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We review three recent experiments showing the application of atom interferometers in a
variety of areas. We present initial results for the dispersion of the index of refraction for
matter-waves. This experiment determines the phase shift in atom-atom scattering where
it establishes the existence of glory oscillations in this quantity. The fundamental issue
of decoherence in quantum mechanics was probed in a second experiment, a version of
Feynman's gedanken experiment in which a single photon was scattered from each atom as
it passed through the interferometer. The \which path" information that could in principal
be gained by observing the scattered photon is shown to cause a loss of contrast in the
atom interference fringes. We show that the lost coherence can be regained by observing
interference fringes formed only by those atoms which scatter a photon into a small subset
of possible �nal directions. In the third experiment, we demonstrate the high sensitivity of
atom interferometers to inertial e�ects, showing that our interferometer can measure small
rotations with a sensitivity of better than 50 milli-earthrate (0.1 deg per minute) in a one
second measurement.

I. Introduction

Since its origins in 1991, atom interferometry has

already demonstrated powerful impact in three major

areas of application: studies of atomic and molecular

properties, fundamental studies, and inertial measure-

ments. In this paper we discuss a recent application of

our atom interferometer in each of these three areas.

We present the �rst experimental measurement of the

velocity dependence of the phase shift in atomic col-

lisions, showing a new type of \glory oscillation." Sec-

ond, we address the fundamental issue of the amount of

loss of atomic coherence when a single photon is scat-

tered from an atom passing through an interferometer.

We will also demonstrate a method of recovery for this

\lost" coherence. Finally, we discuss a recent inertial

study: a precise measurement of absolute rotation rate,

demonstrating reproducibility at the level of 50 milli-

earthrates per
p
sec, performance typical of commercial

laser gyros. Details of the apparatus and setup for each

of these experiments are reviewed in Ref [1]. Data on

velocity dependence are found in Ref [2].

II. Velocity dependent index of refraction

With the goal of contributing a fundamentally new

tool for studying atomic collisions, our group performed

the �rst measurements of the phase shift of an atom

due to a collision with another atom using our atom

interferometer[3]. Since this initial publication, several

theory papers[4�7] have discussed the unique sensitivity

of this new tool, with an emerging consensus that direct
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phase shift measurements are in general very sensitive

to the long range part of the relevant interatomic po-

tentials. In this section we describe theory and recent

experimental measurements of the dependence of this

phase shift on center of mass energy, accomplished by

varying the sodium beam velocity in our atom interfer-

ometer (Fig. (1)). These data promise to provide new

information to help accurately determine the shape of

the interatomic potential.

Figure 1. Schematic of the M.I.T. atom interferometer.
(Not to scale.) The beam propogates from left to right and
only the di�racted orders that contribute to the interference
are shown. The interaction located near the second grating
where the beams are most separated.

II.1. Theory

II.1.1. Index of refraction

A matter-wave experiences absorption and a phase

shift as it passes through a gas just as light does when

it passes through the atmosphere. For example, if a

wave described by 	 = eik0xX, which has the free space

wavevector k0, enters a uniform refractive medium at

x = 0, at some later point x = L we can phenomeno-

logically expect the (forward traveling) wavefunction to

have the form

	 = eik0Lei�NLe��NL: (1)

Both � and � are to be interpreted as cross sections.

That is, when multiplied by the number density N of

scattering particles and the length of propagation L,

they determine respectively the additional phase shift

�NL and the attenuation, given by j	j2. (The rela-

tion between � and the total scattering cross section is

�T = 2�:)

This phase shift and decay of amplitude can be fully

described by introducing a new wavevector k = nk0,

where n is the complex index of refraction that is valid

inside the medium. Equating 	 from Eq. (1) to eink0x

we �nd

n = 1 +
�NLk + i�NL

k0L
= 1 +

N

k0
(�+ i�) : (2)

We see that the complex quantity n�1 now contains the

necessary information to express both the phase shift

and amplitude decay, and it is linear in the number

density N .

The index of refraction n, which describes the pas-

sage of a wave through a medium on the macroscopic

scale, is determined on the microscopic (quantum me-

chanical) scale by a parameter called the scattering am-

plitude f(~k0; ~k). Here, ~k is the incomingwavevector and

~k0 is the outgoing wavevector with jk0j = jkj for elas-
tic scattering. Because of the equality jk0j = jkj6, we
unambiguously write f(~k0; ~k) as f(k; �), where � is the

angle between ~k0 and ~k.

The functional relationship between the index of

refraction n and the scattering amplitude f(k; �) can

be obtained using the optical theorem[8]. This re-

lates the scattering cross section to the imaginary part

of the scattering amplitude in the forward direction

� = 2�
kr
Im(f(kr ; 0)) (where forward implies � = 0).

Here kr is the relative (or center of mass) wavevector.

Similarly, the phase shift is proportional to the real

part of the scattering amplitude, � = 2�
kr
Re(f(kr ; 0)).

Finally, substituting these values into Eq. (2) gives

n(k0) = 1 +
2�N

k0

*
f(kr ; 0)

kr

+
: (3)

This is the index of refraction for a particular in-

cident wavevector ko. Since our target gas has a wide

velocity distribution, this derivation shows that it is the

bracketed quantity, h:::i, that must be averaged for all

center of mass wavevectors kr. We calculate this aver-

age in a later section.

II.1.2. f(k; 0) as a sum over partial waves

Using assumptions of a spherically symmetric po-

tential and probability conservation, it is possible to

write the scattering amplitude as a sum over angular

momenta or \partial waves"[8]:
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f(kr ; �) =
1

kr

1X
l=0

(2l + 1)ei�lsin�lPl(cos�) (4)

where �l is the phase shift for angular momentum l. We

restrict this to � = 0 for our purposes, in which case

Pl(1) = 1. Separating the real and imaginary parts

gives

Re(f(kr ; 0)) =
1

2kr

1X
l=0

(2l + 1)sin 2�l

Im(f(kr ; 0)) =
1

2kr

1X
l=0

(2l + 1)2sin 2�l (5)

The maximum angular momentum quantum number,

lmax that contributes to this sum can be found by

equating ~lmax with ~krbmax where bmax is the maxi-

mum impact parameter at which the potential is signif-

icant. In experiments at thermal energies (� 0:1 eV), a

minimum of a few hundred partial waves contribute to

this sum.

Because such a large number of angular momenta

contribute, we are justi�ed in using a semiclassical ap-

proach where we convert the sum over angular momenta

into an integral over impact parameter b, where l! bkr

and �l = rig�(b; kr). So we have

Re(f(kr ; 0)) = kr

Z
1

0

bdbsin 2�(b; kr)

Im(f(kr ; 0)) = 2kr

Z
1

0
bdb sin2 �(b; kr) (6)

In some cases, such as a 1=rn potential, this tremen-

dously simpli�es the calculation of the scattering am-

plitude. We will see that it is the ratio of these two

quantities Re(f(k; 0))=Im(f(k; 0)), which we will re-

fer to simply as Re/Im, that gives the best theoretical

insight and is also the ideal experimental quantity to

measure.

II.1.3. Analytical results for f(k; 0)

An analytic result can be obtained for Re/Im for

the special case V (r) = �Cnr�n. In general, these

calculations have two steps: calculate the partial wave

phase shifts, which are a function of the interatomic

potential V (r), and then calculate Re/Im as a function

of the phase shifts. The partial wave phase shifts in

the eikonal approximation (i.e. assuming a straight-

line trajectory through the potential along z with r =p
z2 + b2) for impact parameter b and relative wavevec-

tor kr are

c

�n(b; kr) =
�1
~v

Z +1

�1

V (z)dz =
��
kr~2

Z +1

�1

�Cnr�ndz : (7)

The result of this integration is

�n(b; kr) =
c0n��Cn
kr~2bn�1

where c0n =
1:3:5:::(n� 3)

2:4:6:::(n� 2)
: (8)

We can now integrate the real and imaginary parts o� separately using this result for the phase shifts. The

integration requires a change of variables from b to �, where from Eq. (8) b = (c0n��Cn=kr~
2)1=(n�1)�1=(1�n): This

gives

Re(f) = kr

Z
1

0

b sin(2�)db =

�
c0n��Cn
kr~2

�2=n�1
kr

n� 1

Z
1

0

�1+n=1�n sin(2�)d� : (9)

The result of the integration is

Re(f) =

�
c0n��Cn
kr~2

�2=n�1
kr

4n�2=n�1
�

�
n� 3

n� 1

�
sin

�
�

n� 1

�
: (10)

Similar steps applied to the imaginary part of f , give the result
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Im(f) =

�
c0n��Cn
kr~2

�2=n�1
kr

4n�2=n�1
�

�
n� 3

n� 1

�
sin

�
�

n � 1

�
: (11)

d
We therefore arrive at the following simple result for

the special case V (r) = �Cnr�n:

Re(f)

Im(f)
= tan

�
�

n� 1

�
: (12)

This derivation relies on the potential being strong

enough that many (i.e. several hundred) phase shifts

contribute signi�cantly. It will only work for real po-

tentials if the potential is well represented by this r�n

form into the point where it gives a phase shift of many

radians. Moreover, it neglects the e�ects of glory scat-

tering where, because the real potential has a minimum,

the derivative of the phase with respect to impact pa-

rameter is zero.

An exact analytical result can also be obtained for

the partial wave phase shifts for the case of hard sphere

scattering with radius r
[8]
H . However, the integration

over partial wave phase shifts to calculate Re and Im is

not analytic. Numerical calculations reveal that the ra-

tio of real to imaginary parts is � �1=pkrrH [3], that is

one over the square root of the number of partial waves

involved in the scattering. The negative ratio is indica-

tive of the repulsion due to tunneling experienced by

the few partial waves whose classical impact parameter

is near rH :

II.1.4. Numerical calculation of f(k; 0)

A numerical calculation of the integrands of Eq. (6),

b sin2� and b sin2�, provides insight into the real and

imaginary parts of the scattering amplitude. We have

performed this calculation using a typical interatomic

potential for the sodium-argon system[9] (Fig. (2)).

This potential has a Born-Mayer exponential repulsive

core and a van der Waals expansion for the long range

attractive part. That is

V (r) = Ae�br �
 

C6
r6 + C8

r8 +C10

r10

!
g(b; r) (13)

where the C6 arises in second order perturbation theory

from the dipole-dipole interatomic interaction term, C8

the dipole-quadrupole, and C10 the dipole-octupole and

quadrupole- quadrupole terms. If g(b; r) = 1; Eq. (13)

diverges to �1 for small r because of the dispersion

terms. Various schemes are used to slowly \turn o�"

these terms at small r to regularize the potential[6;9;10].

We used the method of Ref. [6], where g(b; r) is pro-

portional to incomplete gamma functions.

To calculate the real and imaginary parts of the

scattering amplitude for this system, we must �rst cal-

culate the phase shifts in the integrands of Eq. (6). We

have

c

�(b; kr) =
��
kr~2

Z
1

�1

V (r)dr =
��
kr~2

Z
1

�1

V
�p

b2 + z2
�
dz : (14)

d
This calculation is shown in Fig. (3) using the po-

tential of Fig. (2) and center of mass energies 0.01 eV,

0.1 eV (which is typical for sodium beam velocity of

�1000 m/sec) and 1.0 eV. We then calculate the in-

tegrands of the real and imaginary parts of f , b sin2�

and b sin2�; which are presented in Fig. (4) for the same

center of mass energies.

The following observations about Re(f) and Im(f)

are general and would apply for any reasonable poten-

tial. The imaginary part (bottom of Fig. (4)) averages

to a line with slope 1/2 for smaller impact parameters,

indicative that this part of the potential contributes to

the total cross section. The real part averages out to

zero for small impact parameters so most of the contri-

bution to this integral comes only from the long range
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part of the potential. This shows why the ratio Re/Im

gives a good indication of the long range part of the

potential.

Figure 2. The Na-Ar interatomic potential from Ref. [9].
The well depth is slightly over 6 millieV and the equilibrium
interatomic separation is 4.9�A.

Figure 3. Phase shift as a function of impact parameter for
the potential of Fig. (2) and 0.01, 0.1, and 1.0 eV center of
mass energies. The peak phase is slightly over � radians for
0.1 eV at about 4.5 �A.

Figure 4. Integrands of the real (top) and imaginary (bot-
tom) parts of the forward scattering amplitude. The rapidly
oscillating parts at small impact parameters average to zero
for the real part but to a positive value for the imaginary
part. Note the non-oscillating structure at b=4.6 �A. This
comes from a stationary point in �(b) and gives rise to glory
scattering.

For potentials, like ours, with reasonable minima

there is glory scattering - which results when the sta-

tionary point of the phase �(b) (near the well minimum

at b = 4:6 �A in Fig. (4)) - makes an additional contri-

bution to the integrands for Re(f) and Im(f). Since

this contribution can add to or subtract from the mag-

nitude of the real and imaginary parts, depending on

the center of mass energy, we expect to see additional

structure (which generally oscillates) in plots of Re/Im

as a function of energy that is dependent on the poten-

tial well shape.

We have utilized the eikonal approximation and the

assumption of a straight line trajectory in these calcula-

tions thus far. We can also calculate Re/Im numerically

by de�ning a critical impact parameter bc, above which

the eikonal method with a straight line is very accu-

rate and below which we sum over partial waves, using

the JWKB method to calculate the partial wave phase

shifts. This method was used for the results presented

here. Thus we calculate

Re or Im =
lmax=krbcX

l=0

+

Z
1

bc

db : (15)

Figure 5. Schematic showing the range of integration for
the JWKB method. The e�ective potential is de�ned in the
text, the center of mass energy is E, and the inner turn-
ing point is shown. The eikonal method would be used for
impact parameters greater than the cuto� radius.

The JWKB approximation for the phase shift is

valid in regions where the potential does not change

much on the scale of the wavelength. Near classical

turning points where this breaks down, standard con-

nection formulas are used that account for exponential

decay into the forbidden regions. The result is an ac-

curate method for computing the phase shift. Consider

the geometry of Fig. (5). We have an e�ective potential



198 Troy D. Hammond et al.

Veff (r; l) = V (r) +
~2l(l + 1)

2�r2
(16)

and the classical turning point r0 for an energy E is

shown. We need to calculate the JWKB phase from

in�nity into the turning point (a Newton's method al-

gorithm is used to �nd this point) and then back out

to in�nity. The result is

c

�JWKB (l; kr) =

p
2�

~

Z
1

r0

p
E � Ve�(r; l)dr +

�

2
l � krr0 +

�

4
(17)

d

Using these partial wave phase shifts the summation in

Eq. (15) can be computed.

Figure 6. The resulting ratio as a function of incident beam
energy for the potential of Fig. (2). Each point plotted here
requires the full calculation of Eqn. (15) for the speci�ed
center of mass energy.

For the realistic potential of Fig. (2) of the Na-Ar

system, we have calculated the ratio Re/Im as a func-

tion of incident beam energy or, equivalently, center of

mass wavevector kr, using this technique. The result

is shown in Fig. (6). This calculation still assumes a

�xed target gas, that is, the gas is at a temperature of

zero Kelvin. The most noteworthy feature is the os-

cillatory structure of this curve which arises primarily

from the stationary phase portion of the integral for

the real part that occurs around b=4.6 �A (Fig. (4)).

These are called \glory oscillations" or \glory undula-

tions" when they occur in the total cross section - they

are more pronounced in Re(f) than in Im(f), showing

the increased sensitivity of the index of refraction to

glory e�ects.

II.1.5. Velocity averaged f(k; 0)

Having calculated values of f for particular center

of mass wavevectors kr, we now must average over the

actual velocity distributions to compare with experi-

mental data. The experiments performed to date have

typically involved a room temperature ( 300K) target

gas and an internally cold projectile beam with 7% rms

velocity width. To compute the predicted Re/Im, (see

Eq. (3)) we must perform the average

c

*
f(kr ; 0)

kr

+
=

Z
1

0

1

kr
f(kr ; 0)�(E)dE =

~
2

�

Z
1

0
f(kr ; 0)�(kr)dkr (18)

which in turn requires knowledge of the distribution �(E) for the center of mass energy E. This has been derived

for the case of a monochromatic incident beam[3;6]. For a beam with velocity va and mass ma and a Boltzmann

distributed target gas with mass mb and temperature T , the result is

�(E) =

r
mb

2�kbT

2

��a
sinh

 
mb�a
kbT

s
2E

�

!
e
�

mb
2kbT

(�2a+ 2E
� ) : (19)

We have taken the further step of considering the impact of the velocity distribution of the atomic beam on

this �nal averaging. We use the normalized "v3-weighted" Gaussian that was experimentally veri�ed for supersonic

beams[11]. For an integrated beam intensity of I, the intensity at velocity �a is
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i(�a) =
I�3ap

��u3
�
1 + 3

2
�2

u2

�e�(�a�u=�)2 : (20)

Here, � =
p
2kbT=ma is the characteristic particle velocity in the source oven (with temperature T ). The

enthalpy (sum of extemal and internal energy) per particle in the source oven is 
�1kbT = 5

2kbT for a monatomic

ideal gas, and this gets fully transferred adiabatically into the kinetic energy 1
2mau

2 of the beam during the

supersonic expansion. Thus, u =
p
5kbT=ma is the predicted velocity of the beam. Finally, integrating over the

velocity distribution of the source
R
�(E; �a)i(�a)d�a yields

�(E) =

s
mb=8�kbT

��u3
�
1 + 3

2
�2

u2

�e�
�

mbE

�kBT
+ �2

�2

�
C
�
5
2

0 e
C2
1
+C2

2
4C0

�
(2C0 + C2

1 + C2
2) sinh

�
C1C2

2C0

�
+ 2C1C2 cosh

�
C1C2

2C0

��

d
where

C0 =
1

�2
+

mb

2kbT
;

C1 =
mb

kbT
+

s
2E

�
; and (21)

C2 =
2u

�2
:

This result reduces to Eq. (19) in the limit that veloc-

ity width goes to zero, �! 0. This normalized velocity

distribution is plotted in Fig. (7) for a variety of target

gases and for 0% and 10% beam velocity widths. The

e�ects of averaging over the beam's velocity width is

substantial only for heavier target gases.

Figure 7. Normalized center of mass velocity distributions.
The incident beam is sodium atoms at 1000 m/sec with the
rms velocity widths of 0% (solid) and 10% (dashed). The
target temperature is 300K.

Using this velocity averaging, we �nd that the large

amount of structure or curvature in the ratio plotted in

Fig. (6) will be signi�cantly damped out for room tem-

perature gases (300K). Fig. (8) includes the requisite

velocity averaging for a 300 Kelvin target. (The curve

from Fig. (6) is included, for comparison purposes.)

Two other curves on this �gure show the sensitivity

of Re/Im to changes in the long-range van der Waals

coe�cients. The Cn-coe�cients were altered by +10%

while the coe�cients of the repulsive core were altered

in such a way as to leave the well depth and position

unaltered. The general e�ect is to raise/lower the whole

curve by a few percent for a 10% change in the coe�-

cients.

Figure 8. Velocity averaged ratio of real to imaginary parts
of the scattering amplitude for a sodium beam with the
speci�ed velocity passing through a 300 Kelvin argon target
gas. (For comparison purposes, the dark solid line is the
T=0 case from Fig. (6)) Light solid line is the potential
from Ref. [9]. Dotted lines use this potential but uniformly
increase/decrease the van der Waals coe�cients. The repul-
sive core coe�cients were altered to �x the well in the same
place as Ref. [9].
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II.2. Experiment

II.2.1. Introduction

Measuring Re/Im for a large range of velocities,

(Fig. (8)) required three major experimental modi-

�cations to our atom interferometer: use of gratings

with sub-200 nm period caused larger di�raction an-

gles and thus larger separation of the two beams at the

gas cell; an exceptionally at dividing barrier (septum)

placed between the two atomic beam paths permitted

measurements when the separation of the two beams in

the interferometer was only 25 microns, allowing us to

take data at higher velocities where the atom di�rac-

tion angle was less; and a unique gas handling system

for our source produced an atomic beam in which the

velocity could be reproducibly adjusted. In previous ex-

periments, 200nm gratings and a larger septum width

limited the velocity to less than 1600 m/sec, but with

this thinner septum and �ner gratings we can now fully

separate �3000m/sec beams. (Higher velocities have a

smaller di�raction angle and are less well separated.)

II.2.2. Technical advances in the interferometer

Amplitude di�raction gratings, manufactured in a

thin silicon nitride membrane using an electron beam

lithography technique, are the essential elements of our

atom interferometer. We recently developed a registra-

tion technique to reduce thermal drifts in the lithog-

raphy stage of the grating manufacture[12]. This re-

sulted in 140nm period gratings with very good overall

dimensional register which replaced the 200nm period

gratings we used in all previous interferometer work.

The second advance was the construction of the new

gas cell with a thinner, atter membrane to keep the

gas localized on one side of the interferometer. The

key was the use of a thin (� 10 �m) wafer of single

crystal silicon as the dividing wall which was bonded

to a piece of glass in which a gas cell had already been

cut out (See Fig. (9)). This single sided interaction

region using a rigid septum had fewer components and

greater overall mechanical ruggedness. Our previous

interaction regions[13] consisted of a thin foil stretched

at between two metal plates, but o�set by spacers so

that it was free-standing. The new interaction region

extended only about 5 cm along the beam in contrast

to the 10 cm of the earlier design.

Figure 9. Cross section of the interaction region as seen by
the approaching atomic beams, which pass on either side
of the dividing wall (septum). The glass has a channel cut
lengthwise through it and a small hole to let the gas in (from
the left in the Figure). The silicon wafer is on �10 �m thick
and- is bonded to the glass, which is 5-8 mm thick.

Third, we used two carrier gases continuously mixed

together to produce a broad range of sodium beam ve-

locities. The velocity of the sodium beam is determined

by

� =

r
5kBT

�m
(22)

and

�m =
mapa +mbpb

ptotal
;

where m and p stand for the mass and partial pressure

of the sodium vapor and the inert carrier gas mixture

inside the source oven at temperature T . By varying

the mass of a single inert carrier gas from helium all the

way up to xenon, we can change this velocity by about

a factor of six (Fig. (10)). To get intermediate veloc-

ities, we simply mixed two species of gas. We used a

gas proportioning system to control the ow rate of the

two di�erent carrier gases, and demonstrated that by

selecting appropriate ow rates, we can reproducibly se-

lect a sodium velocity which was accurately determined

from single grating di�raction patterns. (See Ref. [2]

for further details).
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Figure 10. Beam velocity as determined by the mass of the
carrier gas. A source temperature of 1000 K is assumed.

II.2.3. Results: the velocity dependence of the

index of refraction

With our experimental technique it is the ratio

Re/Im that we most sensitively measure, because the

gas density N in this ratio cancels out. In general, gas

density is a di�cult experimental parameter to mea-

sure. The cancellation is seen by considering an atomic

interference fringe in which both the phase and the am-

plitude is determined. If the wave that travels out-

side the gas cell (the gas density is zero) has ampli-

tude A0, and the wave that travels inside the gas cell

has an amplitude that depends on the gas density N;

Ai(N ) = Ai(0)e�NL, then the interference of these two

waves gives A2
0+Ai(N )2+2A0Ai(N )cos(kgx+�). The

amplitude of the atomic interference fringe is 2A0Ai(N )

which, normalized to the case where there is zero gas

in the cell (N = 0), is

Ai(N )=Ai(0) = e��NL : (23)

Now, if we examine the ratio of the phase shift to the

natural logarithm of Ai(N )=Ai(0), we �nd

��
ln(e��NL)

=
(�2�Re(f(kr ; 0))=kr)NL
(�2�Im(f(kr ; 0))=kr)NL =

Re(f(kr ; 0))

Im(f(kr ; 0))
(24)

Because N , the number density of the gas, cancels out

in this equation, we always measure the ratio of the

phase shift over the log of the fringe amplitude in our

experiments.

Our experiments focused on measuring Re/Im for

an argon target gas and an incident sodium beam with

numerous beam velocities spanning the range �1100
m/sec to �2800 m/sec. For each velocity, the inter-

ference fringes were measured while alternately leaking

argon gas into the cell and then allowing it to leak out.

That is, we recorded both the phase shift �- given by

the di�erence in phase when gas is present and when

there is no gas - and the fringe amplitude, normalized

to the case of no gas, Ai(N )=Ai(0). We can then de-

termine Re/Im using Eq.(24). This alternation between

gas and \no gas" must be repeated on a relatively short

time scale, i.e. every few minutes, because the phase in

our interferometer drifts on the order of 0.1 rad/minute.

Because of this drift, and because we can't record gas

and \no gas" data at the same instant in time, a low

order polynomial is �t to the \no gas" phase and ampli-

tude data as a function of time to estimate the actual

\no gas" values during the time the gas was present.

Figure 11. Each data point represents an interference fringe
from 10 seconds of data. The 30 minutes of data shown
(�180 points), with appropriate error bars in both dimen-
sions, are taken with a single velocity of the atomic beam.
A least squares linear �t determines the slope of the line
(and hence the ratio Re/Im) to about 4% for this velocity.
A similar data set is taken for each velocity of the atomic
beam.

We switched between gas and no gas until �30 min-

utes of data had been acquired. The fringe phase shift,

�, and amplitude, Ai(N )=Ai(0), were recorded for each

10 seconds of data. If we plot these points on a graph

of � versus ln(Ai(N )=Ai(0)) (Fig. (11)), the slope of a
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least squares linear �t that passes through these points

and the origin (by de�nition, there is zero phase shift

when there is no gas in the cell (N = 0)) is, accord-

ing to Eq. (24), the ratio Re/Im. This is repeated for

each velocity of the sodium beam. When we combine

several runs for a particular velocity (often taken on

di�erent days), typical statistical error bars are 3-5%.

However, the 15% discrepancy with our earlier data on

Na-Ar at around 1030m/s[3], together with a similar

discrepancy with the theoretical predictions discussed

below suggest that our data may be systematically high

by roughly this amount. Several sources of experimen-

tal error have been considered. The data reported here

were taken with a detector whose sensitivity was fading

throughout the run, so the normalization of the fringe

amplitude by the \no gas" amplitude Ai(0) is particu-

larly important. Other errors, including di�erences in

the interaction regions, were considered but are all inca-

pable of explaining systematic e�ects of this magnitude

in our measurement of Re(f)=Im(f)[2] .

Figure 12. The �nal results of numerous data scan at many
di�erent sodium beam velocities. The solid line is the theory
of Ref. [9]. At higher velocities, the disagreement is par-
ticularly large. The dashed line uses Ref. [9] with the well
depth decreased 30% and the minimum position decreased
15%. Possible changes in the theoretical interatomic poten-
tial are discussed in the text as well as future experimental
prospects for reducing the error bars on the data.

This type of analysis was performed for many dif-

ferent sodium beam velocities on several di�erent days

with several di�erent interferometer alignments. These

results are summarized in Fig. (12) although, as noted

above, they are notably higher than the theoretical pre-

dictions made with Ref. [9], especially at higher veloci-

ties. However, they show a strong velocity dependence

that is outside the bounds of any likely systematic error

and is also in good accord with the predicted shape of

the glory oscillation.

II.2.4. Discussion

In order to explore the sensitivity of this new type

of measurement to the potential, we have made modi�-

cations to the sodium-argon potential V (r) of Ref. [9]

to attempt to �t this new data. In general, we found

that movement of the well position to a shorter ra-

dius and a shallower depth raised the predicted ratio of

Re/Im. One potential that qualitatively �ts our data,

has a 30% shallower well and 15% shorter radius than

Ref. [9]. (Movement of the radius a�ected the results

about twice as strongly.) These changes to the well po-

sition exceed the variability found in Na-Ar potentials

deduced in various ways in the literature which show

variation of nearly 20% in the well depth and 5% in the

position. This (dashed) curve is shown in Fig. (12).

The error bars on the data are currently too large to dis-

tinguish subtle variations of the potential shape. Work

is underway to account simultaneously for total and dif-

ferential cross section measurements and spectroscopic

measurements of bound states for Na-Ar molecules, in-

cluding dissociation energies and vibrational spectra, to

constrain these otherwise arbitrary changes in the in-

teratomic potential. This should come close to �nding

the true Na-Ar interatomic potential.

This experiment was the �rst to observe glory struc-

ture in the velocity dependence of the index of refrac-

tion of atomic de Broglie waves. We utilized a new tool

- the atom interferometer - that is able to measure the

scattering induced phase shift in an atom wave. Sev-

eral experimental modi�cations are underway: the tar-

get cell is going to be cooled to 77K to retain more of

the glory oscillation amplitude in the predicted theory,

the interferometer is being rebuilt so as to minimize vi-

brations and zero phase uctuations, and more optimal

atom di�raction gratings will be used. (Straightfor-

ward changes to the detector and gratings are expected

to improve our signal by a factor of 3-4.) With future

data, new constraints are expected to be applied to the

determination of sodium-noble gas potentials.
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III. Fundamental studies of coherence loss

Interferometers of all types have had application to

fundamental problems and precision tests of physical

theories, especially quantum mechanics, and atom in-

terferometers are sure to continue this tradition. In

this section we focus our attention on the fundamen-

tal question, \what limits do the size and complexity of

particles place on the ability of their center of mass mo-

tion to exhibit interference e�ects?" Quantum mechan-

ical treatment of the center of mass motion of increas-

ingly complex systems is an important theme in modern

physics. This issue is manifest theoretically in studies

of the transition from quantum through mesoscopic to

classical regimes and experimentally in e�orts to co-

herently control and manipulate the external spatial

coordinates of complex systems, as exempli�ed by the

wide interest in matter wave optics and interferometry.

As demonstrated in our recent work[14;21], matter wave

optics and interferometry have been extended to atoms

and molecules { systems characterized by many degen-

erate and non-degenerate internal quantum states.

In this section we will investigate if and where there

might be limits { in theory or in practice { to coher-

ent manipulation of the center of mass motion of larger

and more complex particles due to the interaction of

radiation with the particle as it is passing through the

interferometer. The key result here is our experimental

realization of a gedanken experiment suggested by Feyn-

man, in which one attempts, through the scattering of a

single photon, to determine (i.e. Iocalize) on which side

of the interferometer an atom passes. We then consider

the question of what happens to the coherence that is

lost when the particle passing through the interferom-

eter interacts with this radiation. We will demonstrate

that the coherence becomes entangled with the scat-

tered radiation { and show that this coherence can be

regained by selectively detecting atoms that scatter this

radiation into a restricted subspace of all possible �nal

directions.

III.1. Coherence loss due to scattering a single

photon { discussion

The principle that a system can be in a coherent su-

perposition of di�erent states and exhibit interference

e�ects is a fundamental element of quantummechanics.

Immediately, the question arises as to what happens to

the interference if one tries to determine experimentally

which state the system is in. This is the basis of the

famous debate between Bohr and Einstein, in which

they discussed Welcher-Weg (\which way") informa-

tion in the Young's double slit experiment[22�25]. In a

more recent gedanken experiment suggested by Feyn-

man, a Heisenberg light microscope is used to provide

Welcher- Weg information in a Young's double slit ex-

periment with electrons[23] or atoms[26;27]. In this sec-

tion, we will discuss our experimental realization of this

gedanken experiment using our atom interferometer.

One starting point is the principle of complemen-

tarity. Since the contrast of the interference fringes

we observe in our interferometer is a measure of the

amount of the atomic coherence, complementarity de-

mands that the fringes must disappear when the slit

separation (more generally the path separation at the

point of measurement) is large enough so that, in prin-

ciple, one could detect through which slit the particle

passed[28] using a Heisenberg microscope. Since the loss

of contrast is related to the possibility of measuring

the atom's position, for example by observing a photon

scattered from the atom, it is necessary to consider a

quantum treatment of this measurement process. The

measurement interaction considered here is the elastic

scattering of the photon by the atom, which causes their

initially separable wave function to evolve into an en-

tangled state[29] { a sum of separable wave functions,

each of which conserves the total momentum and en-

ergy of the system, and which can no longer be written

as a product of separate atom and photon wave func-

tions. This entanglement can result in a loss of atomic

coherence when information about the scattered pho-

ton is disregarded. The e�ects of such entanglement

are relevant to important issues in contemporary quan-

tum mechanics, including EPR type correlations, un-

derstanding of the measurement process, and the loss

of coherence in the passage from quantum to classical

mechanics. The experiment presented here reveals the

details of the loss of coherence of one system due to

entanglement with another. This is accomplished by

scattering a probe particle o� an interfering superpo-

sition of the observed system as it passes through an

interferometer.
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We now discuss experiments we performed to mea-

sure the loss of atomic coherence due to scattering single

photons from sodium atoms inside our interferometer.

Our experiments[30] demonstrate that the loss of coher-

ence may be attributed to the random phase di�erence

between the two arms of the interferometer which is

imprinted on the atom during the scattering process.

This random phase depends fundamentally on the spa-

tial separation of the interfering waves at the point of

scattering, relative to the wavelength of the scattering

probe.

Our experiments also address the question: \where

is the coherence lost to and how may it be regained?"

Although the elastic scattering of a photon produces

an entangled state, it is not per se a dissipative pro-

cess and may be treated with Schr�odinger's equation

without any ad hoc dissipative term. Therefore the co-

herence is not truly lost, but rather becomes entangled

with the scattered photon. Although the photon may

be regarded as part of a measurement apparatus for

determining the atom's position, it is here more natu-

rally considered as a simple reservoir, consisting of the

vacuum radiation modes accessible to it. We show the

validity of this viewpoint by demonstrating that selec-

tive observation of atoms which scatter photons into a

restricted part of the accessible phase space results in

atomic fringes with regained contrast.

III.2. Coherence loss due to scattering a single

photon { experiment

To study the e�ects of photon scattering on the

atomic coherence, single photons were scattered from

the atoms passing through our three grating Mach-

Zehnder interferometer (see Fig. (13)). The con-

trast (which measures the remaining coherence) and

the phase of the interference pattern were measured as

a function of the separation of the atom paths at the

point of scattering[30].

In the absence of scattering, the atom wavefunction

at the third grating may be

 (x) = u1(x) + ei'u2(x)e
ikgx (25)

where u1;2 are (real) amplitudes of the upper and lower

beams respectively, kg = 2�=dg where dg is the period

of the gratings, ' is the phase di�erence between the

two arms, and x is a coordinate perpendicular both to

the atomic beam and to the grating bars. To describe

the e�ects of scattering within the interferometer, we

�rst consider an atom elastically scattering a photon

with well-de�ned incident momentumki and �nal (mea-

sured) momentum ~kf , with j~kij = j~kf j = kphoton. After

this well-de�ned scattering event, the atomic wavefunc-

tion becomes

 0(x) / u1(x��x) + ei'u2(x��x)eikgx+�' (26)

The resulting atomic interference pattern shows no loss

in contrast but acquires a phase shift[31;32]

�' = �~k � ~d = �kxd (27)

where �~k = ~kf � ~ki; and ~d is the separation between

the two arms of the interferometer at the point of scat-

tering. Eq. (26) implies that the photon recoil causes

a spatial shift of the envelope of the atomic fringes by

a distance

�(x) = (2L� z)�kx=katom (28)

where L is the distance between gratings, katom =

2�=hdB and (2L � z) is the distance from the point

of scattering to the third grating. Ehrenfest's theorem

implies that this displacement is just the shift that a

classical atom would experience due to the momentum

transferred by the scattered photon.

In the case that the photon is disregarded, the atom

interference pattern is given by an incoherent sum of

interference pattems with di�erent phase shifts corre-

sponding to di�erent �nal photon directions (i.e. a trace

over the photon states),

C0cos(kgx+�'
0) =

Z
d(�kx)P (�kx)C0cos(kgx+�kxd)

(29)

where P (�kx) is the probability distribution of trans-

verse momentumtransfer and C0 is the original contrast

or visibility of the atomic fringe pattern. For the case of

scattering a single photon, P (jdkx) (shown in the inset

to Fig. (14)) is determined by the radiation pattern of

an oscillating dipole. The average transverse momen-

tum transfer ~�kx = 1~k (a maximum of 2~k occurs

for backward scattering of the incoming photon and a
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minimum of 0~k occurs for forward scattering). Due to

the average over the angular distribution of the unob-

served scattered photons, there will be a loss of contrast

(C0 � C0) and a phase shift �'
0 of the observed atomic

interference pattern. It follows from Eq. (29) that the

measured contrast (phase) of the interference pattern

as a function of the separation d of the atom waves

will vary as the magnitude (argument) of the Fourier

transform of the probability distribution, P (�kx). Eq.

(29) is equivalent to the theoretical results obtained for

the two-slit gedanken experiment[26;27] (where d is iden-

ti�ed with the slit separation), even though explicit

which-path information is not necessarily available in

our Mach- Zehnder interferometer because the atom

wavefunctions can, and do, have a lateral extent (de-

termined by the collimation of our atomic beam) much

larger than their spatial separation at the point of scat-

tering.

Figure 13. A schematic, not to scale, of our atom interferom-
eter. The original atom trajectories (dashed lines) are mod-
i�ed (solid lines) due to scattering a photon (wavy lines).
The inset shows a detailed view of the scattering process.

The atomic beam was �rst prepared in the F = 2;

mF = 2 state by optical pumping with a �+ polarized

laser beam before the �rst collimating slit. We typi-

cally achieved � 95% optical pumping, as measured by

a two-wire Stem-Gerlach magnet which caused state-

dependent deections of the atomic beam. We em-

ployed a short laser interaction region, and adjusted

the excitation �eld strength to scatter, on average a

single photon from each atom, approaching this ideal

case as closely as possible (Fig. (13)). The scattering

cross section was maximized using �+ polarized laser

light tuned to the D2 resonant line of Na (hphoton =

589 nm) connecting the F = 2; mF = 2 ground state to

only the F 0 = 3, mF 0 = 3 excited state. This ensured

that the scattering left the atom in the same hyper�ne

state.

Figure 14. Relative contrast and phase shift of the inter-
ference pattern as a function of the separation of the inter-
ferometer arms at the point of scattering. The inset shows
the angular distribution of spontaneously emitted photons
projected onto an axis perpendicular to the atomic beam.
The dashed curve corresponds to purely single photon scat-
tering, and the solid curve is a best �t that includes contri-
butions from atoms that scattered zero photons (4%) and
two photons (14%).

The photons we wish to scatter from the atomic

beam are provided by an excitation laser focused to a

�15 �m waist (FWHM of the �eld) along the atom

propagation direction. A cylindrical lens was used to

defocus the beam perpendicular to the atom propaga-

tion direction to ensure unifomm illumination over the

full �1 mm height of the atomic beam. The transit

time through the waist was roughly one third of the

lifetime of the excited state. Hence, the probability for

resonant scattering in the two-state system exhibited

weakly damped Rabi oscillations, which we observed

by measuring the deection of the collimated atomic

beam as a function of laser power. To achieve one pho-

ton scattering event per atom, we adjusted the laser

power to the �rst maximumof these oscillations, closely

approximating a �-pulse.
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The contrast and phase of the measured atomic in-

terference patterns are shown in Fig. (14) for di�erent

path separations. The contrast was high when the sep-

aration d at the point of scattering was much less than

hphoton (corresponding to �kxd� �), but fell smoothly

to zero as the separation was increased to about half the

photon wavelength, at which point �kxd � �. (The

zero would occur exactly at d = hphoton=2 if the scat-

tered photon angular distribution were isotropic.) As d

was increased further, a periodic rephasing of the inter-

ference gave rise to signi�cant revivals of the contrast

and to a periodic phase modulation.

The observed behavior of the contrast is consistent

with the complementarity principle. Considering the

photon scattering as a position measurement of the

atom, complementarity suggests that the fringe con-

trast must disappear when the path separation is ap-

proximately half the wavelength of the scattered light,

since this is the smallest distance that can be resolved

by a perfect optical microscope. A more careful consid-

eration of the imaging process of this scattered photon,

however, reveals still richer behavior.

All optical imaging systems (even ideal ones, in

which the lenses can capture every photon), produce

images with di�raction rings. We consider using such a

system to determine the origin of the photon scattered

by the atom as it passes through the interferometer,

and hence which path the atom took. If the bright

central spot of the image were located on the upper

arm of the interferometer, and another bright fringe of

the di�raction rings coincided with the position of the

lower arm, there would be signi�cant uncertainty about

the origin of the scattered photon. This uncertainty

about the origin of the photon indicates a signi�cant

uncertainty about which path the atom took through

the interferometer. Hence, when the separation d be-

tween the two arms of the interferometer is such that

the bright fringe of a di�raction ring centered on the up-

per arm falls on the lower arm, complementarity tells us

that atomic interference, with reduced contrast, should

re-occur. These revivals of contrast are indeed seen in

the results of our experiment.

While the contrast generally decreases as d in-

creases, the phase shift �� of the fringes exhibits a

sawtooth oscillation that is damped by the �nite res-

olution of the apparatus. Starting at d = 0, �� in-

creases linearly, with slope 2�. This is the slope ex-

pected for momentum transfer of 1~k, the average mo-

mentum transfer of the symmetrical distribution (Fig.

(14)). After each zero of the contrast, the sign of the

interference pattern is reversed, subtracting � from the

phase and resulting in the observed sawtooth pattern.

In studying the decoherence and phase shift, we

used a 50 �m wide detector (rhenium hot wire), which

is larger than the deection �x of the atom beam that

results from the recoil momentumimparted by the scat-

tered photon. The �nite collimation of the atomic beam

further degrades the overall momentum resolution of

the apparatus. The result of this lack of resolution is

that the measured interference patterns are averaged

quite evenly over all values of �x, which can be as

large as 40 �m in our experiment { corresponding to

displacement of the envelope of the fringe pattern by

�200 fringes.
These numbers highlight the distinction between the

expectation value of the atom's classical transverse po-

sition (the peak of the fringe envelope) and the phase

of the fringes (which are never shifted by more than

half a fringe). This distinction is emphasized by the

fact that moving the point of scattering further down-

stream slightly reduces the displacement of the fringe

envelope for a given ~kf , while monotonically increasing

the corresponding phase shift. Therefore, the measured

loss of fringe visibility cannot simply be understood as

resulting from the transverse deections of the atom at

the detection screen (in our case the third grating) due

to the photon momentum transfer, as it can be for the

two-slit gedanken experiments.

The displacement of the envelope of the atom

fringes, �x, (or equivalently the x-component of the

photon momentum transfer) is precisely what is mea-

sured in determining the transverse momentum distri-

bution of an atomic beam after scattering a photon.

These distributions have been measured for di�raction

of an atomic beam passing through a standing light

wave and undergoing a single[33] or many[18] sponta-

neous emissions, as well as for a simple collimated beam

excited by a traveling light wave[17]. These results are

usually discussed using a simple argument: the recoil

momentum from spontaneous emission produces ran-

dom angular displacements that smear the far-�eld pat-
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tem, a viewpoint also applicable to two-slit gedanken

experiments. Clearly the quantum phase shift mea-

sured in our experiment is distinct from the \deection"

of the atom �x due to the photon recoil. It reects the

phase di�erence of the photon wave function where it

intersects the two arms of the interferometer.

The results here are also interesting as a contrast to

the gedanken experiments recently proposed in which

loss of contrast in an atom interferometer occurs after

emission of a photon by the atom, even though there

is insu�cient momentum transfer to the wave function

to explain this loss on the basis of dephasing[34]. In our

experiment the opposite occurs: there is su�cient mo-

mentum transfer to the atom by the emitted photon to

be easily detected, but the interference pattern is not

destroyed for small separations. In both experiments

the interaction with the radiation adds insigni�cant rel-

ative phase di�erence between the two arms of the inter-

ferometer. The crucial di�erence is that in the gedanken

experiment of Ref. [34], the photon emitted by the

atom is retained in one of two cavities located symmet-

rically on the two sides of the interferometer and can

be used to determine which path the atom traversed

(assuming the cavities were initially in number states),

whereas in our experiment the scattered photon scat-

ters without constraint and, for small d, no subsequent

measurement can determine which path was traversed

by the atom that scattered it. However, if a metal foil

were interposed between the two sides of our interfer-

ometer (and a beamsplitter and mirrors added so that

the laser beam was split and excited both sides coher-

ently), detection of the scattered photon would then de-

termine which side of the foil the atom traversed, and

would destroy the interference pattern even though the

phase shift imparted to the atoms was negligible, just

as in Ref. [34].

III.3. Regaining entangled coherence by selec-

tive observations

Returning to the loss of coherence induced by scat-

tering of single photons from atoms in the interferom-

eter, we now address the question: \where is the co-

herence lost to and how may it be regained?" We per-

formed an experiment[30] to show that selective obser-

vation of atoms can result in fringes with regained con-

trast. This demonstrates that the coherence is not truly

lost, but becomes entangled with the scattered photon

which may be considered as a simple reservoir, consist-

ing of the accessible vacuum radiation modes. When

only atoms that scatter photons into a restricted part

of this accessible phase space are observed, their distri-

bution of possible phase shifts is narrower than without

this selection, and they rephase more precisely and with

greater coherence.

In this experiment, we observe atoms that are cor-

related with photons scattered into a narrow range of

�nal directions. In principle, this could be achieved by

detecting the photons scattered in a speci�c direction in

coincidence with the detected atoms. With �kxd now

a known quantity, the predicted fringe shift would be

the same for all the atoms (see Eq. (27)); consequently

the fringe pattems of this restricted set of atoms would

line up and no coherence would be lost. Unfortunately,

such an approach is not feasible in our experiment for

a number of technical reasons { principally the slow

response of our atom detector and the ine�ciency of

available photon detectors.

Fortunately an alternative experimental approach is

made possible by the fact that the change of momen-

tum of the photon, ~�kx, is imparted to the atom,

and can be measured by the atom's deection (see Eq.

(28)). Hence a measurement of an atom's �x gives

the �kx of the corresponding scattered photon. Fur-

thermore, it is easily possible to measure �x in our

three grating interferometer because (since we scatter

the photons close to the �rst grating), the deection

of the envelope of the atomic fringes for a particular

�kx is 100 times larger than the associated fringe shift,

�kxd. In practice this approach is superior to a corre-

lation experiment because there are no ine�ciencies or

accidental coincidences introduced by the measurement

of the scattered photon: the measurement of an atom's

position reliably indicates the momentum transferred

to that particular atom.

We have performed an experiment based on this

technique to demonstrate the recovery of the entangled

coherence. By using very narrow beam collimation in

conjunction with a narrow detector, we can selectively

detect only those atoms correlated with photons scat-

tered within a limited range of �kx. This restricts the

possible �nal photon states and results in a narrower
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distribution P 0(�kx) in Eq. (29).

We performed experiments with recoil distributions

centered on three di�erent photon momenta. Fig. (15)

shows three di�erent realizations (referred to as Cases

I-III) with the corresponding momentum transfer dis-

tributions, P 0i (�kx); i = I,II,III. The contrast is plotted

as a function of d for Cases I and III where we pref-

erentially detect atoms that scattered photons in the

forward and backward direction respectively. The con-

trast for Case II is similar to Case I and is not shown.

The measured contrasts in this �gure were normalized

to the d = 0 (scattering laser on) values since a di�erent

number of atoms was detected with the laser o� due to

the absence of the deection by the photons.

Figure 15. Relative contrast and phase shift of the interfer-
ence pattern as a function of d for the cases in which atoms
are correlated with photons scattered into a limited range of
directions. The dashed curve is for uncorrelated atoms. The
upper inset shows atomic beam pro�les at the detector when
the scattering laser is o� (thin line) and when the laser is on
(thick line). The arrows indicatethe detector positions for
cases I and II. The lower inset shows the acceptance of the
detector for each case compared to the original distribution
(dotted line). Case I corresponds to predominantly forward
scattered photons (minimal transfer of momentum), case III
corresponds to backward scattered photons(transfer of two
photon momenta), and case II lies in between.

Our results show that the contrast falls o� much

more slowly than previously { indeed we have regained

over 60% of the lost contrast at d � h=2. The contrast
falls o� more rapidly for a faster beam velocity (Case

III, �beam = 3200 m/s) than for the slower beam ve-

locities (Cases I and II, �beam = 1400 m/s). This is

because, for a given �kx, a higher velocity atom beam

will result in a smaller displacement �x at the third

grating, resulting in diminished �kx resolution.

The phase shift is plotted as a function of d for the

three cases in the lower half of Fig. (15). The slope

of Case III is nearly 411, indicating that the phase of

the interference pattern is predominantly determined

by the backward scattering events. Similarly, the slope

of Case I asymptotically approaches a small constant

value due to the predominance of forward scattering

events. Case II is an intermediate case in which the

slope of the curve, � 3�, is determined by the mean

momentum transfer of 1:5~k. The lower inset shows

the transverse momentum acceptance of the detector

for each of the three cases (i.e. the functions P 0i (�kx)),

which we determined using the known geometry and

beam velocity. The �ts for the data in Fig. (15) were

calculated using Eq. (29) and the modi�ed distribu-

tions P 0i (�kx)), and include e�ects of velocity averaging

as well as the e�ects of those few atoms that scattered

zero or two photons.

IV. Inertial e�ects

Phase shifts caused by non-inertial motion of matter

wave interferometers have been discussed by many au-

thors in both non-relativistic and relativistic contexts

(see for example Refs. [35-39]). Because such phase

shifts increase with the mass of the interfering particle,

atom interferometers are especially sensitive to inertial

e�ects, and may be developed into rotation sensors, ac-

celerometers, gravimeters, and gradiometers[39].

The inertial sensitivity of an atom interferometer

arises because the freely propagating atoms form fringes

with respect to an inertial reference frame. These

fringes appear shifted if the interferometer moves with

respect to this inertial frame while the atoms are in

transit. To illustrate this, we now present a simple

calculation of the fringe shift that results from acceler-

ation a of a three grating interferometer in a direction

perpendicular to both the grating bars and the atomic

beam axis.
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In a time � = L=�, where L is the distance between

gratings and � is the velocity of the atom, the interfer-

ometer will move a distance a�2=2 = D=2 (Fig. (16)).

To simplify the calculation, we will make a convenient

choice of initial transverse velocity �trans == a�=2 =

aL=2�. Atoms in an accelerating interferometer which

have this particular transverse velocity at the time they

reach the �rst grating will pass through both the �rst

and second gratings at exactly the same transverse po-

sitions as would atoms with zero transverse velocity

moving in a non-accelerating interferometer. Because

the atoms (or atom waves) in both cases intersect the

�rst and second gratings at the same point, the relative

phase shift between the two cases is given purely by

the displacement of fringes at the third grating. Due to

their transverse velocity, atoms form a fringe pattern at

the third grating that is displaced by �trans� = a�2 = D

from the axis of the interferometer at t = 0. However,

when these atoms reach the third grating, the interfer-

ometer has now moved a(2� )2=2 = 2D from its original

position, resulting in an apparent fringe shift of �D.
This corresponds to a phase shift

'acceleration = 2�

�
D

dg

�
= 2

2�

dg

�
L

�

�2

a = �2�m2�dBA

~2
a

(30)

where dg is the period of the gratings, �dB = h=m� is

the de Broglie wavelength for an atom with massm and

velocity �, and A = L2(�dg=dg) is the area enclosed by

the paths of the interferometer. It should be noted that

the phase shift in our three grating geometry is inde-

pendent of the mass of the particle, and was derived

using classical physics.

The phase shift due to rotation of the interferom-

eter (called the Sagnac e�ect) follows by noting that

rotation with angular rate 
 gives rise to a Coriolis ac-

celeration ~a = 2~� � ~
, allowing one to use Eq. (30) to

calculate the phase shift due to rotation about an axis

parallel to the grating bars,

'rotation =

"
2�

dg

�
L

�

�2

2�

#

 =

�
4�
mA

h

�

 ; (31)

where we call the bracketed factor the rotational re-

sponse factor. This expression can also be directly

obtained from considerations of the grating positions

at the time of transit of the atoms through each

grating[40].

Figure 16. The interferometer in motion under the inu-
ence of a transverse acceleration. The atomic beam travels
from left to right in the laboratory frame but interacts with
the progressively displaced gratings of the movmg appara-
tus. Because a center-line (short dash) between the atom
beam paths passes through the middle of the �rst grating at
t = 0, and is o�set by a transversevelocity �trans = 1=2a� ,
it also passes through the middle of the displaced second
grating at t = � . The dashed curve (long dash) represents
the displacement of the interferometer due to acceleration.
The center-line of the accelerating interferometer is shown
(short- long dash) at t = 0, and t = 2� where fringes have
a relative displacement of �D.

The results of the simple derivations above agree

with the non-relativistic phase contributions derived by

various more sophisticated methods[37�39]. The rela-

tivistic contributions to the phase shift caused by ac-

celerations and rotations are of the order Ekinetic=mc
2

smaller than the non-relativistic terms[36] and are un-

resolvable in our experiments.

The Sagnac rotational response factor is indepen-

dent of the velocity of the particle in an interferometer

in which the area is constant (as it would be for an

interferometer employing conventional beam-splitters).

However, since all demonstrated atom interferometers

employ di�ractive beam splitters, their rotational re-

sponse factors will exhibit 1/v dependence. This de-

pendence arises from the variation of the enclosed area

which in turn results from the variation of the di�rac-

tion angle with velocity.

In contrast to rotations, the phase shift due to lin-

ear accelerations (see Eq. (31)) varies with velocity as

1=�2. Thus atom interferometers that use slow atoms

will be relatively more sensitive to acceleration than to

rotation.

Phase shifts due to rotation and acceleration, as well

as shifts due to gravitational �elds (which give the same

response factor as acceleration due to the equivalence

principle), have been observed in many kinds of matter
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wave interferometers. Accelerations were measured us-

ing neutron interferometers[35;38], and using atoms[41].

The Sagnac phase shift for matter waves has been veri-

�ed with accuracy on the order of 1% for neutrons[38;42]

and electrons[43], and to about 10% for atoms using

both interferometers[31;44] and classical Moir�e regime

atom optics[45].

In view of the numerous demonstrations of the sen-

sitivity of matter wave interferometers to non-inertial

motion, the motivation for such experiments is princi-

pally technological: can such devices become the sen-

sors of choice in practical applications or can they

demonstrate such high sensitivity that they open up

new scienti�c possibilities? With these considerations

in mind, the observation that the rotation-induced

phase shift in an atom interferometer exceeds the

Sagnac phase for light of frequency ! by an amount

mc2=~!, typically 1010, suggests the tremendous po-

tential of atom interferometer rotation sensor[39].

We now estimate the minimum angular velocities

and accelerations detectable by our atom interferom-

eter using the atomic velocity (1075 m/s) and signal

intensity (a contrast of 12.9% and an rms count rate of

29 kcounts/sec) achieved in our apparatus. We assume

that only Poissonian detection statistics degrade the

signal-to-noise ratio, which is therefore proportional to

C
p
N , where C is the fringe contrast and N is the total

number of counts. The response factor for rotations is

1.86 rad/
e, with a corresponding (purely statistical)

rotational noise of �35 m
e in one second of integra-

tion time. (Note: one earth rate (
e) is 7:3 � 10�5

rad/sec). For accelerations, the response factor is 116

rad/g, with a statistical noise of � 5:5� 10�4 g in one

second of integration time.

We performed experiments to measure both the re-

sponse factor for rotation and the rotational noise of

our interferometer. Both measurements were made

by suspending the interferometer by a cable from the

ceiling and then driving it with a sinusoidally vary-

ing force applied at some distance from the center of

mass, thereby giving the interferometer a rotation rate


(t) = 
0sin(2�ft):

The rotation rate 
0 was typically several earth

rates (
e = 7:3� 10�5 rad/sec) for the response factor

measurement, and about 
e=10 for the noise measure-

ments. For the response measurements, f was chosen

just over 1 Hz in order to minimize deformations of our

interferometer (which has several prominent mechani-

cal resonances in the 10 to 30 Hz frequency range). For

the noise measurements, f was around 4.6 Hz, where

the measured residual rotational noise spectrum of the

apparatus had a broad minimum.

Our procedure was to measure the acceleration at

the sites of the �rst and third gratings of the suspended

interferometer using accelerometers. While modulating

the grating phase, ('grating(t) = kg(x1(t) � 2x2(t) +

x3(t)); with a sawtooth pattern at a frequency just

less than 1 Hz, we recorded accelerations from both

accelerometers, ('grating and the atom counts each mil-

lisecond. Readings from the accelerometers allowed us

to infer the atom phase expected from the accelera-

tion and rotation rate of the interferometer using Eqs.

(30) and (31). We called this predicted inertial phase

('predicted:

To study the magnitude and constancy of the re-

sponse factor, we binned these data according to the

'predicted determined from the accelerometer readings

after suitable correction for their known frequency re-

sponse. Since the frequency of the sawtooth modulation

of ('grating was chosen to be incommensurate with f ,

the data in a bin with a particular value of ('predicted

had a variety of values 'grating allowing us to determine

'rotation: A plot 'rotation vs. 'predicted is shown in Fig.

(17). The data reveal a linear response and an average

response factor within error (0.8%) of that predicted

from Eq. (31).

To study the reproducibility of our interferometer

we employed a phase modulation technique to immedi-

ately convert atom counts into 'rotation(t). This was ac-

complished by scanning the second grating (and hence

('grating) at 1 Hz to produce a carrier modulation on

the atom count rate. Since acceleration was negligible,

the rotation of the interferometer introduced a phase

modulation'rotation(t) to the carrier which was demod-

ulated by homodyne detection, using both the sine and

cosine of 'grating(t) (measured by means of an optical

interferometer with the same geometry as our atom in-

terferometer) as the local oscillator.

From each of 21 data sets 32 seconds long, we an-

alyzed samples of di�erent sizes to �nd the rotation

rate 'measured(t) determined from the rotation phase
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'rotation(t) of the interferometer. Samples were taken

from the middle of each data set and ranged in duration,

T , from 0.66 to 10.66 seconds. Each sample was Fourier

transformed and the magnitude of the amplitude of the

rotation at the drive frequency f was found. The rms

uctuations in the amplitudes for given sample lengths

were then determined for the various averaging times,

T . In Fig. (18) they are plotted and compared to the

shot noise limit.

Figure 17. A plot of the measured interferometer phase,
'rotation verses the inferred phase from the accelerometer
readings, 'predicted from a combination of 20 second runs to-
taling �400 seconds of data (�10 seconds of data per point).
There is a 0.8% di�erence between these measurements with
a total error of 1%.

We attribute the excess noise of the interferometer

relative to shot noise seen in Fig. (18), for T greater

than 2 seconds, to extraneous sources of rotational noise

rather than to any intrinsic failure of atom interferom-

eters. The observed noise �
 can be �t as an uncor-

related sum of shot noise, SNL, and background rota-

tional noise, B, times an overestimation factor, �,

h�
i = �
p
SNL2 + B2 (32)

The over-estimation factor � = 1:09 � 0:02, is close

to unity, and is consistent with noise arising from im-

perfections in our modulation scheme together with the

previous observation of super-poissonian noise from our

detector. The background noise determined from the �t

is B = 10 m
e � 1m
e:

Figure 18. Reproducibility of the rotation rate measure-
ments in the atom interferometer. Fluctuations in the spec-
tral peak amplitude at the driving frequency, f = 4:6Hz
(for 30 data sets), is compared to the predicted shot noise
(dashed line) and plotted versus integration time, T . A �t to
the data points with Eq. (32) yields an over-estimation fac-
tor � = 1:09� 0:02 and a background B = 10 m
e� 1m
e:

We regard these results as highly encouraging for

the future of inertial sensors using atom interferome-

ters. Our interferometer was designed for separated

beam interferometry, not inertial sensing. This resulted

in restricting the usable area of our small 1 mm � 200

�m gratings at both ends of the machine by a com-

bined factor of 100. Furthermore, the vacuum envelope,

with heavy di�usion pumps hung at odd angles, had nu-

merous low frequency mechanical resonances. Despite

these di�culties, we veri�ed the rotational response fac-

tor to better than 1%, indicating that atom interfero-

metric rotation sensors perform as predicted. More-

over, we achieved reproducibility at the 42m
e=
p
sec

level. This is about three orders of magnitude more

sensitive than previous rotation measurements using

atom interferometry[44] and exceeds the sensitivities of

much more di�cult neutron interferometry measure-

ments that required integration times of many minutes

per point[38]. A dedicated rotation sensor using one cm2

gratings and cesium atoms would perform many orders

of magnitude better than ours, and should exceed the

performance of laser gyroscopes.
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