
external powerl1%.

Even though the non self-consistent model repro-
duce all the important dependencies of the LHCD pro- .
cess such as those on density, temperature, applied
power, and applied rf spectrum, both in a qualitative
and in a quantitative way, it cannot predict when the
generated current will stop growing with respect to the
applied rf power and when it will saturate at some max-
imum current level. Consequently, this model cannot
predict, in real experiments, since the critical power
is not known, the amount of external power that is
lost due to current saturation. Once the plateau has
been reached, the extra amount of power injected is lost
as far as the current generation problem is concerned.
Knowing the critical power level for current saturation,
it is possible to save power during the LHCD shot. Of
course, during the experimental phase of the current
drive, power can be lost without being much criticized,
since the main goal is to prove the viability of the pro-

cess. However, in the final phase of fusion research it
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will be compulsory to use the correct amount of power.
More power injected than the necessary will reduce the
real efficiency of the reactor. Note that the physical
efficiency does not account for this lost since it is de-
fined using the dissipated power and not the injected
one. Note that when 100% of the external power is
absorbed by the plasma the dissipated power is equal
to the injected one (Pg = [1/2mv?df/dtdv = Pyy),
however this is not the case in real LHCD tokamak

(1.5] and, in this way, the physical efficiency

experiments
is much lager than the real one. So, we can state that
the non self-consistent model is related to the absorbed
power and our self-consistent with the external injected
one. It is necessary to say that a self-consistent LHCD
theory in the sense of k|| spectrum has been already
developed by Bonoli and Engladel®l. However, the dif-
fusion coefficient, in this model, is not a functional of
f and therefore with this model one cannot access the
critical power information. So, our self-consistency has
a different meaning of the one reported by Bonoli and
Engladel®].

In order to access the critical power level, we use
a quasilinear Fokker- Planck model considering the
dependence of the velocity space diffusion coefficient
on the injected power levell’®=12]  We recall that
our self-consistent linear model usually considers two
regimes(!:14]:  the weak-source regime, where the
nonresonant collisional damping is much smaller than
the collisionless Cherenkov damping, and the strong-
source regime in which the reverse is true. In the first
case, the rf power level is low and it is not sufficient
to form a plateau in the resonant region of the dis-
tribution function and therefore the derivative 0f/0v
plays an important role. In the strong-source regime
a plateau is formed in the resonant region of velocity
space, therefore 3f/3;;|| ~ 0. In both cases, the system
of equations is linear which is easily treated. Examples
are abundant in the literature.

See, for instance, Ref. [10] and references cited
therein. The intermediate case is nonlinear and has
not been yet treated in the literature. This paper is or-
ganized as follows. In section I, we consider the basic
equations. In section III, we present the numerical re-
sults valid for tokamaks such as the JT-60 where LHCD
was first applied to a large tokamak. In the section IV

we obtain the critical power for current saturation. In
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section V, we present our conclusions. The cgs system

of units is used throughout this paper.

II. Fokker-Planck quasilinear equations

The one dimensional Fokker-Planck quasilinear sys-
tem of equation suitable to study, in a self-consistent
way, current drive and runaway electron flux, induced

by lower hybrid waves, is given by [9, 10]

oF 0 oF vy OF 0E
bl |+ 2 Ll _p=
o~ By [D F ’t}(?v”] T [”“F * 6'0“] avp
(1)
with
1 ‘ll'/2
D{F,t} = %;ﬁ/o d(cosf)cosOUx=1/0,  (2)
and
8UE : Veol
5 e ) Urs O
with
T oF
Imwk- = -é-cosgéT)ll—IUllzl/k (4)

The stable stationary solution of Equation (1) is
given by considering 8/t = 0. Thus, from the Equa-
tions (1)-(4) one finds the nonlinear eigenvalue problem
for A and F', that is:

(1 + ﬁ{F}vﬁ) 51)£" + (v — E’vﬁ’)F - fiv? =0 (5)

where E = E/vy; A= A/ve; D{F} = D{F}/v,.

Equation (5) is also suitable to study the critical
power for the current drive and enhancement of run-
away production processes. Here, F'(v)) is the quasi-
linear averaged parallel electron distribution function,
which follows a slow time scale evolution due to the
lower hybrid waves, binary collisions, and the dc¢ elec-
tric field. The term Uy is the spectral energy density
of the lower hybrid wave, Im(wk™) is the collisionless
Cherenkov damping coefficient, v.o; is the collisional
nonresonant damping and, finally, Sy = (V- }3'),; is the
term that models the external radio frequency power
sourcel10:11,16] where P is the Poynting’s vector.

The normalization is given by (un = unnormal-

ized quantities):
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i = vvine (6)
™ = kApe (7
7 = tw—1p, (8)
£ (o, va) flogvLNevy, )
E¥ = E(4xN,T,)Y? (10)
Ut = Up(dmN.TAp} (11)

Where vihe, Ape, Ne, and T, are the electron thermal
velocity, the electron Debye length, the electron plasma
frequency, the electron plasma density, and finally the
electron temperature, respectively.

We take the parallel distribution function F'(v)) as
defined by the relation

f('UJ_ , v”)Fm(U_L)F(v“)

]

S = { Sé(cos — costp)[H(k — k1) — H(k — k)] for by <k < ks
P =

0

where £ is the parallel wave number which is related to
v through the resonance condition and the dispersion
relation for lower hybrid waves. From Equations (2),
(3), (4) and (12) the diffusion coefficient D{F(v))} can

be written as follows(10]

Scosby [H(k— ko) — H(k — k1))
8

D{F(v)} = .
vﬁ [ycou — WCOSHk_z%]u;,:l/k]

(13)
From Equation (13) we see that the diffusion coef-
ficient D has a functional dependency on F(v)) and
therefore, substitution of Equation (13) into Equa-
tion(5) leads to a nonlinear differential equation for
F(v”). Note that g%ll < 0, always, since we are dealing
with dissipation and not with instability, therefore the
denominator of D{F(vy)} never vanishes. The relation
between v.,n and cosfy k“%%} determines the three
possible regimes (linear- linear, nonlinear, and linear-
plateau). Note that here v, 1s fixed but gTITI variles
with the rf power.
The dc electric field term is given elsewherel!9:21,22]

and A is the necessary particle source term since a sta-
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where Far(vy) is the fixed Maxwellian distribution
function and F(v)) is the part to be determined by
solving the nonlinear Fokker-Planck quasilinear system
of equations. This approximation is a rather reason-
able one to study the posed problem since the main
dynamics in the Cherenkov interaction occurs in the

parallel direction!t:1%:1718] It should be mentioned that

Bonoli and Engladel® have discussed the effect of tak- '

ing Tperp 7 Tparanier o1 the diffusion coefficient for the
linear regime. However, for the nonlinear case this is
still an open problem and it will be addressed in future

work since it is out of the scope of the present paper.

The external source S; is given by [9]

(12)

elsewhere

l

tionary distribution function involving a loss of particles

at plus infinity implies an equivalent source at v =0

[20, 21]. If no electric field is present (no runaway elec-
tron production), A = 0. More details about the terms
that appear in the nonlinear system can be found else-
where, for instance, Refs. [9, 10, 12]. In this paper, we
solve (5) numerically and plot /'(v;) and A as a func-
tion of the external lower hybrid source strength and
the DC electric field (A=A(S,E)), using the normaliza-
tion given by the Equations (6)-(11).

II1. Critical Power for rf Current Drive

It is in order now to define what we call here criti-
cal power for rf current drive. In convenient units the

needed power to sustain a rf current I defined as

I=6.7x 10%[10"°m 3| T}/ 2a®[m?];

where
+o0

i= F(op)oydyy

is given by:

by A
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P(MW) = 2.9 x 103 R[m]a?[m?|n®/?[10'*m 3T, [keV]S (14)

where S is defined in Equation (12). We can then write

the critical power as below. Note that the critical power -

|

is the minimum power needed for current saturation

and can be known once S, in known.

P.(MW) = 2.9 x 103V, [m®|T.[keV]N3/2S, (15)

With Vey < Vyeat = Ra? being the volume where the
rf wave power is deposited in the tokamak, ‘R’ is the
tokamak major radius, ‘a’ is the minor radius, and .S, is
the minimum normalized spectral amplitude for which
the current saturates. This value is given from the nu-
merical or analytical solution of Equation (5). Thus,
using the above formula and considering the JT-60U
data during the LHCD event reported by Ushigusa et
al.[S], we can see that the situation Py < P; occurs. It
means that the LHCD regime for the JT-60U, in this
event, is linear but, however, not very far from the sat-
uration level. The critical regime can be reached in this
case for No = 0.5 x 10**m=3; T, ~ 2keV; P,y ~ 2MW,
Ver & 1%V;ear. The real power deposition volume can
be obtained from the toroidal ray tracing theory®l24],

For ITER tokamak conception/??] we have also
P.; < P,. Note that our numerical calculation shows
the saturation level at § = 107 and for ITER it means
P. =~ 103MW. Thus, to match the’ Py ~ B0MW re-
~ ported in reference (23] for ITER LHCD, we have to
have S ~ 10~° which corresponds to a linear regime

according to our numerical results.
IV. Numerical results and discussion

Here, we present numerical results valid to model
the data for several different tokamaks, for example the
Japanese tokamak JT-60U. The normalized power S
varies from 10~° to 107/3 x 10~° and covers the JT-
60U LHCD regimel®13]. We solved the nonlinear eigen-
value Equation (5) using a fourth-order Runge-Kutta

‘method. From now on, we will write v instead of -

The results of the numerical evaluation of Equation
(5) for F(v) are shown in Figs. 1-4 as a function of the
normalized external power strength S and the electric
field E. In Fig. 1, we show the plot of the distribution
function F versus the velocity v for different values of
the external power strength and electric field intensity
E = 0. The resonance width considered was a typical
value for tokamaks Av = 2u. with v1 = 4. and
vs = Bvip.. Here, vipe is defined as vp, = \/m
The angle 8y was fixed as 45° [9, 10, 11].

It is seen from the figure that the formation of the
plateau starts at the lower limit of the resonance region,
precisely at the beginning of the nonlinear regime gov-
erned by the nonlinear differential, Equation (5). Then,
we see an intermediate plateau solution is which is not
maintained to the upper limit of the resonance region.
This intermediate plateau solution, is only possible in

the nonlinear regime reported here.

In Fig. 2, we have again the distribution function
F versus the velocity v but with a nonzero electric field
and we see that the intermediate plateau occurs at a
different level and also that it is formed slightly before
the E = 0 case for the same power level.

In Fig. 3, we show once more the distribution func-
tion F versus the ve- locity v but with the electric field
slightly higher than that of Fig. 2 and again we see the
intermediate plateau formation at a different level and
also it is formed slightly before than the E = 0 and E

= 0.01 cases, for the same power level.
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Figure 1. Normalized electron distribution function F ver-
sus normalized parallel velocity v for £ = 0 and: S =
107°, 10*/2107°, 102/*10~° 10~% 10*/°10° 10%/%10~° 10~ 7
10731070,
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Figure 2. Normalized electron distribution fimction F ver-
sus normalized parallel velocity v for ¥ = 0.01 and: S =
107°,10*/2107°, 102/210~° 10~° 10%/310~° 10%/%10~° 10~
107/%107°,
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Figure 3. Normalized electron distribution function I ver-
sus normalized parallel velocity v for £ = 0.01 and: S =
1072, 10*/2107°, 10%/3107° 10~® 10%/310~° 10%/10~° 10~7
10731070,
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Figure 4. Normalized electron distribution function F ver-
sus normalized parallel velocity v for £ = 0.05 and: S =
107°, 10121072, 10%/310~° 10~® 10*/210~° 10°/°10~° 1077

107/3107°.

In Fig. 4, we show the same results as in the
last three cases using the same parameters but with
a stronger applied electric field, E = 0.05. It is seen in
this case that there is no plateau formation at all. The
reason is that the Landau damping coefficient affected
by the applied electric field, We see the runaway tail

formation in the distribution function.
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Figure 5. Normalized parallel rf current density Jop versus
normalized rf wave power S, for £ = 0.00,0.01, 0.03, 0.05.

In Fig. 5, we present a plot of the current driven ver-
sus the external power strength for three values of the
electric field. We see from the plot that the saturation
level is shown explicitly without any extrapolation and
the critical power is shown to be S = 10~7. Note that
the power for the beginning of the plateau formation is
the same power for the beginning of current saturation;

that is, the critical power for rf current drive.
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Figure 6. Normalized runaway flux A versus normalized rf
wave power S, for E = 0.03, 0.05.

In Fig. 6, we consider the runaway production rate
A, treated here as a nonlinear eigenvalue of Equation
(5). Saturation can be seen from the plot. The flux
enhancement and the saturation level occurs around
S = 1077. The plot also shows that the enhancement
of the runaway flux induced by the presence of the lower
hybrid wave is larger the weaker the applied dc electric
field. The runaway flux in the case of E = 0.01 is not
presented since this flux is very small. Only a direct ac-
celeration by a DC electric field can generate runaway
flux. Radio frequency waves alone cannot do it, there-
fore the flux vanishes for E = 0. Radio frequency waves
do not cause runaway production since they interact
with electrons only in the resonance region.

Finally, we can assure that the intermediate plateau
shown in the plots is caused by the nonlinearity, since
the 1D result, for the electron distribution function.

1,4 does not ac-

presented in the basic paper Fisch!
count for the second solution of 6%5. Only the complete
plateau is a possible solution in the Fisch’s(*, model.
and. of course, in the all other non self-consistent

models{t.
V. Conclusions

In the present paper we have discussed the criti-
cal power problem for rf current drive, we call critical
power the minimum power needed for rf current sat-
uration. It can only be correctly accessed using the
nonlinear approach presented here since we can plot
current versus injected power. In the widely used non
self-consistent approach (D imposed) the efficiency is

known only via the dissipated power and therefore the
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information about the critical power remains unknown.
Note that S; was treated here with a certain degree of
freedom. This term might be interpreted in our model
as the source of the wave spectrum in a kind of “back-
body” model in which the plasma cavity is permeated
by radio frequency waves. So, Sy can be chosen by
the grill theory and modified in a parametric fashion in
order to evaluate its effects on the rf current™!®. The
knowledge of the critical power prevents the use of ra-
dio frequency power after the saturation level has been
reached, and this is important from the practical point
of view since high power microwave sources are expen-
sive and the knowledge of the minimum power needed
for current saturation is desirable.

It is very clear from our plots that the plateau for-
mation starts from the lower resonant velocities and
proceeds to the higher ones. This allows the possibility
of designing the antenna so that power can be saved if
one moves the power after the intermediate pla,te.au is
formed to the high velocity side of the resonance region.
This plateau formation feature is due to the structure of
the nonlinear equation. However, further investigation
of this kind of nonlinear equation is necessary. The for-
mation of an intermediate plateau is only possible due
to the nonlinearity. It is very clear from our plots that
the electric field affects the intermediate plateau forma-
tion considerably since it affects both the nonlinearity
of the differential equation and the Landau damping
process itself. For the same level of external applied
power the plateau is different for different fields. »

A complete view of the posed problem in this pa-
per requires further investigation which is left for a
future work. For example, a natural extension of
this investigation would be to introduce more real-

8,24] inhomogeneities!?4],

istic absorbed power densityl
two dimensions in velocity space!®] and the anomalous

Doppler interaction!®].
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