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We determine the trend of the two-neutron removal cross section, ��2n, with energy for
11Li+12C in the high energy region. The cross section depends on the \t�A�B" optical
potential. By using Gaussian nucleon densities for the nuclei, we obtain closed-form ex-
pressions for the transmission coe�cient and the cross section. Several corrections such as
refractive and \in-medium" Pauli-blocking are considered.

I. Introduction

In the last decade, nuclear reactions of weakly

bound projectiles have been one of the central concerns

in the �eld of direct reaction theories. The importance

of the exotic nuclei is a result of the fact that they

present di�erent structural properties when compared

with the stable nuclei. Typical examples are the neu-

tron rich nuclei.

The nucleus of 11Li has attracted the most atten-

tion both experimentally and theoretically. The two-

neutron separation energy of 11Li is only about 0.34

MeV1), and the two neutrons are expected to have

a very low and spatially extended density distribu-

tion surrounding the 9Li core, forming the so-called

neutron-halo structure. The halo structure of 11Li is

consistent with all the experimental �ndings, which

include the enhancement of the interaction and two-

neutron removal cross sections. Such nuclear structure

properties have an impact on the reactions in which

those nuclei are involved. For example, take the neu-

tron removal cross section. It presents a large 2n break-

up cross section at large incident energy. The ex-

perimental determination of the neutron halo density

distribution is very important to determine the trend

with energy of the two-neutron removal cross section.

Particularly, the radioactive beams data of energies at

100-1000MeV/nucleon o�er a transparent link between

neutron halo density and two-neutron removal cross

section in Glauber approach. Consequently, it is of

some value to consider what might be expected for the

two-neutron removal process at these energies.

Even though the structure of 11Li directly calls for a

three-body model of the reaction, it is highly desirable

to �nd an approximate method to form an intuitive pic-

ture of the process. An approximate method will also

be useful to extract structural information of 11Li from

the analysis of the experimental data.

The purpose of the present paper is to determine

the trend of the two-neutron removal cross section with

the energy giving a closed-form expression for it. Due

to the weak correlation between 9Li and the two neu-

trons, the approach used directly relates the picture of

the 11Li reaction as a superposition of the independent

reactions of the 9Li � target and the dineutron-target

reactions.
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The approach is of particular importance for study-

ing the mechanism of the fragmentation reaction and

to understand the roles that are played by nuclear and

Coulomb forces in the dissociation of the neutron-rich

nuclei.

In this paper we will restrict ourselves to reactions

caused by the nuclear force and will not discuss the

reactions induced by the Coulomb force.

Our study is based on the eikonal approximation

to the phase-shift plus refractive corrections, with the

optical potential determined from the usual multiple-

scattering series with in-medium e�ects taken into ac-

count.

The organization of the paper is the following: In

sect. II we present the approach that is useful for

analysing the trend of the two-neutron removal cross

section with energy. The eikonal approximation to the

phase-shift with refractive corrections is also consid-

ered. The nucleus-nucleus optical potential employed

is explicitly presented. In sect. III we write closed-

form expressions for the two-neutron transmission coef-

�cient and the two-neutron removal cross section, start-

ing from the Gaussian nucleon densities for the nuclei

involved in the reaction. Sect. IV is reserved for the

results from the approach used. The importance of

the \in-medium" Pauli-blocking to the nucleus-nucleus

optical potential at high energy region and the refrac-

tive corrections, real nuclear and Coulomb �elds, to the

phase-shift are studied. In sect. V conclusions are pre-

sented.

II. The nuclear two-neutron removal cross sec-

tion

The total two-neutron removal process, for example,

11Li! 9Li, induced by a target nucleus A accounts for

all break-up channels, the inelastic and the elastic ones.

In the cluster model, the exotic nucleus, 11Li, is treated

as an inert core, 9Li, surrounded by two weakly-bound

neutrons . The approach, that we call the \transmis-

sion method", is determined by the transmission coef-

�cient of just the two neutrons, in which the system

is considered as a product of two-binary subsystems:

the core-target and the 2n-target ones. The resulting

cross section presents the following form when written

in terms of the impact parameter b:

��2n(E) = 2�

Z
1

0

db b T�2n(b;E) : (1)

The two-neutron transmission coe�cient is expressed

as

T�2n(b;E) = j SCA(b;E) j2 T2nA(b;E) ; (2)

where SCA(b;E) is the elastic S-matrix term due to

the subsystem consisting of the core (C) and the tar-

get nucleus (A) and the transmission coe�cient T2nA

refers to the subsystem of the two-neutrons (2n) and

the target A. For the two-neutron removal process 11Li

! 9Li, the core is 9Li. The cross section is obtained by

the integration over impact parameter b of the product

of the two probabilities, the survival probability of the

core in its ground state, j SCA j2, and the probability

of dineutron absorption by the target, T2nA.

As shown in an earlier work[2], the above quantities

can be related to the imaginary part of the phase shift

�(b;E) as follows:

j S(b;E) j2 = e4 Im �(b;E) ; (3)

where the S-matrix and the transmission coe�cient,

T(b;E), obey the 
ux conservation expression,

j S(b;E) j2 + T (b;E) = 1 : (4)

At relative high energies, the eikonal approximation to

the phase shift is reliable,

Im �eikonal(b;E) = � 1

~v

Z
1

0

dz Im Vopt(r;E) : (5)
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However, since we are also interested in studying re-

fractive e�ects in this approach, it is more appropriate

to write the phase shift as9)

c

Im �eikonal(b;E) = � 1

~v

Z
1

r0

dr
ImVopt(r;E)q

1 � b2

r2
� Re Vopt(r;E)

E

: (6)

d
The usual expression for the eikonal phase shift, Eq.

(5), can be obtained from the above equation, by tak-

ing Re Vopt(r;E) to be zero. It is equivalent to con-

sidering a straight line approximation to the trajectory

in classical language. The general equation, given in

the expression above, fully incorporates the refractive

e�ects in the eikonal expression of the phase shift. The

turning point r0 presents a simple closed expression if

the real part of the optical potential only includes only

the Coulomb interaction[3], that is,

kr0 = � +
p
�2 + (kb)2 ; (7)

� being the Sommerfeld parameter. However, since

the real part of the nuclear optical potential will be

included, the turning point in general has no simple

expression.

For the calculation, it is necessary to adopt a model

for the nuclear part of the optical potential. A simple

and a valid expression for our study is the impulse-

approximation for composite projectile nuclei, of Ker-

man, McManaus and Thaler[4],

Vopt(~r;E) = < tNN (E) >

Z
d~r

0

�A(~r
0)�B(~r � ~r

0) ; (8)

where �i(r) is the single-particle density of nucleus i and

< tNN (E) > is the free nucleon-nucleon amplitude in

the forward direction �=0�. The latter can be written

as

< tNN (E) >= �1

2
~v < �NN (E) > (< �NN > +i) ; (9)

where the brackets represent an isospin average over

the projectile and target nucleons. The parameter

< �NN > expresses the ratio of the real to the imag-

inary parts of the optical potential. Commonly, it is

given by an adjusted number[5].

III. Closed-form analytical expressions

Simple expressions can be obtained for the two-

neutron transmission coe�cient and the two-neutron

removal cross section when a Gaussian form is used for

the nucleon density distribution:

�A(r) = �A(0)e
�(r=aA)2 ; (10)

with

�A(0) =
A

a3A�
3

2

; (11)

where A is the mass number of the nucleus. The pa-

rameter aA can be considered as free or related to the

root mean square radius, Rrms, by

aA =
Rrmsp
1:5

; (12)

where experimental Rrms values may be employed.

When aA is determined by the Rrms, the approxima-

tion is parameter free.

In the spirit of the Gaussian form for the densities,

we adopt a similar model for the optical potential:
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c

Vopt(r;E) = � < tNN (E) > �
3

2 �A(0)�B(0)
a3Aa

3
B

a3AB
e
�( r

aAB
)2
; (13)

d
where

aAB =
q
a2A + a2B : (14)

The expression is well justi�ed for the energy range of

the present study[6�7]. Note that Eq. (13) determines

the central part of the optical potential, with both the

imaginary and real parts are taken into account. The

advantage of using a convenient optical potential in or-

der to describe the subsystems C�A and 2n�A, which
is necessary to determining T�2n(b;E), is the possibil-

ity of having a simple expression for the two-neutron

transmission coe�cient,

c

T�2n(b;E) = e��CA(E)e
�

b2

a2
CA [ 1� e��2nA(E) e

�
b2

a2
2nA ]; (15)

where the dynamical quantities �CA(E) and �2nA(E) are determined by:

�AB(E) =< �
(tot)
NN (E) >

�2a3Aa
3
B

(a2A + a2B)
�A(0)�B(0) : (16)

The simple closed-form expression of Eq. (15) is a result of two ingredients: i)-The eikonal phase-shift expression,

given in Eq. (5), with no refractive corrections and ii)- The well known \t�A�B", where the nucleus density �i has a

Gaussian form. The parameter �AB(E) contains information about the adopted nuclear structure of nuclei involved.

The above expression for T�2n(b;E) allows us to write down the two-neutron removal cross section as an in�nity

series

��2n(E) = 2�
1X
n=1

[�2nA(E)]n 
(�(n); �CA(E))

n! 2 a2CA [�CA(E)]�(n)
; (17)

with

d

�(n) =
na2CA
a22nA

; (18)

where the incomplete gamma function is de�ned[8] by:


(�; x) =

Z x

0

e�tt��1dt ; [Re � > 0]: (19)

The importance of the expression for ��2n(E) is that it

might provide a pratical way of determining the cross

section, if it is a highly convergent series. If so, a few

terms might be su�cient to reasonably account for the

��2n(E). In this case, we would have a fast way of

determining this cross section.

IV. Results

The KMT formalism was developed to give a prac-

tical means of obtaining the optical potential for the

nucleon-nucleus system. At su�ciently high energies,
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calculation using this lowest order optical potential pro-

vides a reasonable qualitative description of the total

reaction cross section data[9]. The formalism assumes

valid the use of the free two-body t-matrix, which is

known as the \impulse approximation" (IA). If the IA

is to be valid, e�ects of the nuclear medium must be

negligible. Among these e�ects, the Pauli-blocking \in-

medium" correction is the most important one for the

nucleus-nucleus system, in the range of energy of the

present study[10]. Its e�ect is to reduce the magnitude

of the optical potential turning the imaginary part of

the optical potential less absorptive. The correction

is taken into account by considering that each nucleus

is described by a Fermi sphere of momentum KF in

which each nucleon has a momentum k. In the col-

lision process, the scattering of nucleons is restricted

by the Pauli-principle in order to avoid the occupa-

tions of states already occupied. The model, developed

for nuclear matter, makes use of the \local density ap-

proximation" in order to consider �nite nuclei. This

is done through the well known relation between the

Fermi momenta of nuclei and the their nucleon densi-

ties by KFi = (32�
2�i)1=3. We will use the following

convenient expression[11]

�
eff
NN (E) = P (E;KF1;KF2)�

free
NN (E); (20)

where the reduction factor P above is parametrized in

terms of the variables � = k
KF>

and � = KF<

KF>
, where

k is the relative momentum between the two nucleons

in consideration and KF>(KF<) is the larger(smaller)

of KF1 and KF2. See Ref. 11 for details. We use

KF (
9Li)=0.89 fm�1 and KF (

12C)=0.86 fm�1, which

correspond to Fermi momenta calculated at the surface

of the respective nuclei.

Fig. 1 shows the e�ect of the Pauli-blocking \in-

medium" correction on the two-neutron removal cross

section of the system 11Li + 12C over a large en-

ergy range. We use a2n = 4:42fm15). The parameters

a9Li=1.952 fm and a12C=2.120 fm are from Ref. 12 and

they are the ones that �t the nucleon density distribu-

tion calculated by Bertsch and coworkers[13]. The �rst

remark to make is that the Pauli-blocking is important

mainly at lower energies. At su�ciently high energies

the correction due to the blocking is negligible[9], al-

though in Fig. 1 its e�ect persists up to the highest

energies shown. This is related to the fact that the

Pauli-blocking was estimated at the surface of the nu-

clei involved. At these energies the use of a free two-

body t-matrix is a valid approximation. Therefore, the

impulse approximation optical potential, given in Eq.

(8) and Eq. (9), is valid at su�ciently high bombarding

energies.

Figure 1. The e�ect of Pauli-blocking on the two-neutron
removal cross section as a function of bombarding energy
in the system 11

Li+12
C. The dashed (solid) curve include

(omit) it, respectively. See the text for details.

The two-neutron removal cross section based on the

two-neutron transmission coe�cient method, given in

Eq. (1), is a peripheral process. This is illustrated

in Fig. 2. The two-neutron transmission coe�cient,

T�2n, is a product of the S-matrix of the binary system

C �A, j SCA j2, and the transmission coe�cient of the

2n � A system, T2nA. It displays the geometry of the

reaction very clearly. As Fig. 2 indicates, one of the

terms excludes small values of the impact parameter b,
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while the other excludes large values of b. The prod-

uct j SCA j2 T2nA clearly peaks at the surface of the

target nucleus. This characteristic can result in a sen-

sitivity of the cross section with respect to the density

of the two outermost neutrons since in the exotic nu-

clei, the weakly bound neutrons are far away from the

core. The solid line in Fig. 2, which represents T�2n,

has a maximum at the surface of the system. If we

sum the radius of 11Li, R=3.14 fm with 12C, R=2.45

fm we have R11Li+R12C=5.59 fm. Clearly, it indicates

that the density of the outermost neutron will play a

signi�cant role in the cross section.

Figure 2. Schematic representation of the two-neutron
transmission coe�cient, indicating its surface-peaked ori-
gin.

Fig. 3 shows the two-neutron distribution using

the Gaussian form given in Eq. (10). The parameter

a2n=3.30 fm is adjusted in order to better reproduce

the elastic scattering of protons o� 11Li at 62 MeV14),

while a2n=4.42 fm is determined by the r.m.s. radii15)

of 9Li and 11Li. We can see how the tail of the distribu-

tion is sensitive to the a2n parameter. That di�erence

in the densities of the nucleus will a�ect strongly the

��2n due to the peripheral nature of the reaction. In

fact, in Fig. 4, we observe this. At an incident energy of

800 MeV/nucleon, we note that the experimental value

of ��2n(
11Li+12 C) = 220� 10mb16), falls between the

results with a2n=3.30 fm and a2n=4.42 fm. Therefore,

we can say that the two-neutron removal cross section

determined by the \transmission method", given in Eq.

(1), is sensitive to the variation of a2n, the two-neutron

halo parameter.

Figure 3. The two-neutron Gaussian nucleon density distri-
bution as a function of the parameter a2n. See the text for
details.

Figure 4. The trend with energy of the two-neutron removal
cross section for 11

Li+12
C as a function of the parameter

a2n. See the text for details.

The eikonal approximation to the phase shift implies

the assumption of straight line propagation in classical

language. When the Coulomb and the nuclear �elds

are considered, they produce a deviation of the trajec-

tory from a straight line. The consequence is a change
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in the absorption. While the Coulomb potential is of a

repulsive nature, favoring the scattering process, the in-

clusion of the (real) nuclear potential, will increase the

absorption, since the projectile will be attracted by the

target nucleus. Therefore, they act in opposite direc-

tions. The net contribution will depend on the dynamic

of the reaction.

With relation to the dependence on the impact pa-

rameter b, we can say that the refractive e�ects are

more pronounced the smaller b becomes. As fragmen-

tation is a peripheral process, and due to the energy

region of the study, the refractive e�ects make a negli-

gible correction. We note that the S-matrix, j SCA j2,
and transmission coe�cient, T2nA, are little modi�ed

by the Coulomb and the nuclear �elds. Therefore, the

refractive e�ects, contained in Eq. (6), do not alter

signi�cantly the physics included by using the eikonal

expression of Eq. (5), where refractive e�ects are ne-

glected. The nuclear �eld was considered by taking

< �NN >= 1.

The fact that the two-neutron removal transmission

coe�cient, given in Eq. (2), is determined by the val-

ues in the surface region, makes a series representation

of T2nA reliable, in which the terms are determined by

expanding the exponential function in brackets of Eq.

(15). The result for ��2n is the expression given in

Eq. (17). In the table below we compare values of

��2n(E) from the exact calculation, given in Eq. (1),

with those of the series expansion, given in Eq. (17),

with a2n=4.42 fm. We note that the �rst term of the

series is already su�cient to give a good representation

of the cross section. The agreement becomes better

when more terms of the series are considered. We also

note that the agreement with the exact results becomes

better as the energy increases.

Table I: Two-neutron Removal Cross Section for the system 11Li+12 C with a2n=4.42 fm

��2n(E)(mb)
E(MeV/nucleon) EXACT serie(No� of terms)

1 term 2 terms
100 314.10 355.72 307.88
200 251.36 277.19 248.15
300 248.56 273.78 245.43
400 260.09 287.85 256.53
500 273.32 304.16 269.44
600 284.17 317.28 279.93
700 291.53 326.28 286.18
800 295.58 333.06 291.30
900 296.97 336.39 296.05
1000 296.52 333.14 292.25

In the Table I, the series with just the �rst term

falls short of the exact values by no more than 15%.

Therefore, the two-neutron removal cross section can

be fairly described by a closed-form expression, given

by just the �rst term of the series, in Eq. (17). The

series with two terms gives an agreement of better than

2% with the exact values.

V. Conclusions

We have analysed the trend of the two-neutron re-

moval cross section, as a function of bombarding ener-

gies for the system 11Li+12 C, using the \transmission

method", where the cross section depends directly on

the 
ux which feeds the two-neutron removal channel.

The method used is able to give a value in agreement
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with experimental data at 800MeV/nucleon.

The transmission method presented a high sensitiv-

ity to the variation of the spatial distribution of the

neutron-halo. A small variation in the halo density

makes a big variation in the ��2n. Therefore, it is im-

portant to know the neutron halo distribution in exotic

nuclei, in order to estimate reliably the trend of ��2n

with energy.

The Pauli-blocking \in-medium" correction to the

optical potential was shown to be important in reducing

the absorption and giving smaller values for the cross

sections. While the e�ect is strong at lower energies,

we can neglect it at su�ciently high energies.

The refractive corrections to the usual straight line

approximation to the trajectory were considered. This

correction to the eikonal phase shift represented a small

e�ect, in the high energy range analysed here. So, the

nuclear and Coulomb �elds were shown to have a min-

imal e�ect on the cross section.

Using a Gaussian form for the nucleon density of

the nuclei involved in the reaction, we presented closed-

form expression for the two-neutron transmission coef-

�cient and for the two-neutron removal cross section.

The two-neutron removal cross section was written in

a series involving the incomplete gamma function. We

showed that it is rapidly convergent series and that just

the �rst term is su�cient to give a good representation

of ��2n. All the parameters are �xed by the experi-

mental values, but the ratio of real to imaginary part

of the optical potential. Therefore, contrary to the com-

mon analysis with the optical potential model, in which

the energy dependent parameters are adjusted for each

bombarding energy, in order to explain the experimen-

tal data, our trend for the ��2n as a function of the

bombarding energy is obtained by once adjusted the

parameters they are kept �xed for the whole range of

energy.

It is worth noting that the closed-form expression

for the cross section, given in Eq. (17), and the trans-

mission coe�cient, given in Eq. (15), are general ex-

pressions valid whenever Gaussian nucleon densities are

used.

In our expressions we have included only the nuclear

forces. Therefore, neither the Coulomb dissociation

process nor its interference with the nuclear process

were studied.
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