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We consider the quantum theoretic description analogous with the classical Brownian mo-
tion. A Phenomenological Master Equation is found, which gives the same description as
the classical theory up to the second moments of the dynamical variables. However, this
is not of the generic Lindblad form, and it cannot be the basis for a simulation algorithm.
The Master Equation is derived using the Born-Markov approach, and its form is discussed
for various cases. Especially the slow particle limit and the harmonic oscillator case are
investigated. In the slow limit, the uctuation-dissipation relation must be of the classical
form, except in very special ranges of the temperature. It may still be necessary to include
quantum corrections to the dynamics. For the harmonic oscillator, only a narrow range of
response frequencies of the reservoir are needed, and all cases seem possible. The approach
is related to the general Lindblad formalism, and it is found that, when its formal require-
ments are implemented, the ensuing equations lead to questionable physical consequences
which violate our physical intuition. The validity of the approach is discussed, and it is
compared with earlier works in the �eld. In particular, we �nd di�erences between the
conclusions deriving from strict reservoir assumptions and those following from models of
coupled oscillators. I suggest that these di�erences may be real and contain information
about the emergence of universal dissipative behavior in realistic physical systems.

I. Introduction

Linear dissipation is the most usual model of ir-

reversible dynamical time evolution. In classical me-

chanics, linear friction has become something of a

paradigm for damped motion. In connection with the

phenomenon of Brownian motion it became clear that

the dissipation must be accompanied by unavoidable

uctuations. The physical situation was clari�ed by

Einstein, whose theory later was developed into a full

edged mathematical description of randommotion. In

the classical domain, the phenomenon is well under-

stood and the mathematical description is mature and

sophisticated.

The quantum theory of dissipation is much less

clear. Schrodinger time evolution is manifestly unitary,

and no irreversible behaviour is found. In contrast to

the classical theory, the quantum description of time

evolution does not allow any simple phenomenologi-

cal extension to irreversible behaviour. Detailed the-

oretical investigations have been devoted to this prob-

lem, and by now we have some basic understanding of

the mechanism for the appearance of irreversibility and

the domain of validity of the various models proposed.

However, the area of linear friction still continues to at-

tract attention and new attempts at deriving the basic

equations.

The earliest attempts to derive quantum analogs of

Langevin equations was presented by Senitzky[1]. This

approach has been widely used in Quantum Optics, and

it does provide a useful and e�cient tool for solving

many problems in this �eld of physics. In many cases,

however, the ensuing equations are hard to solve, and in
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others the theoretical formulation is di�cult to justify.

A theory based on Master Equations is a viable alter-

native. In many cases these equations can be derived in

more transparent ways and their use is less risky than

the treatment of nonlinear operator equations.

The �rst dissipative quantum Master Equation

was derived for nuclear induction by Wangsness and

Bloch[2] using a perturbative approach. Their method

has later been used widely in many areas of physics. For

the quantum Brownian motion problem, however, the-

orists desired a more exact method. This can be seen as

an attempt to compete with the well developed math-

ematical theory of classical Brownian motion. Typi-

cal representatives of this view are the papers [3] and

[4]; there are however many others. A detailed investi-

gation of friction was carried out by Ullersmaa[5]. At

the same time, the problem was discussed widely in

the area of Quantum Optics, and e.g. Agarwal[6] de-

rived dissipative master equations both with and with-

out the rotating-wave-approximation. The early devel-

opments in the �eld of irreversible Master Equations

were reviewed by Haake[7], Agarwal[8], Dekker[9] and

Grabert[10].

In the beginning of the 1980s, Caldeira and Leggett

applied their functional integration approach to linear

friction[11] for the harmonic oscillator. This approach

was used by Hakim and Ambegaokar[12] to investigate

the case of a free particle. At the same time, many

other approaches were introduced and developed, see

e.g. [13] and [14]. The originator of the statistical me-

chanical theory, Ford, showed a renewed interest in the

problem[15;16], and the Quantum Optics community re-

considered the derivation of the Master Equations for

coupled harmonic oscillators in [17,18]. A �eld theory

approach was given by Unruh and Zurek[19].

The stochastic Master Equation was considered

from a di�erent point of view by the QuantumMeasure-

ment program[20�22]. This approach has been further

developed and applied to many problems, see e.g. [23-

25]. Here the Master Equation is awarded a position

as fundamental in quantum mechanics. By coupling an

external stochastic perturbation to the position vari-

able of the system, one localizes the particle in real

space, which is assumed to imply the transition to clas-

sical behaviour of quantum objects. The fundamental

role of irreversibility in the interpretation of quantum

mechanics is stressed by Zurek in the article[26].

The approaches described above came together

when it was realized that quantum systems modelled by

Markovian Master Equations can be represented terms

of ensembles of stochastically generated pure states.

This was �rst realized by Mollow[27] for spontaneous ra-

diative transitions. It has later been developed into an

e�cient computational method by Carmichael[28] and

Moelmer et al.[29]. The ensuing simulation algorithm is

eminently suitable for numerical computations, and it

has become very popular recently; for a discussion and

review see Ref. [30].

The simulationmethod is applicable to a wide range

of dissipative Master Equations of the Markovian type.

Lindblad[31] showed that a very general class of generic

equations are of this form, and it is commonly expected

that all physically relevant Master Equations fall into

this class. The theory is discussed together with ap-

plications by Davis in [32]. This approach has been

applied to the case of linear friction by Sandulescu and

Scutaru[33] and Gallis[34]. The latter gives a Lindblad

form Master Equation, which closely approximates the

classical Brownian motion theory.

In this paper, I wish to reconsider the case of lin-

ear dissipative motion in the quantum regime. The

basic philosophy of my approach is presented in Sec.

II together with its motivation. Section III discusses

a phenomenological quantumMaster Equation describ-

ing Brownian motion. Its formal derivation is discussed

in Sec. IV. Section V considers the slow motion limit,

and connects the result to the phenomenological de-

scription. The special case of a harmonic oscillator is

discussed in Section VI. A general coupling potential is

treated in Sec. VII, and the connection to the Lind-
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blad formalism is presented in Sec. VIII. Section IX

discusses the validity of the approach. A summary with

some conclusions is presented in Sec. X. Some technical

details are relegated to the Appendices.

II. Basic approach

In view of all the work summarized in the Intro-

duction, why do I want to reconsider the problem of

linear friction? My original motivation stems from our

work[35] on wave packet motion on adiabatic energy

surfaces in molecules. The introduction of dissipation

turned out to present unexpected numerical di�cul-

ties, that indicated some fundamental problem. Indeed,

many investigators have suggested that Brownian mo-

tion can exist only in the classical, high temperature

limit.

My attempts to resolve these di�culties made me

dissatis�ed with all discussions of Brownian motion

Master Equations, and the present paper reports the

results of my own e�ort. Many questions remain un-

clear, but it may be of interest to pinpoint the assump-

tions needed in the derivation and the obscure points

of the result.

Firstly, we must conclude that the standard Master

Equation used in Quantum Optics, see Refs. [37] and

[8], does not do for a particle moving in a real physi-

cal potential. It is derived only for the case when the

motion is purely harmonic, which is relevant for elec-

tromagnetic radiationmodes. In addition, it distributes

the dissipation equally between the variables x and p,

which is correct in case they are quadrature components

of the electric �eld. If x is a real position variable, it

is not to be damped; no physical mechanism can force

the system to the origin of the coordinate system.

Master Equations describing physical friction are

discussed in among others the Refs. [6], [9], [11], [17],

[18] and [19]. All these approaches do, however, use

the model of linearly coupled harmonic systems. The

problem is then formally exactly soluble, and the emer-

gence of the Brownian motion limit can be scrutinized

in detail. The method has the advantage of being to-

tally analytic, and the degree of mathematical rigour

introduced is determined mainly by the point of view

taken by the authors. However, choosing such a special

case, the authors are unable to distinguish the generic

features from those deriving from the solubility of the

model. Ford and Kac[15] concede this point, but con-

sider the derivations as existence proofs for such situa-

tions where the Brownian motion description is valid.

Considerable care has been devoted to the decay of

initial correlations between the reservoir oscillators and

the system of interest. The choice of initial state thus

becomes very important, and certain specially corre-

lated states have to be excluded. To complete the proof

one should show that these states form a set of negli-

gible measure; this seems intuitively obvious but it has

never been proved, to the best of my knowledge.

There is an alternative to soluble harmonic oscilla-

tor models, which is chosen in this work. We follow the

original idea of Wangsness and Bloch[2], who ascribe

the emergence of an irreversible master equation to the

weak coupling of the system of interest to a large reser-

voir which is kept in thermal equilibrium una�ected by

the inuence of its perturbation by the system of inter-

est.

The reservoir must be \large" in a very precise

sense, which was elucidated early by Fano[36]: The in-

teraction is weak and the calculation can be carried out

to second order in the coupling constant (Born approx-

imation). The ensuing perturbation of the reservoir

must be so small that no back reaction of the reservoir

on the system need be considered. Furthermore, the

perturbation must be so rapidly distributed over the

whole reservoir, that the time evolution lacks all mem-

ory e�ects (the Markov approximation). This requires

the reservoir to have a continuous spectrum, which in

a well understood manner leads to irreversible quan-

tum behaviour. A derivation using these assumption is

termed a Born-Markov calculation.

An additional consideration in this paper is the re-
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quirement of universality of the results obtained. This

derives from my opinion that dissipation is caused by

real physical reservoirs into which our systems of inter-

est are immersed. I look for cases where the damping

and di�usion constants are characterized only by the

properties of the reservoir and its interaction parame-

ters but do not depend on the conservative forces acting

on the system. This can be valid only in very particular

cases; thus we are looking for these.

Operationally the universality requirement implies

e. g. that we can suspend a particle harmonically in

the reservoir and determine the dissipative parameters

from its damping rate and its thermalmotion once equi-

librium has been achieved. These parameters can then

be used to predict its rate of descent, when the particle

is released in the same reservoir to fall under the inu-

ence of gravity. In the slow motion limit the prediction

should be valid.

In this paper we adopt the reservoir assumptions

uncritically. We regard the existence of reservoirs as a

paradigm and investigate the consequences of this as-

sumption. The reservoir acts like a stream of the ex-

ternal world owing past our system of interest. Every

time we interact with it, it has been reset to its initial

state by an external source which we have no inuence

over; never can we retrieve the information once it has

been transferred to the reservoir.

I assume the Born-Markov calculation to be valid,

and look at the conditions necessary to obtain agree-

ment with the classical Brownian motion behaviour.

This contrasts our treatment to that of the soluble mod-

els, which can be considered to obtain their results as

su�cient conditions for the validity of the Brownian

motion description. The detailed validity of the reser-

voir assumption for special cases of physical interest is

left for future discussions.

By choosing the approach outlined above, we can

ask certain questions not possible within the framework

of coupled oscillator models. We can see how generic

their results are. We can ask why the friction is linear

in velocity? We can look for the conditions of validity

of the Brownian motion description and whether it can

stay valid in the quantum domain of motion. Finally

the connection to the Lindblad theory and its recent

developments can be investigated. These problems are

discussed in the present paper.

III. The phenomenological theory of friction

Linear friction is, perhaps, the best understood clas-

sical dissipative e�ect. The theory of Brownian motion

is well developed, it describes the physics eminently and

its mathematical apparatus is precise and sophisticated.

Its most concise statement for a particle moving in the

potential U (x) is in terms of the Langevin equations

_x = � p

m

_p = �gp� @U (x)

@x
+ L(t); (3:1)

where the stochastic Langevin force L(t) satis�es the

conditions

< L(t) >= 0

< L(t)L(t0) >= 2D�(t � t0); (3:2)

all higher order correlation functions factorize in terms

of these two. The process is taken to be Gaussian. This

is a complete physical description of Brownian motion

in the classical case.

We want to extend the theory of Eqs. (3.1-2) to

quantum mechanical motion in a consistent and phys-

ically acceptable way. We already concluded that the

form used in Quantum Optics is not correct. Thus a

di�erent Master Equation is needed.

It is simple to f ind the appropriate f orm of the

Master Equation. We write (with Planck's constant ~

set equal to unity)

_� = �i[H; �]� i


2
[x; [p; �]+]�D[x; [x; �]]: (3:3)

This is supposed to hold for some class of Hamiltoni-

ans H; the restrictions on the deterministic motion will
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be discussed below. The symbol [; ]+ denotes the anti-

commutator. It is easily veri�ed that (3.3) reproduces

the average values of the classical equations (3.1), and it

also gives the correct equations for the second moments

c

d

dt
< x2 >=

1

m
< (xp+ px) >

d

dt
< (xp+ px) >= � < (xp+ px) > +

2

m
< p2 > �2

D
x
@U

@x

E
(3:4)

d

dt
< p2 >= �2 < p2 > +2D

D�
p
@U

@x
+
@U

@x
p

�E
:

d
Except for the operator ordering, these equations are

exactly those that follow from the classical Langevin

equations (3.1). Written out for the Wigner function,

Eq. (3.3) also gives the dissipative terms in complete

accordance with the classical Fokker-Planck equation.

For this reason, I choose to call the equation (3.3) the

Phenomenological Master Equation. This does not im-

ply that it cannot be derived, it can, but that it leads to

the same averaged equations of motion for the second

moments as the classical Langevin system.

In the Lindblad form of the dissipative time

evolution[31] the density matrix equation must be of

the form

_� = �i[H; �]�
X
q

�2q(C
y
qCq�+�C

y
qCq�2Cq�C

y
q ) ; (3:5)

where the coe�cients �2q are explicitly positive, and q

goes over some range of values. The advantage with

this form is that it can always be subjected to a Monte

Carlo simulation for the state vectors[28�29].

In order to compare the Phenomenological Master

Equation with the Lindblad form (3.5), we introduce

the creation and annihilation operators according to

x =
1p
2m!

(b+ by)

p =

r
m!

2

�
b� by

1

�
: (3:6)

Some transformations of the friction term in Eq. (3.3)

and the use of (3.6) give the form

_� = �i[H; �]� i


4
[(px+xp); �]� 

4
(byb�+ �byb� 2b�by)

+


4
(bby� + �bby � 2by�b)�D[x; [x; �]] : (3:7)

The �rst two terms on the �rst line describe Hamilto-

nian time evolution including a renormalization term

from the dissipative mechanism. The last term, the

di�usion term, is of the Lindblad form as is the last

term on the �rst line. However, the �rst term on the

second line is not, it occurs with a negative probability,

and no simulation can be based on it. We have also

been unable to �nd any other splitting of the Master

Equation (3.3) which would allow a simulation. The

phenomenological form of the Master Equation is not

of the generic Lindblad form.

The dissipative mechanism renormalizes the Hamil-

tonian. If we, for illustrative purposes, write out the

result for a harmonic oscillator, we have

Hnew = H +


4
(xp+ px)

= 
byb+ i


4
(byby � bb): (3:8)

This can be diagonalized by the canonical transfor-

mation to new creation and annihilation operators a,

ay by setting

b =
p
i(cosh(�=2)a � sinh(�=2)ay) : (3:9)
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where the parameter � is determined by

tanh � =


2

: (3:10)

The resulting Hamiltonian is

Hnew =

r

2 � 2

4
aya : (3:11)

This gives the correct oscillational frequency of a

damped oscillator as derived in the classical theory.

Thus the Phenomenological Master Equation contains

this result too.

There are, however, many questions relating to the

Master Equation (3.3). How can it be derived, what is

its range of validity and why is it not of the Lindblad

form? The last question relates to its inability to form

the basis for a state vector simulation.

IV. Derivation of Master Equations

Following the discussion in Sec. II, we immerse our

system of interest into a vast reservoir, which we as-

sume to be totally una�ected by the interaction. We

write the Hamiltonian of the total system in the form

Htot = H +HR +Hint : (4:1)

Here H is the Hamiltonian for the system of interest,

HR that of the reservoir, and the interaction is taken

to be of the form

Hint = �V (x)� : (4:2)

Here � is a coupling constant and � is an operator on

the reservoir degrees of freedom. More general forms

could be introduced by adding further terms coupled

to other reservoir operators, but no new physical con-

siderations would emerge.

The system of interest is taken to be a simple par-

ticle with the Hamiltonian

H =
p2

2m
+ U (x) : (4:3)

The Heisenberg equations of motion are then

_x = �i[H;x] = p

m

_p = �i[H; p] = �@U
@x

� �
@V

@x
� : (4:4)

The last term here serves as the Langevin term in

the classical problem (3.1). It transmits the uctua-

tions of the reservoir to the motion of the svstem of

interest.

From the equations (4.4) we see immediately that

the coupling potential V (x) should not depend on the

momentum p; this would give a correction term to the

equation for _x, which would not admit an interpreta-

tion in terms of a random force. No physical reservoir

is expected to make the particle jump in space, it can

only provide momentum kicks.

The quantum analog of the strict Langevin case

(3.1) can only be achieved by taking

V (x) = x; (4:5)

when the Langevin force in (4.4) becomes independent

of position. This is an important special case which I

will refer to as the Langevin case in the following. I do,

however, not attach any signi�cance to the Heisenberg

point of view from now on; I will concentrate on the

derivation of a Master Equation. Especially, no quan-

tum Langevin equation is discussed or derived.

The derivation of the Master Equation is carried

out to second order in the coupling constant � and by

assuming that the correlation time �c of the reservoir

is so short that no memory e�ects can be transmitted

through the reservoir; this is the Born-Markov approx-

imation, which is taken for granted. It assumes the

reservoir band width B(/ ��1c ) to be the largest fre-

quency in the problem. The Master Equation can be

obtained by many derivation methods, but one which

is convenient for our purposes is given in Appendix I.

The reader only interested in the result, need not look

up the details of the calculation.

The result (I.19) of the derivation can be written
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c

_�(t) = i
�2

2
[V (t); [V�(t); �(t)]+]� �2[V (t); [VD(y); �(t)]] ; (4:6)

d

where the inf luence of the reservoir in the Master Equa-

tion is through the convoluted operators

VD(t) =

Z t

0

d�D(� )V (t� � )

V�(t) =

Z t

�1

d��(� )V (t� � ) : (4:7)

We call the equation (4.6) the proto-masterequation.

All operators in Eq.(4.6) are taken in the interaction

picture with respect to the system HamiltonianH, and

going back to the Schr�odinger picture, we obtain the

system time evolution generated by H as in the Master

Equation (3.3). The operators V are then given in the

Schr�odinger picture. The inuence of the reservoir is

seen in the correlation functions. The uctuations of

the operator � are described by D(� ) and its linear re-

sponse by the susceptibility �(� ). Both are assumed to

decay to zero after times larger than the reservoir cor-

relation time, and the time dependence from the upper

limits in the integrals Eqs. (4.7) disappears from the

equation. Thus it should be used only over times t

clearly longer than �c.

The time dependence in the potential V (t) is actu-

ally through the position variable

V (t) = V (x(t)): (4:8)

and its time scale relates to the time scale of the dy-

namic evolution in the system of interest. This time

dependence is slow, i. e. it contains only small frequen-

cies in its Fourier spectrum, when the motion x(t) is

slow enough. This is taken to be equivalent with a low

energy content in the dynamic degrees of freedom. We

consider this case in the next section.

V. The slow motion limit

We expect the linear friction to appear in a physical

system when the motion is slow enough that only small

frequency components are needed to describe the time

evolution. Then an expansion in the frequency of the

Fourier transf orm variable ! is expected to be valid and

we can simplify the Master Equation. In Appendix II

we derive some formal properties for the reservoir cor-

relation functions and, in particular, the Fourier trans-

form of the susceptibility is found to be of the form

�(!) =

Z +1

�1

d!0

2�

1

!0 � ! � i�

1X
j=1

aj!
02j�1

= �0(!) +
i

2

1X
j=1

ai !
2j�1 : (5:1)

The operators (4.7) can now be expressed in terms of

the coe�cients aj :

We �nd with (4.7) and (5.1)

c

V�(t) =

Z 1

�1

d� �(� )V (t� � ) =

Z +1

�1

d!

2�
e�i!t�(!) ~V (!)

= V 0
� +

i

2

1X
j=1

aj

Z +1

�1

d!

2�
e�i!t!2j�1 ~V (!)
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= V 0
� +

1

2

1X
j=1

aji
2j

�
@

@t

�2j�1

V (t)

= V 0
� �

1

2
a1
@V

@t
+ O

�
@

@t

�3

: (5:2)

d

In the slow motion limit, we can show that the term

V 0
� gives only a renormalization of the Hamiltonian time

evolution. We write

V 0
� = P

Z +1

�1

d!0

2�
A(!0)

Z +1

�1

d!

2�

~V (!)

!0 � !
e�i!t : (5:3)

We now remember that the time dependence of V (t)

derives from the Heisenberg evolution of x(t), and we

can conclude that in the slow motion limit the spec-

trum of ~V (!) can be taken to be much narrower than

that of the bath response A(!): Thus, over most of the

integration range, we can assume that !0 is much larger

than ! in the denominator. Then we obtain

V 0
� = P

Z +1

�1

d!0

2�

A(!0)

!0
V (t) = �V (t) : (5:4)

The principal value integral exists because of the ex-

pansion (II.9). In the equation of motion (4.6), this

contributes a term

i
�2

2
�[V; [V; �]+] = i

�2

2
�[V 2; �] : (5:5)

This is clearly an energy shift by the amount

�E = ��
2

2
�V 2 = ��

2

2
V
D 1
!

E
V : (5:6)

The latter form represents the origin of the factor

� in symbolic form. The similarity of this energy shift

with a second order perturbation result is obvious. In

the following, we neglect this shift.

Using the formula (II.8) and proceeding in the same

way as before, we obtain

c

VD(t) =

Z 1

0
d�D(� )V (t� � ) = V 0

D +
1

2

Z +1

�1

d!

2�
e�i!td(!) ~V (!)

=
1

4

Z +1

�1

d!

2�
e�i!t coth

�
�!

2

� 1X
j=1

aj!
2j�1 ~V (!)

=
1

4

Z +1

�1

d!

2�
e�i!t

�
2

�!
+
�!

6
+ :::

�
(a1! + a2!

3 + :::) ~V (!)

=
a1
2�

V (t) � 1

2

�
a2
�

+
�a1
12

�
d2

dt2
V (t) + ::: : (5:7)

d
In these calculations we have neglected the term V 0

D .

In the slow motion limit this can be justif ied by writing

V 0
D = P

Z +1

�1

d!0

2�
d(!0)

Z +1

�1

d!

2�

~V (!)

!0 � !
e�i!t

' P

Z +1

�1

d!0

2�

d(!0)

!0
V (t) : (5:8)

The principal value integral vanishes exactly be-

cause d(!) is an even function.

If we neglect time derivatives higher than the �rst,

we obtain the Master Equation

_� = �i�
2a1
4

[V; [ _V ; �]+]� �2a1
2�

[V; [V; �]] (5:9)
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If we choose the Langevin case (4.5), i.e. V (x) = x, we

�nd directly from Eq. (5.9)

_� = �i�
2a1
4m

[x; [p; �]+]� �2a1
2�

[x; [x; �]] : (5:10)

Going back to the Schr�odinger picture, we �nd that this

is the PhenomenologicalMaster Equation (3.3) with the

damping coe�cient

 =
�2a1
2m

; (5:11)

and the di�usion coe�cient is

D =
�2a1
2�

; (5:12)

Combining these we obtain the correct Einstein relation

D =
m

�
= mkT : (5:13)

Because we have used an expansion in the variable

�! =
!

kT
� B

kT
; (5:14)

we have obtained a high temperature expansion. A

small value of �B is su�cient in order to get the sim-

ple results (5.7) and (5.8). In the slow motion limit,

however, the transform of the potential ~V (!) is sup-

posed to provide a frequency cut-o�, and we may hope

that the results remain valid also for �B >> 1. If we

have to retain higher order ! terms in the expansions in

Eqs. (5.2) and (5.7), we obtain higher derivatives with

respect to the potential. Thus even in the Langevin

case (4.5) we obtain relaxation dependent on (d3x=dt3),

which is known from radiative damping to cause prob-

lems. For the di�usion we obtain terms proportional

to (d2x=dt2). The inuence of such terms has not been

discussed to the best of my knowledge.

VI. The harmonic oscillator

Most derivations of Brownian motion Master Equa-

tions have treated the harmonic oscillator. In order to

see what happens we want to look how this case �ts into

our approach. We choose to treat the problem only in

the Langevin case (4.5), when all results can be ob-

tained explicitly. In this case, we can proceed directly

from Eqs.(4.6) and (4.7).

The time dependence of the potential is determined

by the Heisenberg time evolution in the system of inter-

est, and for the harmonic oscillator we have the equa-

tions

_x =
p

m

_p = �m
2
0x : (6:1)

From these we obtain the expression

x(t� � ) = x(t)cos
0� � p(t)

m
0
sin
0� (6:2)

When this is inserted into Eqs. (5.7), and we use the

properties of D(� ) and �(� ), we �nd the formulae

c

Z 1

0

d�D(� )cos
0� =
1

2

Z 1

�1

d�ei
0�D(� ) =
1

2
d(
0) (6:3)

Z 1

0

d��(� )sin
0� =
1

2i
[�(
0)� �(�
0)] = �"(
0) =

A(
0)

2
; (6:4)

because �(�
) = �(
)�; see Appendix II.

In addition to these we have two integrals involving principal values. The �rst one is

Z +1

�1

d��(� )cos
0� =
1

2
[�(
0)� �(�
0)] = �0(
0) : (6:5)

This goes together with the term proportional to

[x; [x; �]+] = [x2; �] ; (6:6)

which clearly gives a shift of the oscillational frequency of the harmonic oscillator.

We also have the term
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Z 1

0

d�D(� )sin
0� =
1

2i

�Z 1

0

d�D(� )ei
0� �
Z 1

0

d�D(� )e�i
0�

�
: (6:7)

Using the result from Eq.(II.12) in Appendix II, we �nd

Z 1

0
d�D(� )sin
0� = P

Z +1

�1

d!

2�

d(!)


0 � !
: (6:8)

d

For very small oscillator frequencies 
0, this goes to

zero like in Eq.(5.8). It also vanishes for 
0 going to

in�nity. In the intermediate region, it does not neces-

sarily vanish.

The e�ective range of integration is determined by

the correlation time �c of the reservoir. This is sup-

posed to be much shorter than the oscillator period,

and we can expand the trigonometric functions in the

integral in (6.8). This is consequently seen to be small

of the order


0�c / �c
T0

� 1 : (6:9)

The �nite value of the integral (6.8) is something of an

embarrassment, because the integral stands in front of

a commutator expression of the form [x; [�; p]]; which,

in the Wigner function Master Equation gives a mixed

derivative in the position and momentum variables. It

is no comfort that the coe�cient of such a term may be

small; however small it is, it makes the di�usion tensor

nonpositive. The exact role of such mixed derivatives

in Master Equations is still obscure.

Collecting the results into the Master Equation (4.6)

we obtain the result

c

_� = �i�
2[x2; �]� i
�2�"

2m
0
[x; [p; �]+]� �2d(
0)

2
[x; [x; �]] (6:10)

d
In the Schr�odinger picture, this is exactly the form

of the Phenomenological Master Equation (3.3) with

the energy shift

�
2 = ��
2

2
�0(
0) ; (6:11)

and the damping

 =
�2�"(
0)

m
0
(6:12)

and di�usion coe�cient

D =
�2d(
0)

2
(6:13)

The term proportional to the (small) quantity (6.8) is

omitted.

Using Eqs. (II.7) and (II.11) we obtain the

uctuation-dissipation relation

D =
m
0

2
coth

�
�
0

2

�
(6:14)

in the high temperature limit, this reduces correctly to

the result (5.13).

VII. The non-Langevin case

We noticed in Sec. III that we needed the potential

to be of the form V (x) = x to obtain the quantum coun-

terpart of the simple Langevin equation (3.1). Here we

are going to consider the e�ects of the more general

potential

V (x) =
X
q

eiqxVq : (7:1)

The reality of V (x) implies that the q-sum is symmetric

around q = 0:
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We derive the Master Equation only in the slow mo-

tion limit of Sec. V, which is given in Eq. (5. 9). There

we need

_V =
X
q

iqVq

�
eiqx

p

m

�
s
: (7:2)

where (:::)s means the symmetrically ordered product.

Introducing the notation

g =
�2a1
2

; (7:3)

we can write the Master Equation (5.9) in the form

c

_� = � g

�

�
V;

��
1 + i

�

2

@

@t

�
V � � �

�
1� i

�

2

@

@t

�
V

��
(7:4)

Using the expansions (7.1) and (7.2) we �nd

_� = � g

�

X
q;q0

VqVq0 [eiqx; (e��q
0p=2meiq

0x�� �e�q
0p=2meiq

0x)] ; (7:5)

where we have used the fact that the term proportional to p is supposed to be used in the slow motion limit only.

We now introduce some further assumptions about the potential (7.1). We postulate that it has randomly

distributed phases so that we can take an ensemble average in the Master Equation. A weak form of translational

invariance assumes the ensemble average V (x)V (x0) to be a function of (x� x0) only. We �nd

VqVq0 =

Z Z
dxdx0

(2�)2
e�i(qx+q

0x0)V (x)V (x0)

= �(q + q0)

Z
dx0

2�
e�iqx

0

V (0)V (x0)

= V 2
q �(q + q0) : (7:6)

In addition, it follows from Eq.(2.1) that the distribution of q values is symmetric

= V 2
q = V 2

�q : (7:7)

Introducing these assumptions into the Eq.(7.5) we obtain

_� = � g

�

X
q

V 2
q (�e

��qp=2m � eiqx�e��qp=2me�iqx � eiqxe��qp=2m�e�iqx + e�qp=2m�) : (7:8)

d

Using the relation (7.7) we can change the sign

of the summation variable in Eq.(7.8) and obtain the

equation

_� = � g

�

X
q

V 2
q (C

y
qCq� + �Cy

qCq � 2Cq�C
y
q ) (7:9)

with

Cq = eiqxe��qp=4m : (7:10

In these equations we have neglected some commu-

tators between � and p in order to obtain the result.

This approximation is discussed in Appendix III.

The result (7.9) is clearly of the Lindblad form. The

operator (7.10) shifts the momentum by the amount

q, which is thus a random kick transmitted from the

reservoir to the system of interest. A discussion of this

situation has been given by Dalibard and Castin[38].

To see that (7.9) is consistent with the phenomeno-

logical theory of damping we calculate the expectation

values
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d

dt
< x >= 0

d

dt
< p >=

2g

�

X
q

V 2
q qhe��qp=2mi

=
2g

�

X
q

V 2
q q

�
1� �q

2m
< p >

�

= � < p > ; (7:11)

where the damping coe�cient is

 =
g

m

X
q

V 2
q q

2 � 0 : (7:12)

For small momenta < p >, this expansion is assumed

valid; see, however, the discussion in the following sec-

tion.

Assuming that the momentum distribution V 2
q is

su�ciently short ranged in momentum space, i. e. the

potential is exceedingly smooth, we can express every-

thing using its second moment as in Eq. (7.12). We

expand the terms in the Master Equation (7.9) and ob-

tain

[V; [V; �]] =
X
q

V 2
q [e

�iqx; eiqx; �]]

=
X
q

V 2
q q

2[x; [x; �]] (7:13)

[V; [ _V ; �]+] = � i

m

X
q

V 2
q [e

iqx; [(peiqx); �]+]

=
1

m

X
q

V 2
q q

2[x; [p; �]+] : (7:14)

Inserting these expressions into (7.9) and going to the

Schr�odinger picture, we obtain the phenomenological

master equation with the damping given in Eq.(7.12)

and the di�usion coe�cient

D =
g

�

X
q

V 2
q q

2 : (7:15)

As a check on the consistency of the procedure, we note

that the results (7.12) and (7.15) satisfy the correct

form (5.13) of the uctuation-dissipation relation. This

concludes our derivation of the Master Equation for the

general non-Langevin case.

The dimensionless expansion parameter in this sec-

tion has been the quantity in (7.11) which we can write

as

�
�qp

2m

�2

=

�
q2=2�

kT

��
p2=2m

kT

�� �
m

�
; (7:16)

where � is a typical mass relating to the particles con-

stituting the reservoir. Near thermal equilibrium, the

�rst two factors on the right hand side of (7.16) are

of order unity and the expansion parameter is small if

the reservoir particles are much lighter than the sys-

tem of interest. This is just the limit when the classical

Brownian motion prevails.

We have used the potential expansion (7.1) to de-

rive the Master Equation in the form (7.9). In order to

obtain the Langevin limit we should let V (x) equal x,

Eq. (4.5), which implies

Vq = i
@

@q
�(q) : (7:17)

With this result, it is di�cult to make sense of the as-

sumption (7.6), but the derivations in (7.13) and (7.14)

prove that it su�ces that Vq is short ranged in mo-

mentum space, i.e. the reservoir delivers only small

momentum kicks to the system.

However, another problem arises from non-Langevin

forms of the potential V (x). This derives from the loss

of translational invariance of the reservoir force; the in-

uence of the reservoir depends on position. Only on

the average, can we restore the invariance. This changes

the relationship between the system and the reservoir,

and it is not obvious to what extent the physics is

changed from the pure Langevin case. In the litera-

ture, see e.g. Ref. [16], there are several methods to

restore the translational invariance; it remains to be

seen if such modi�cations of the theory will a�ect the

physical conclusions.
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VIII. Connection with the Lindblad form

In this section we want to compare the results of the

previous section with the general Lindblad form (3.5).

In a recent publication[34] Gallis has derived a Lindblad

form compatible with the result we desire for a Brown-

ian motion with linear damping. I start by restating his

conclusions in the notation used in the present paper.

Gallis uses the Lindblad form (3.5) with �q = 1 and

Cq =
1p
2
eiqx(A(q) �B(q)qp); (8:1)

where A(q) and B(q) are even complex functions of

their argument q. The form is supposed to be an ex-

pansion in the momentum variable p, and it is hence

compatible with our low energy expansion in Sec. V.

The conditions imposed by Gallis on the Lindblad

form determine the dissipative terms in the Master

Equation (Gallis[34] Eq.(3.15))

c

_� = �
X
q

jA(q)j2(�� eiqx�e�iqx)�
X
q

Re(A�(q)B(q))qeiqx [p; �]+e
�iqx

�1

2

X
q

jB(q)j2q2(p2� + �p2 � 2eiqxp�pe�iqx) �
X
q

Im(A�(q)B(q)))qeiqx [p; �]eiqx (8:2)

In order to compare this result with our work we rewrite the dissipative part of the Eq.(7.8) in the form

_� = �2g

�

X
q

V 2
q (� � eiqx�eiqx) � g

2m

X
q

V 2
q qe

iqx[p; �]+e
�iqx ; (8:3)

d

in order to obtain this form we have used the evenness

of respect to q. In Appendix III, we discuss the inu-

ence of noncommutativity of p and x on this equation

We �nd that the �rst two terms on the right hand

side of Eq.(8.2) reproduce the result (8.3) if we set

jA(q)j2 = 2g

�
V 2
q ;

Re(A�(q)B(q)) =
g

2m
V 2
q ; (8:4)

The latter condition is most easily satis�ed by the

choice

B(q) =
�

4m
A(q): (8:5)

This has the advantage that we have

Im(A�(q)B(q)) = 0 ; (8:6)

leading to the vanishing of the last term in the Master

Equation (8.2).

With the choices (8.4) and (8.5) we can compare

the momentum damping constant  with that derived

in Gallis Eq. (3.13)

 = 2
X
q

Re(A�(q)B(q))q2

=
g

m

X
q

V 2
q q

2 ; (8:7)

which agrees with the result (7.12). Gallis also derives

the equation for the kinetic energy of the motion in the

form

d

dt
< p2 >=

d

dt
< p2 > +

d

dt
h(p� < p >)2i (8:8)

= �� < p2 > +2D :

The di�usion coe�cient D is given by

D =
1

2

X
q

jA(q)j2q2 = g

�

X
q

V 2
q q

2 (8:9)

in agreement with Eq. (7.15).

For the energy damping constant � Gallis obtains

the expression
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� = 2 �
X
q

jB(q)j2 = 2 � �g

8m2

X
q

V 2
q q

4

=
2g

m

X
q

V 2
q q

2

�
1� �

16m
q2
�

: (8:10)

The �rst term in (8.10) is the expected 2, but the

correction term is unexpected. Assuming that q0 is

some typical momentumexchange in a single encounter

with the reservoir, we estimate the correction term to

be of the order

q20�

2m
=

�
q20=2�

kT

��
�

�

�
: (8:11)

where � is a typical mass of the reservoir particles; see

Eq.(7.16). As the quantity (8.11) is proportional to the

expansion parameter of the theory, (7.16), we expect

the correction term in (8.10) to be small. The same

conclusion follows, of course, if we assume the poten-

tial V 2
q to be short ranged as in the previous section.

Finally we need to consider terms proportional to

higher powers of p in Eq. (8.2). They are necessary

to assure that the Master Equation is of the Lindblad

form, but they have no counterpart in our result (3.3).

Their form is, however, such that no corrections of or-

der < p2 > or higher orders appear in the evolution

equation (7.11) for the expectation value < p >. This

is reassuring, because when < p > goes to zero, these

terms would start to dominate in the Eq. (7.11) after

long enough times. To see the cancellation explicitly

we evaluate their contribution as

c

d

dt
< p >= �1

2

X
q

jB(q)j2q2Tr[p(p2� + �p2 � eiqxp�pe�iqx)]

= �
X
q

jB(q)j2q2Tr[p(p� eiqxpe�iqx)p�]

= �
X
q

jB(q)j2q3Tr(p2�) = 0 ; (8:12)

d

because of the symmetry of B(q).

The Gallis result, thus reconciles our results with

the Lindblad form. It also gives exactly the correct lin-

ear damping in the equation of motion for < p >, which

is a requirement for the Brownian motion theory. It can

also be seen to give no contribution to the equation of

motion for < x > as is required.

The Gallis form of the Master Equation does, how-

ever, not satisfy the requirements (3.4) for the second

moments exactly. Already the damping rate of < p2 >

was seen to contain a correction term in Eq.(8.8). This

does not, however cause any complications. Likewise

the equation for < (xp+ px) > is found to be damped

at the rate  in accordance with (3.4). However, the

second moment of the position derives a rate of change

from (8.2) which becomes

d

dt
< x2 >=

�

8m2

X
q

V 2
q q

2 =
�

8



m
� 0 : (8:13)

This contributes a di�usive motion to < x2 >, which is

small in the high temperature limit.

One can easily see that the presence of the term

(8.13) does cause some di�culties. If we look at the

harmonic oscillator case, the equations (3.4) possess the

steady state solution

< (xp+ px) >= 0

< p2 >

2m
=

1

2
kT =

1

2
m
2 < x2 > ; (8:14)

which agrees with the equipartition and the virial re-

sults. With the term (8.13), however, the only steady
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state solution possible violates the virial theorem and

the classical equipartition for the oscillator. If these are

enforced, no steady state solution is possible.

We have found that the Gallis result gives a Master

Equation in the Lindblad form and provides the correct

equations for the �rst moments of the dynamical vari-

ables. The second moments are, however, not entirely

correct, and, in particular, the di�usive increase of the

second moment of the position variable leads to un-

wanted physical consequences; this either violates some

simple physical relations or destroys the behaviour at

large times for any temperature. For high temperatures

this problem will occur at later times only.

IX. Discussion of validity

At many points in the derivations above, I have re-

marked on the possible validity of the ensuing results.

It would be desirable to identify exactly those situa-

tions where the results hold, but unambiguous conclu-

sions seem hard to obtain. In this section I will try

to present the various cases where it seems likely that

a Brownian motion description may be approximately

adequate.

Figure 1. The �gure shows the simple form of the reservoir
spectral density A(!) assumed in this paper. The spectrum
is linear up to the frequency ! = A and stays constant after
that. The cut-o� is at the value ! = B >> A. In a phys-
ical reservoir we expect the elementary excitations to give
structure to the spectrum in the range A� B.

The properties of the reservoir are all contained in

the spectral density function A(!). We have shown

that this has to be linear in ! near zero, and we assume

that it has an upper cut-o� B determining the reservoir

correlation time �c. For the sake of the arguments, we

consider the simplest analytical form satisfying these re-

quirements, viz. that in Fig. 1. The spectrum rises lin-

early to some value ! = A, after which it stays constant

up to the cut-o� ! = B >> A. In real physical sys-

tems the behaviour near A must be smooth and there

will appear some structure in the region A < ! < B.

Most physical properties are determined from a

comparison between the energy of the motion, let us

characterize this by some typical largest frequency 
,

and the behaviour of the reservoir uctuations de-

scribed by the function (II.11)

d(!) =
1

2
coth

�
�!

2

�
A(!) : (9:1)

In addition to the parameters A;B and 
, we also

have the additional thermal parameter kT ; the physical

behaviour depends on the relations between these.

In Fig.2, we see the function d(!) for the cases

kT = A; kT = 1
2A, kT = 1

3A and 1
20A. We can see

that for kT � A, no at region for ! > A exists; the

behaviour is dominated by the thermal factor in (9.1).

Because of the cancellation of the frequency dependence

near zero, there always exists a linear regime for

! ' kT � A : (9:2)

Fig. 3 demonstrates this in the low frequency region

for the case kT = 1
6A. The at region is well below the

value A, and the behaviour is very smooth near zero

frequencies.

Figure 2. This shows the thermal uctuation spectrum of
the reservoir d(!). It consists of the spectral density shown
in Fig.1 multiplied with the thermal factor as in Eq. (9.1).
The parameter labelling the curves is (�A=2):
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Figure 3. The uctuation spectrum d(!) is shown for the
special case (�A=2) = 3: This represents a typical case when
the thermal energy kT (indicated in the picture) is much
less than the linear part of the spectrum ! < A. The low
frequency region o�ers a rather invariant response to low
energy excitations.

The uctuations of the reservoir guarantee that the

kinetic energy does not fall below the thermal one. In

all physical cases we expect that


 � kT : (9:3)

We obtain the �rst region of validity of the deriva-

tions in this paper

kT � 
 < A : (9:4)

This is, indeed, the slow motion limit discussed in

Sec. V, where the uctuation-dissipation theorem takes

the classical form (5.13). A relevant question is now

whether we can have quantum e�ects from the motion

and still retain the classical description of the reservoir

e�ects?

The curvature of the potential function V (x) is

taken to be characterized by a length scale a, and the de

Broglie wave length � is of the order (m
)�1=2. Quan-

tum e�ects are then seen if the wave packet is less than

a which is less than � (see e.g. Ref.[39]). The quantum

uncertainty energy is then

E0 � 1

ma2
>

1

m�2
' 
 : (9:5)

Thus the spread in energy is larger than the energy it-

self, and the validity of our derivations hold only if the

condition (9.4) is replaced by the stronger condition


 � E0 < A : (9� 6)

On the other hand, replacing 
 by kT according to

(9.3) we enter a situation where the Brownian motion

time evolution has been found to lead to di�culties for

short times, as has been pointed out by Ambegaokar[40]

and Munroe and Gardiner[45]. The possibility to ob-

serve Brownian motion behaviour retaining quantum

e�ects appears to be unlikely even if no conclusive proof

has been given one way or the other.

In the region kT ' A, the whole spectral region is

rather at; the cusps in Fig. 2 are unphysical and we

expect them to smear out in any realistic system. Then

it seems that the Brownian motion models have a very

wide range of validity

kT ' A � Q� B : (9:7)

Starting at any energy well below B, the system

should damp according to the Brownian motion be-

haviour all the way down to its �nal equilibrium energy.

In this case there seems to be no reason to assume that

the conservative evolution could not contain quantum

features. In the region (9.7) all cases seem realizable.

Finally, we have to consider the case kT > A. Then

the smooth region can be found only below ! = A, but

because we have the frequency spectrum of the motion

constrained by the condition (9.3), the motion will al-

ways see the rapidly changing part of the spectrum, see

Fig. 2. If we have the linear region extending all the

way up to the cut-o�, then the whole region becomes

smoothly varying. However, then the thermal energy

spectrum extends beyond the cut-o� B, and we have

no right to assume that the dissipative behaviour be-

comes universal.

The above conditions have been discussed under the

assumption that the spectrum of the motion extends

from its upper limit 
 closely towards zero. This fol-

lows for many potentials, but for the case treated in

Sec.VI, the spectrum of the motion contains only the

single frequency 
0 for all energies. Thus the system

probes the uctuation spectrum at this single frequency

only. The spectral density appears at locally, and the

results derived in Sec. VI hold. In this case the ro-

tating wave form of the Master Equation gives a good

description. The motion of a harmonic oscillator may

thus be damped as a Brownian motion for any fre-

quency 
O well below the cut-o� B. No restrictions
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seem to be necessary, and the general form (6.14) of

the uctuation-dissipation relation may be needed.

When the frequency of the oscillator is changed, the

dissipative parameters remain the same only if we stay

on a at portion of the uctuation spectrum. If the

spectrum has rapidly varying structures, we will �nd

rapidly varying dissipative parameters. Then univer-

sality can be found only close to zero frequencies when

the Brownian motion behaviour is classical, and the

energy approaches its �nal equilibrium value smoothly.

This implies that many oscillator states can participate

even close to the equilibrium, which implies


0 � kT : (9:8)

Then the motion behaves nearly classically.

If the coupling function V (x) to the reservoir is not

of the Langevin type (4.5), the spectral components en-

tering the proto-masterequation (4.6) will contain inte-

ger multiples of 
0. However, only such components

need be included which make up the excitation energy

E of the system. Thus the condition (9.3) is replaced

by the condition

N
0 ' E � kT : (9:9)

Towards the end of the damping process in any bind-

ing potential the dynamic behaviour will appear har-

monic. Thus the �nal stages will be found to be Brow-

nian if the curvature of the potential is such that the

case (9.8) ensues; then the evolution is universal but

the dissipative behaviour is classical. A universal dis-

sipative evolution from a quantum regime to the �nal

thermal equilibrium can be seen only in the case (9.7).

Then all energies see the same dissipative parameters

during the whole history.

For unbound motion, the parameter characterizing

the energy scale is less self-evident. For a particle acted

on by a constant force F (like a gravitational attrac-

tion), the steady state kinetic energy is

Ekin =
F 2

m2
: (9:10)

This is added to the thermal uctuation energy, and

these determine the maximum frequency of the evolu-

tion 
. Thus, the Brownian motion description can be

found valid in any of the cases (9.4) or (9.7). The free

particle case can be discussed along similar lines.

One main approximation underlies all our work

here; we have assumed that the Master Equation is

Markovian. This takes it for granted that all time evolu-

tion of the system, including that induced by the reser-

voir, takes times much exceeding the correlation time

�c. In the notation of the present paper this implies

that

kT � j
+ ij � B : (9:11)

The di�usion correlation function D(� ) acts like a

delta function, when the Fourier transform of the uc-

tuation spectral density d(!) is well localized in time.

This seems to occur independently of kT in our model,

and a large B seems to be the only necessary assump-

tion. The Markovian nature of the damping term is

manifest under even less stringent conditions. I want

to stress that I utilize no quantum Langevin equation,

and hence the correlations of the Langevin force is of

no concern here.

My conclusion is that, as long as B is large enough,

the Fokker-Planck form of the dissipative mechanism

may be valid as a universal description of the damping

for many di�erent situations. Especially the low tem-

perature limit and the quantum form of the uctuation-

dissipation theorem can be compatible with a Fokker-

Planck form of the dissipative time evolution for the

Wigner function.

X. Conclusions and relations to other works

The damping becomes linear in the momentum p

because the Master Equation contains a term propor-

tional to

_V (x) / _x / p : (10:1)

The spectral density A(!) is an odd function; for

small values of ! this is found to imply linearity in the

time derivative. The fact that A(!) is odd follows be-

cause we have coupled the system to a Hermitean oper-

ator of the reservoir. It is, of course, possible that some

other odd power dominates; in that case no Brownian

motion behaviour can be seen.

Our method of derivation originates already in the

work by Wangsness and Bloch[2], who put down the

basic criteria for its validity; in our notation
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t� �c ; 
� B : (10:2)

This allows the dynamic evolution to be nonper-

turbative because we can follow it to times such that


t� 1.

In this work we have chosen to couple the reservoir

to a function of position V (x). Ford et al.[16] point out

that such a Hamiltonian may not have a lower bound;

for a harmonic oscillator they show the aw to be cor-

rected by a suitable renormalization of the energy. It

implies the introduction of counter terms canceling our

(5.5). This is possible to achieve by a canonical trans-

formation, but the physical meaning of the di�erent

couplings are not identical.

Which coupling function is chosen, i.e. do we use

functions of x or p = m _x, is not irrelevant. If the cou-

pling to the reservoir is through a Hermitean operator,

for long times the density matrix tends to become di-

agonal in the representation of the eigenstates of that

operator. Physically it is highly s;gnif icant whether the

density matrix becomes diagonal in the momentum or

position representation. By choosing a potential V (x)

we force spatial quantum correlations to die out with

time, which has been used to justify localization of the

particles in real space. In the Dynamical Reduction

Program[20�21], this e�ect is postulated to be a real

universal mechanism to constrain quantum svstems to

show classical behaviour.

For harmonic oscillator systems, we can choose to

perform the rotating-wave-approximation as discussed

in Refs. [6] and [16]. Physically the damping behaviour

of the system is seen to be the same, because of the

symmetry between x and p in the phase plane of the

harmonic oscillator. The relaxation rate can be dis-

tributed at will between the components owing to their

rapid interchange at the oscillator frequency. With the

rotating-wave approximation the Master Equation is

much easier to justify and seems to lead to a much

less controversial time evolution. For a quantized elec-

tromagnetic mode, this is the natural representation of

the Master Equation.

The work by Ford et al.[16] does stress the need for

a universal description of dissipation in the same spirit

that I have tried to implement in the present paper.

They want their description to be `independent of the

potential V and dependent only on the the parameters

characterizing the coupling to the reservoir'.

Many treatments suggest that the classical-looking

Brownian motion Fokker-Planck equation can hold only

in the high temperature limit. Caldeira and Leggett[11]

explicitly require that

kT > B : (10:3)

The same limit is considered e.g. by Hakim and

Ambegaokar[12] and Haake and Reibold[42]. The situa-

tion seems to be in conict with our physical picture of

a universal reservoir. Near equilibrium, the excitation

energy of the system must be at least of the order kT ,

and then the frequency spectrum of the motion would

extend beyond the reservoir cut-o� B. In this case dis-

sipative behaviour cannot be fully universal. A generic

reservoir approach can exist only if the cut-o� B can be

taken to be the largest frequency parameter of the sys-

tem. Thus I have assumed that all dynamic evolution

must be conf ined to lower frequencies as Eq.(9.11) says.

This condition agrees with that assumed by Wangsness

and Bloch (10.2).

Unruh and Zurek[19] point out that the formal

derivation seems to require (10.3) also in their model.

However, they prove numerically that when B grows to

inf inity the quantum corrections are negligible except

for very short initial times. Then the initial state is

changed by violent transients, which wipe out much of

the initial quantum coherence.

The fact that the Brownian motion Master Equa-

tion cannot be applied to short times is obvious from

its derivation; we have to observe the system over

many correlation times t � �c. The di�culties at the

early stages of the evolution have been discussed by

Ambegaokar[40] and Diosi[41]. A detailed investigation

is carried out by Haake and Reibold[42], who conclude

that the Master Equation may be used for times such

that

t� kT ' 1 ; (10:4)

but the dissipative parameters are then time depen-

dent; this agrees with the conclusion arrived at by Paz

et al.[43]. In the present work, the dissipative parame-

ters turn out to be constant but, in any case, it is clear

that the equation should be taken as an asymptotic
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behaviour approaching equilibrium. For short times

there will be large initial transients[19] which are called

`slips' by Haake and collaborators; see [42] and refer-

ences therein. Thus we cannot recover the correct ini-

tial state from the later stages of the time evolution

but only the state at the end of the transient region

where the Master Equation becomes valid. The present

derivation may give corrections to the simple Marko-

vian behaviour, but these are expected to be of the or-

ders (kT=B) and (A=B) only. For a large cut-o�, they

are negligible. They a�ect the exact form of the ap-

proach to equilibrium, but they will not endanger the

Markovian character of the evolution.

In the limit of weak damping,  ! 0; the Brownian

motion Master Equation seems to follow in all treat-

ments; see e.g. Caldeira and Leggett[11] and Haake and

Reibold[42]. The latter work also shows that the over-

damped case does not display the same kind of univer-

sality. It is not clear that our Born-Markov approach

excludes the overdamped case. If we are in a universal

region, it should be possible to let the oscillational fre-

quency of the harmonic motion go continuously to zero

passing through the overdamped region. This must be

possible if we expect to describe also the case of a free

or constantly accelerated particle. For the low energy

limit, these cases are, however, expected to behave in

the classical way. The result of the derivation presented

in this paper does not seem to depend on the ratio

(=B) as long as the relation (9.11) is satis�ed.

In the harmonic oscillator case treated in Sec.VI I

found that the Master Equation contains terms of the

form [x; [p; �]], which give a mixed derivative (@2=@x@p)

in the equation for the Wigner function. The term is

proportional to � and disappears in the high tempera-

ture limit or for the slow motion case treated in Sec.V.

Haake and Reibold[42] point out that this term does

give a nonpositive di�usion matrix. Diosi[41] corrects

the situation by adding a term [p; [p; �]] which gives

di�usion in position space, i.e. terms in (@2=@x2). I

have already explained why such terms seem to be un-

physical. They give reservoir action on the equations

for the moments of x, which have no interpretation in

terms of physical Langevin forces and lead to incessant

heating.

I have connected the Phenomenological Master

Equation to the Lindblad form through the work of

Gallis[34]. His treatment does give rise to some prob-

lems, including the possibility of uncontrolled heating.

We have also been unable to use the Lindblad formu-

lation to perform a numerical simulation. Convergence

problems have prevented us from obtaining consistent

results. Why the phenomenological description of the

physically so well understood case of Brownian motion

should turn out to be this di�cult to �t into the pre-

sumably generic Lindblad treatment is still a great mys-

tery.

In this paper I have introduced the reservoir approx-

imation by decree. The Born-Markov approximation is

assumed valid, and I have postulated the existence of

reservoirs for which this holds true. Subsequently I have

found a variety of situations where a dissipative Master

Equation can give a behaviour that copies the classi-

cal Brownian motion. Especially, I have suggested that

both the low temperature quantum limit and the over-

damped oscillator limit may be described by a quan-

tum Brownian motion. These conclusions disagree with

some results derived from analytically soluble models.

Why is this so?

One possible answer is that the reservoir behaviour

is not realizable in these limiting cases. Then no condi-

tions can justify the Born-Markov derivation, and only

the classical limit holds. This may be so for soluble

oscillator models, but I have envisaged the reservoir as

forced to be steadily renewed at an extremely fast rate.

The reservoir presupposes its own heat bath. Then the

instantaneous destruction of all correlations imposed by

the interaction can be justi�ed. This seems like an inf

inite regress, but it is not excluded by any logical in-

consistency, and it may, in fact, correspond closely to

the situation prevailing in real reservoirs.

I thus suggest the possibility that reservoirs com-

posed of independent oscillators may lead to di�erent

conclusions from those cases where real heat baths are

responsible for the dissipative e�ects. These are vast

entities with in�nitely fast phase relaxation and supe-

rior ability to exchange energy without reaction. If this

is true, it may o�er the ultimate explanation for the

universality of dissipative behaviour in viscous media.

Whether such behaviour can be combined with quan-

tum features of the dynamical time evolution is not

�nally answered by my calculations. It may, however,
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be within experimental reach in short pulse laser inves-

tigations of molecular dynamics.
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Appendix I: Derivation of Master Equation

In this Appendix we shall present a derivation of the

proto- master equation (4.6). We start from the Hamil-

tonian in Eq.(4.1) and go to the interaction picture with

respect to the system and reservoir degrees of freedom.

For the total density matrix of the coupled systems �tot

we then obtain the interaction picture reservoir-system

operator

�SR = exp[+i(H +HR)t]�tot exp[�i(H +HR)t] (I:1)

The equation of motion for this operator becomes

i _�SR = �[V (t)�(t)�SR] (I:2)

where the operators

V (t) = exp(iHt)V exp(�iHt)

�(t) = exp(iHRt)� exp(�iHRt) (I:3)

are Heisenberg operators for the uncoupled systems.

Introducing the reduced density operator for the

system of interest alone

� = TrR�SR ; (I:4)

we obtain for it from (I.2) the equation of motion

_�(t) = �i�[V (t)'(t; t)� '(t; t)V (t)]: (I:5)

Here the inuence of the reservoir is through the system

operator

'(t; t0) = TrR[�SR(t)�(t
0)] : (I:6)

This, in its turn, is found to obey the equation of mo-

tion

c

d

dt
'(t; t0) = i�[TrR(�SR(t)�(t)�(t

0))V (t)� V (t)TrR(�SR(t)�(t
0)�(t))] (I:7)

d
Just like in the classical kinetic theory, this is the

�rst in a hierarchy of coupled equations for the corre-

lations functions. In order to truncate the hierarchy,

we have to decouple the system of equations at some

point. The simplest is the second order Born approx-

imation, where dissipative terms are included only to

second order in �. This allows us to factorize the den-

sity operator on the right hand side of (I.7) into

�SR(t) � �(t)�0 ; (I:8)

where �(t) is given by (I.4) and �0 is the reservoir den-

sity matrix. According to our assumptions in Sec. III,

the reservoir acts as a bath and �0 can be assumed to

stay clamped at its initial form; in the calculations we

are assuming the reservoir to be in thermal equilibrium.

With this assumption, we can solve the equation (I.7)

in the form

c

'(t; t0) = i�

Z t

0

dt"(K(t"; t0)�(t")V (t") �K(t0; t")V (t")�(t")) (I:9)
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where we have introduced the reservoir correlation func-

tion

K(t; t0) = TrR[�0�(t)�(t
0)] : (I:10)

Because the reservoir density matrix is stationary

[�0;HR] = 0 ; (I:11)

the correlation function (I.10) has the translational in-

variance

K(t1; t2) = K(t1 � T; t2 � T ) = K(t1 � t2) : (I:12)

An essential part of our assumption that the reser-

voir forms an in�nite bath is that its correlations decay

so fast that we can assume the time evolution for the

system of interest to become Markovian. This implies

K(t1 � t2)�(t1) � K(t1 � t2)�(t2) ; (I:13)

because K(t1 � t2) � 0 for jt1 � t2j > �c :

With these assumptions we insert Eq.(I.9) into (I.5) and

obtain the equation

c

_� = ��2
�
�(t)

Z t

0
d�K(t� �; t)V (t� � )V (t)

�
Z t

0

d�K(t� �; t)V (t)�(t)V (t� � ) �
Z t

0

d�K(t; t� � )V (t� � )�(t)V (t)

+

Z t

0

d�K(t; t� � )V (t)V (t� � )�(t)

�
(I:14)

d

It is advantageous to split the correlation function

by writing

[K(t� �; t)] = D(� ) +
1

2
'(� ) = [K(t; t� � )]� (I:15)

Here we have introduced the uctuation part

D(� ) =
1

2
TrR[�0(�(t� � )�(t) + �(t)�(t� � ))] (I:16)

and the linear response function

'(� ) = �iT rR(�0[�(t� � );�(t)]�) (I:17)

= i(< �(� )�(0) > � < �(0)�(� ) >) :

It is easily seen that, because � is Hermitean, the re-

sponse function is an odd function of its argument

'(�� ) = �'(� ) : (I:18)

In terms of the functions introduced, we can write

the proto- masterequation in the form

c

_� = ��2
Z t

0

d�D(� ) [�V (t� � )V (t) + V (t)V (t� � )� � V (t)�V (t � t)� V (t � � )�V (t)]

� i�
2

2

Z t

�1

d��(� ) [�V (t � � )V (t) � V (t)V (t� � )� � V (t� � )�V (t� t) + V (t� � )�V (t)] ; (I:19)
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d
here � is taken at the time t everywhere. The linear

response part is written in terms of the retarded sus-

ceptibility

�(t) = �(t)'(t) ; (I:20)

where �(t) is the step function which disappears for

negative times.

Appendix II. The spectral theory

We introduce the Fourier transform of the correla-

tion functions (I.10) for the reservoir variables accord-

ing to

TrR(�0�(�� )�(0)) =
Z +1

�1

d!

2�
e�i!�k�(!) (II:1)

Following the practice in many-body theory, see

Ref.[44], we introduce the spectral density

c

A(!) =

Z +1

�1

d�ei!�TrR(�0[�(� );�(0)]) = k+(!) � k�(!) : (II:2)

d
Utilizing the detailed balance condition

k+(!) = e�!k�(!) ; (II:3)

which holds if the reservoir density matrix �0 represents

a canonical distribution, we �nd

k+(!) =
e�!

e�! � 1
A(!)

k�(!) =
1

e�! � 1
A(!) (II:4))

The Fourier transform of the retarded susceptibility is

given by

�(!) =

Z +1

0
ei!t'(t)dt (II:5)

=

Z +1

�1

ei!t�(t)dt :

Because �(!) is analytic in the upper ! half plane, we

can evaluate the integral in (II.5) for !+ i� and obtain

�(!) =

Z +1

�1

d!0

2�

A(!0)

!0 � ! � i�
� �0 + i�" : (II:6)

From this we can extract expressions for the real and

imaginary parts of � in the usual way; especially we

�nd

�"(!) =
1

2
A(!) : (II:7)

The sum-rule

Z +1

�1

d!

2�
A(!) = 0 (II:8)

follows directly from the de�nition (II.2). This implies

that A(!) is an odd function of !. Consequently, if

A(!) can be expanded in a power series in !, it must

be of the form

A(!) =
1X
i=1

ai!
2i�1 : (II:9)

It also follows that the real part �0(!) is an even func-

tion of !. Thus we have

�(�!) = �(!)� : (II:10)

Straightforward considerations show that the Fourier

transform of the uctuation function (I.16) is of the

form

d(!) =

Z +1

�1

d�ei�!D(� ) =
1

2
coth

�
�!

2

�
A(!);

(II:11)

this is thus an even function of (!). We also need the

half-Fourier transform of this quantity. Applying the
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same procedure which lead to the expression (II.6) we

obtain

Z 1

0

d�D(� )ei!� =

Z +1

�1

d!0

2�i

d(!0)

!0 � ! � i�
: (II:12)

Finally, I note that there are higher order sum rules,

which can be derived from the Heisenberg equation of

motion for �. After (II.8) the following one is

Z +1

�1

d!

2�
!A(!) = �TrR(�0[�; [�;Hr]]) : (II:13)

This sum-rule can be used to determine the spectral

band width B of the reservoir. The reservoir correla-

tion time �c is proportional to the inverse of this band

width.

Appendix III. Commutator corrections

In Sec.VII we use the proto-masterequation (5.9) in

the form

_� = �g
2
[V; [ _V ; �]]� g

�
[V; [V; �]] : (III:1)

Using the expansion (7.1) and the averaging procedure

(7.6) we �nd

[V; [V; �]] = 2
X
q

V 2
q (� � eiqx�e�iqx) : (III:2)

The �rst term of the right-hand side in (III.1) becomes

similarly

c

[V; [ _V ; �]] =
X
q

V 2
q

�
eiqx;

��
d

dt
e�iqx

�
�+ �

�
d

dt
e�iqx

���
: (III:3)

d
The derivative can be expressed as the limit

�
d

dt
e�iqx

�
=

1

�t
(e�iq(x+p �t=m) � e�iqx) : (III:4)

Using the Baker-Hausdor� theorem and the commuta-

tor between x and p, we can easily derive the expres-

sions

�
d

dt
e�iqx

�
=
�
�i q

m

�
e�iqx

�
p � q

2

�

=
�
�i q

m

��
p+

q

2

�
e�iqx (III:5)

Using these expressions in Eq. (III.3)

c

[V; [ _V ; �]] = � i

m

X
q

V 2
q

�
qeiqx[�; p]+e

�iqx � q2
�
� � eiqx�e�iqx

�	
: (III:6)

Introducing (III.2) and (III.6) into (III.1) we obtain the equation

_� = � g

2m

X
q

V 2
q qe

iqx[�; p]+e
�iqx � 2g

�

X
q

V 2
q

�
1� �

4

q2

m

��
� � eiqx�e�iqx

�
: (III:7)

d
This Master Equation is exactly identical with (7.8)

in the smooth potential limit of Eqs. (7.13-14). How-

ever, the di�usion constant (7.15) is replaced by

D = g�
X
q

V 2
q q

2

�
1� �

4

q2

m

�
: (III:8)

The second term in the sum (III.8) comes from the non-
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commutativity of x and p. It is exactly of the form

q20=2m

kT
� 1 (III:9)

also encountered in Eq.(8.11). The inuence from the

commutators [x; p] are hence shown not to change the

form of the Master Equation derived in Sec. VII. This

is natural, because the smooth potential limit used to

obtain the Brownian motion results (7.13) and (7.14)

gives essentially the classical behaviour as seen from

the result (III.8).
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