
Brazilian Journal of Physics, vol. 27, no. 2, june, 1997 147

Inelastic Light Scattering from Alkali

Bose- Einstein Condensates

Y. B. Band

Departments of Chemistry and Physics

Ben-Gurion University

Beer Sheva, Israel

Received October 10, 1996

We determine the spontaneous and stimulated non-resonant combination light scattering
cross sections from a �nite-size trapped alkali Bose-Einstein condensate (BEC) tor scat-
tered radiation with frequencies which di�er from the incident frequency by elementary
vibrational-rotational-spin excitations of the BEC. We consider incident microwave fre-
quency radiation not far from the hyper�ne splitting resonance frequency, and incident
visible frequency radiation cases. Bosonic stimulation (stimulation due to the population of
quantum states by Bose-Einstein particles) is a telltale signature of BEC since it drastically
a�ects the relative and absolute line intensities. The strongest feature in the scattered ra-
diation is the elastic scattering peak; the intensities of red and blue shifted scattering peaks
depend strongly on temperature even for temperatures below the critical temperature for
BEC. The Stokes (red-shifted) peaks are more intense than the anti-Stokes (blue-shifted)
peaks, and as T ! O, all blue shifted features in the scattering disappear.

The excitation spectrum of superuid 4He and su-

perconductive materials are crucial in understanding

the collective properties that determine their special

character[1] . It is likely that the excitation spectrum of

a Bose-Einstein condensate (BEC) of �nite-size trapped

alkali systems[2�4] may similarly ordain any special col-

lective many-body characteristics that they might have.

The vibrational-rotational excitations of such BEC sys-

tems can di�er from those of the uncondensed system

due to the interactions of the alkali atoms. Hence,

these excitations can provide a means of determining

the properties of the condensate. Bogoliubov[5] the-

oretically predicted the excitation spectrum for a ho-

mogeneous, zero-temperature weakly-interacting BEC

by using linear response to a weak single-frequency

probe. However, the excitation spectrum of a �nite-size

�nite-temperature weakly-interacting alkali BEC is ex-

pected to be substantially di�erent in character[6] . We

recently suggested[7] that spontaneous and stimulated

combination scattering, i.e., spontaneous and stimu-

lated Raman-Landsberg-Mandel'shtam-Brillouin scat-

tering, as a viable experimental method for determin-

ing the vibrational-rotational excitations of a �nite-size

trapped alkali BEC and worked out the theoretical for-

mulation for analyzing such experiments. Combina-

tion scattering results in the appearance of frequencies

which di�er from the incident frequency by vibrational-

rotational and magnetic excitations of the �nite-size

trapped alkali BEC. The incident frequency should be

close, but not too close, to a transition in the alkali

atom, so that the scattering probability is large, but

not too large (perturbation theory for the radiative pro-

cesses should still be valid and the probability of tran-

sitions should be negligible). For the alkali BECs of

Refs. 2-4, if the incident frequency is in the GHz range

(not far in frequency from the hyper�ne resonance fre-

quency), where the excitation frequencies are in the 10-

1000 Hz range, the scattered microwave frequencies can

be easily generated and the incident frequency can he

discriminated against the scattered frequency. Unfor-

tunately, the scattering cross section is very small in

this case since it involves magnetic dipole interaction
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operators. If the incident frequency is in the infrared

or the visible regions of the spectrum, the scattering

cross section is much larger, since the transitions would

involve electric dipole interaction operators, but ultra-

stable lasers are needed to discriminate the incident and

scattered radiation. Here we elaborate on the treat-

ment in Ref. 7 and consider in somewhat more detail

the non-spherically symmetric potential case.

Light scattering from a low density degenerate Bose

gas was recently considered by Javanainen[8]. He

showed that at �nite-temperature, extra structure in

the light scattering spectrum is expected due to the

Bose-Einstein statistics of the atoms and predicted two-

peaks in the light scattering, one at frequencies be-

low the incident light frequency arising from the re-

coil of the gas atoms by the change in the wavevector

of the photon in the scattering process, and the other

above the incident light frequency arising due to the

preferred scattering of an atom in the gas into the oc-

cupied ground state of the BEC. Javanainen estimated

the total light scattering from a BEC and concluded

that a good fraction of the photons striking the sample

would be scattered, and the scattered light would be

easily detectable[8]. However, the excitation spectrum

of the Bose gas in a harmonic oscillator potential was

not accounted for and the probabilities of combination

scattering peaks in the spectrum were not calculated.

Here, we consider the scattering spectrum due to excita-

tions of the Bose gas in the harmonic potential and the

external magnetic �eld. We estimate the fraction of the

light scattered into combination scattering lines by con-

sidering scattering from an ideal BEC (no interactions)

and analyze the Dicke narrowing type spectrum[9] re-

sulting from the con�nement of the atoms in the trap.

The spectrum and the occupation numbers for a

Bose gas in a 3D harmonic potential with Hamiltonian
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is given by Ej;k;l = �h(!x(j + 1=2) + !y(k + 1=2) +

!z(1 + 1=2)) where j, k and l are non-negative in-

tegers. The BE occupation numbers are given by

< njkl >= [exp(�(Ej;k;l � �))� 1)]�1 where the chem-

ical potential � is determined by the condition

1X
jkl=0

< njkl >= N : (2)

It is convenient to de�ne the dimensionless variables

x = ��h!x; � = �=�h!x; rz = !z=!x; ry = !y=!x; and

 = 3=2� �; in terms of which the average occupation

numbers can be written as

c

< njkl >=

P1

njkl=0 njkl exp[�x(j + ryk + rzl � )njkl]P1

njkl=0 exp[�x(j + ryk + rzl � )njkl]
=

1

exp[x(j + ryk + rzl + )] � 1
; (3)

Fig. 1 shows (= 3=2��=�h!x) and n000 vs x�1 = kBT=�h!x for N = 2000 and ry = ry = 1 (the isotropic harmonic

potential case). It is clear from this �gure that �, which is the chemical potential minus the zero point energy in

units of �h!; only vanishes for T = 0 (i.e., does not vanish for �nite temperature), hence BEC does not occur for

this con�ned �nite system. Nevertheless, a sharp change in  vs T occurs at Tc � 10�h!x=kB for N = 2000, hence

this is the \almost" critical temperature for this N . Fig. 2 compares  vs x�1 for two values of the total number

of Bose-Einstein particles, N = 2000 and 20,000. The �gure clearly shows that  decreases and Tc increases as the

total number of particles increase.

The probability amplitude c
(2)
BA(t) for light scattering from state A to state B can be calculated from second

order perturbation theory

c
(2)
BA(t) =

1

(i�h)2

Z t

0

dt00
Z 00

0

dt0
X
I

hBI exp[i(EB �EI � �h!)t00=�h]hyIA exp[i(EI �EA + �h!0)t0=�h]
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+ hyBI exp[i(EB � EI + �h!0)t00=�h]hIA exp[i(EI �EA � �h!)t0=�h)] ; (4)

where the interaction matrix elements are given by hIA =< Ije�ik�r[p � e(�) + �h
2� � (�ik � e(�))]jA > : For electric

dipole transitions (relevant for optical transition frequencies) the individual atomic transition matrix element reduces

to hIA =< Ijp � e(�)jA > whereas for magnetic dipole transitions (trelevant for microwave transitions) hIA =

�i=2(k � e(�))� < Ij[L + 2s]jA > : In what follows we proceed as if the relevant matrix element involves p �
e(�) exp(ik � x); but for magnetic transitions the spin part of the matrix element should be included. Performing

the time integrals and using the resulting expression for the amplitude to form the di�erential cross section we

obtain[10]

d�BA(E = �h!0)

d2

= r2e=m

2
e

!0

!

���X
I

"
< Bjp � e(�0) exp(�ik0 � x)jI >< Ijp � e(�) exp(ik � x)jA >

EI �EA � �h!

+
< Bjp � e(�) exp(ik0 � x)jI >< Ijp � e(�0) exp(�ik � x)jA >

EI �EA + �h!

# ���2 : (5)

where re the classical electron radius re = e2=(mec
2). State jA > involves an internal electronic and an external

harmonic oscillator state for all the atoms and a state vector for the photon �eld degrees of freedom, and is therefore

given by a product state of form
QN

i=0 j�iFiMi > jjikili >
Q

k� jnk� > where �i represents additional internal state

quantum numbers which must he properly symmetrized. For large detuning Eq. 5 reduces for electric dipole

transitions to

d�BA(E = �h!0)

d2

=

m2
er

2
e!

3!0

�2
je(�)� < ~Bjx exp < ~Bjx exp[�i(k� k0) � r]xj ~A > �e(�)j2 : (6)

d

Figure 1. (= 3=2 � �=�h!p) and n000 vs x�1 = kBT=�h!p
(i.e., chemical potential and ground state population vs tem-
perature) for N = 2000:

Figure 2.  vs x�1 = kBT=�h!p for N = 2000 and 20,000.
Tc � 10�h!x=kB(� 24�h!x=kb) for N = 2000(20:0000):

where state j ~A > indicates the part of the state jA >

without the photon degrees of freedom included, x is

the electronic position coordinate, r is the position co-
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ordinate for the atom (in the dipole approximation, the

electronic part of the position coordinate in the expo-

nent of the exponential can be neglected, but the po-

sition of the atom can not be neglected) and � is the

detuning. The sum over atoms, is implied but not in-

dicated in the operators appearing in Eq. 6.

To evaluate the amplitude on the right hand side

of Eq. 6, it is convenient to employ a second quanti-

zation formulation. Let us denote the quantum state

for a single bosonic atom by the quantum state label

� = �FMjkl, and the number of bosons in state �, by

n�. The Fock space state vectors jn�1 n�2 n�3::: > can

be constructed, and the operator in the matrix element

of Eq. 6 can be written in Fock space as S�� ; b
y
�, b�.

Here S�� is the transition amplitude to be evaluated be-

low and by�, and h� are the Fock space bosonic raising

and lowering operators for states �0 and �, respectively.

The amplitude in Eq. 6 is given by the product of

S��, and the matrix elements of by�b�, in Fock space[11].

The only nonvanishing matrix elements of by�; b� in Fock

space are

c

< n � 1�n+ 1�0 jby�0b�jn�n�0 >=
q
(n+ 1)�0F 0M 0j0k0l0 (n)�FMjkl : (7)

The matrix element S�0� can be evaluated as follows:

S�0FM 0j0k0l0;�FMjkl = e(�
0)� < �FM 0jxxj�FM > �e(�) < j0k0l0j exp[i(k � k0) � r]jjkl > ; (8)

where the �rst term on the right hand side is the electronic matrix element, and the last term is the single particle

harmonic oscillator matrix element.

For the symmetric potential case, !x = !y = !z the matrix elements can be analytically evaluated by choosing

a coordinate system in which the momentum transfer q = k� k0 lies along the Z axis (not the same axis of

quantization de�ning the azimuthal quantum number M ):

< j0k0l0j exp[i(k� k0) � r]jjkl >=< j0k0l0j exp(iqz)jjkl >= �j0j�k0k < l0j exp(iqz)jl > ; (9)

< l0j exp(iqz)jl >= 1p
�2l2l0 l!l0!

Z 1

�1

dz exp(�z2 + iqLz)Hl0 (z)Hl(z); (10)

where L = (�h=m!p)
1=2. The integral in Eq. (10) can be evaluated in terms of the Hermite polynomial power series

expansion

Hl(z) =

[`=2]X
v=0

avz
`�2v ; av =

(�1)vl!2l�2v

v!(l � 2v)!
; (11)

and the expression,

Z 1

�1

dz exp(�z2 + iqLz) =
p
� exp

��q2L2

4

�
;

to obtain

< l0j exp(iqz)jl >= 1p
�2l2l0 l!l0!

[`=2]X
v=0

[`0=2]X
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avav0(�i)`+l0�2(v+v0)@l+l
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: (12)

If qL << l, i.e., if the wavelength of the light is much larger than the trap size L, Eq. (12) reduces to

< l0j exp(iqz)jl >� �l0 ;l + iqL
hp

(1 + 1)=2�l0 ;l+1 +
p
1=2�l0;l�l

i
: (13)
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Substituting Eqs. 7, 8 and 9 into 6, we obtain the expression for the di�erential cross section,

d�BA(!
0) = ! � !p(l � l0)� �0H(M �M 0))

d2

=

m2
er

2
e!

3!0

�2
(n + 1)�F 0M 0j0k0l0 (n)�FMjkl

je(�0)(k̂0)� < �FM 0jxxj�FM > �e(�)(k̂)�j0j�k0k < l0j exp(iqz)jl > j2 : (14)

Here H is the magnetic �eld and �0 the magnetic moment.

d

For an asymmetric harmonic oscillator with poten-

tial,

V (r) =
m

2
(!2

xx
2
i + !2

yy
2
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2
i );

matrix elements in Eq. (9) must be evaluated with

the q-vector properly oriented relative to the vector

L = (�h=m)1=2(!
1=2
x ; !

1=2
y ; !

1=2
z ): The calculation of the

matrix element in this case is more complicated. The

spectrum will have peaks at !0 = !�!x(j�j0)+!y(k�

k0) � !z(l � l0)� �0H�M:

To obtain the total di�erential cross section, we

must average the cross section �BA(!0) over the initial

set of states A and sum over all states B that can yield

photons of frequency !0: Using the grand canonical

probability for independent Bose-Einstein particles[12],

and the expression for the average occupation number

given in Eq. (3) we obtain for the symmetric potential

case,

c

d�(!
0 = ! � !p(l � l0) � �0H(M �M 0))

d2

=

m2
er

2
e!

3!0

�2
je(�0)(k̂0)� < �FM 0jxxj�FM > �e(�)(k̂)j2

X
jkll0

< (n + 1)�FM 0jkl0 >< n�FMjkl > j < l0j exp(iqz)jl > j2 : (15)

d

Here l0 is restricted in the sum on the right hand side so

that l� l0 is �xed. In the experiments of Refs. 2-4, only

one FM state is populated, so < n�FMjkl >=< njkl >

of Eq. 3 for the trapped hyper�ne state �FM and is

zero otherwise, and < (n+1)�FM 0jkl0 >=< (n+1)jkl0 >

for this state and is unity otherwise. Bosonic stimula-

tion due to the factor < (n+1)�FM 0jkl0 >< n�FMjkl >

is a telltale signature of BEC since it drastically a�ects

the relative and absolute line intensities. The optically

stimulated cross section is given by Eq. (15) times a

factor equal to the number of photons in the �eld at

frequency !0:

For small qL, and in the limit of weakly inter-

acting particles, the frequencies of the emitted radi-

ation are given by !0 = ! � �0H(�M ) and !0 =

!�!p ��0H(�M ): The cross sections for !0 = !�!p

and !0 = !�!p��0H(�M ) with �M 6= 0 in Eq. (15)

are proportional to the quantities

c

F (!0 = ! � !p; T ) =
X
jkl

(l + 2)=2 < (n+ 1)jkl+l >< njkl >

=
X
jkl

�
1

exp[x(j + k + l + 1 + )]� 1
+ 1

�
(l + 1)=2)

exp[x(j + k + l + )]� 1
; (16)
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F (!0 = ! � !p; T ) =
X
jkl

l=2 < (n+ l)jkl�l >< njkl >

=
X
jkl

�
1

exp[x(j + k + l � 1 + )]� 1
+ 1

�
l=2

exp[x(j + k + l + )]� 1
; (17)

F (!0 = ! � !p � �0H�M;T ) =
X
jkl

(l + 2)=2 < njkl =
X
jkl

(l + 1)=2

exp[x(j + k + l + )] � 1
; (18)

F (!0 = ! � !p � �0H�M;T ) =
X
jkl

l=2 < njkl =
X
jkl

l=2

exp[x(j + k + l + )] � 1
: (19)

d
Fig. 3 plots F (!0 = ! � !p; T ); F (!0 = ! + !p; T ),

F (!0 = ! � !p � �0H�M;T ) and F (!0 = ! � !p �
�0H�M;T ) for �M 6= 0) as a function of x for

N = 2000 and small qL: At T = 0, F (!0 = !+!p; 0) =

0, F (!0 = ! � !p; 0) = 1000; F (!0 = ! + !p �
�0H�M; 0) = 0; and F (!0 = ! � !p � �0H�M; 0) =

1000; since all atoms are in the lowest harmonic oscil-

lator state, transitions to lower energy states are im-

possible, and < n000 >= 2000; < (n + l)jkl >= 1 for

jkl not all zero. All Fs increase with increasing T .

The blue shifted Fs are smaller than the red shifted

intensities, and the intensities of the lines correspond-

ing to �M 6= 0 are smaller than those with �M = 0.

When qL is not small, additional scattered frequencies

at !0 = ! � (�l)!p � �0H�M with �l 6= l will be-

come signi�cant, as determined from Eq. (15). The

width of the scattered lines is related to the natural

linewidth of the atoms and is determined by a number

of factors[8;13]. Hence, the spectrum of the scattered

radiation is of the following general form: the strongest

peak appears at !0 = !;, peaks at !0 = ! � (�l)!p

are less intense with the !0 = ! � (�l)!p peak more

intense than at !0 = ! + (�l)!p. For qL << 1, only

the �l = 1 peaks contribute. Satellite peaks due to

�M transitions are displaced in frequency from the

�M = 0 peaks by ��0H(�M ): The intensities of these

peaks at low T do not increase with T as quickly as

the �M = 0 peaks but as T increases they become

important. The peaks at ! � (�l)!p � �0H�M are

more intense than for !+ (�l)!p � �0H�M:. The po-

larization of the scattered radiation depends strongly

on �M and is determined by the factor je(�0)(k̂0)� <
�FM 0jxxj�FM > �e(�)(k̂)j2 appearing in Eq. (15).

As T ! 0; all blue shifted features in the scattering

disappear. The temperature dependence of the rela-

tive and absolute intensities of the peaks is a strong

indication of BEC, and in particular the temperature

dependence of the ratio of the intensities of the peaks is

a clear signature of BEC. For an asymmetric harmonic

oscillator potential, the spectrum has peaks at !0 =

!�!x(j� j0)+!y(kk0)�!z(l� l0)��0H�M , and for

small q � L, where L = (�h=m)1=2(!1=2
x (!1=2

x ; !
1=2
y ; !

1=2
z ),

the strong peaks are at !0 = ! � �0H�M; !0 =

! � !x � �0H�M; !0 = ! � !y � mu0H�M; and

!0 = ! � !z � �0H�M; (with �M = 0; 1 and 2 if

the trapped state has M = F ).

Figure 3. F (!0 = ! � !p; T ); F (!0 = ! + !p; T ); F (!0 =
!� !p� �0H�M;T ); and F (!0 = !+!p � �0H�M;T ); (
for �M 6= 0) vs x�1 = kBT=�h!p for N = 2000 and qL� 1.
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The comparison with the !p ! 0 (no con�ning po-

tential) limit considered by Javanainen is considerably

di�erent than what is considered here; his limit should

correspond to our qL >> 1 limit. Note that even in

this limit, the intensities of the blue detuned features

of the spectrum vanish and the red detuned features

decrease as T ! 0.

It remains to determine via light scattering studies

the extent to which interaction of the atoms modify the

elementary excitations of the BEC.
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