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We write the London limit of the Lawrence Doniach free energy in terms of the local mag-
netic �eld and of the average supercurrent over the interplane distance. Starting from this
formulation we study a model where the supercurrent at the bu�er layers is obtained from
the superconducting sheets by a Taylor expansion. The continuum limit of this model gives
corrections to the anisotropic London theory due to the layered structure.

I. Introduction

Long ago superconductivity in layered compounds

was studied in the intercalated transition-metal

dichalcogenides [1, 2]. The discovery of the high-

temperature superconductors brought a renewed in-

terest in the study of layered superconductors. A

theoretical framework to understand layered com-

pounds for extremely type II superconductors (large

Ginzburg-Landau parameter �) is the London limit

of the Lawrence-Doniach (LLD) theory [3,4,5]. The

Lawrence-Doniach theory is a generalization of the

Ginzburg-Landau theory that considers zero-thickness

superconducting planes. Between the planes this model

considers perfect insulating bu�er layers. The London

limit holds provided that the density of superconduct-

ing pairs is constant in all layers even in the presence

of vortices where local variations of this density, close

to the cores, are discarded. London theory was pro-

posed long before the Ginzburg-Landau theory. Al-

though London theory can not explain the existence of

vortices in a superconductor it can treat vortices under

the assumption that the vortex core is a region totally

exterior to the superconductor. The London limit of

the Lawrence-Doniach theory is expected to apply to

a broader temperature range since the former is a free

energy expansion valid close to the critical temperature

whereas the latter is based on energy considerations

valid at any temperature. Therefore there is supercon-

ductivity in the LLD theory only at the zero-thickness

planes that interact through the (Josephson) supercur-

rent component, whose value is constant at each bu�er

layer. The Josephson current only depends on the dif-

ference between the phases of the order parameter de-

�ned at each superconducting plane.

In many situations to understand the layered super-

conductor is just enough to consider the standard Lon-

don model that takes the superconductor anisotropic

and continuous along the c-axis. This is the case of

torque studies where agreement between the anisotropic

London theory and experiments[6] is satisfactory as

along as the applied �eld is not extremely aligned to

the planes[7]. The vortex lines, though tilted are still

three-dimensional. For an applied external �eld with

an strong component orthogonal to the c-axis, thus

along the CuO2 planes, the ratio between the coher-

ence length along the c axis, �c, and s, the distance be-

tween two consecutive superconducting sheets, deter-

mines a crossover between two and three-dimensional

regimes [8]. To see this consider a vortex line parallel

to the CuO2 plane where �c is the radius of its normal

core. For �c � s there are several planes inside the

vortex core, the normal state is established inside the
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core and the vortex is surely three-dimensional. For

�c < s the whole core �ts in between two consecutive

planes, coherence is small and the LLD theory must de-

scribe a stack of coupled Josephson juntions. The sys-

tem displays two-dimensional behavior. Obviously this

is a very restrictive criterion of dimensional crossover

that applies in case the vortex line is oriented along

the CuO2 planes. A better dimensionality criterion is

to check if the two-dimensional pancake vortices [9,10],

which exist at each superconducting plane, are su�-

ciently correlated to de�ne a three-dimensional vortex

line. For an applied external �eld (H) along the c-axis,

the diagram (H�T ), T is the temperature, the vortices

are known to be three-dimensional at low temperature

and su�ciently low aplied �eld along the c-axis. How-

ever this is no longer the case when the external �eld

becomes so strong, that correlation among pancake vor-

tices in each plane surpasses the correlation among pan-

cake vortices in In this case the 
ux-line lattice becomes

two-dimensional[11].

Up to this point we have only considered supercon-

ductors where the bu�er layers are perfectly insulat-

ing the superconducting planes. Let us consider the

same dimensionality question in case the bu�er lay-

ers are not perfect insulators and do show conducting

properties through the proximity e�ect. This is not

the case of the High-Tc compound Bi2Sr2CaCu2O8+x

where the assumption of perfect insulating layers be-

tween the CuO2 is indeed a good approximation. Direct

measurements of the I � V characteristic curve along

the direction orthogonal to the CuO2 layers (c-axis)

of Bi2Sr2CaCu2O8+x, for instance, indicate that this

material behaves as a stack of superconducting CuO2

planes separated by insulating BiO and SrO layers[12].

Recently, arti�cially layered superconductors [13] have

been grown, like (Pr=Y )Ba2Cu3O7��, which do be-

have as a series array of Josephson junctions: the Pr

insulating layers are introduced between the Y super-

conductor layers. However for Y Ba2Cu3O6+x, an-

other High-Tc superconductor, it is well-known that the

bu�er layers have a richer structure because of the so-

called CuO chains, located between the planes. In this

case the three-dimensional behavior prevails in all situ-

ations because of the proximity e�ect. In summary the

bu�er layers may display a richer behavior, e.g. metal-

lic, and considering them as perfect insulators may not

always be a good approximation. For such reasons we

�nd worthwhile the present study, namely, the proposal

of phenomenological models that provide a description

of the bu�er layers other than that of the original LLD

theory.

One of the most interesting new aspects of the su-

perconductivity in the high temperature superconduc-

tors is the existence of a broad region where thermal


uctuations dominate the response of the superconduc-

tor, showing transitions of �rst and second order. The

thermal 
uctuations of the 
ux-line lattice in these su-

perconductors can become quite large due to the higher

temperature and the elastic softness which is caused

by the large London penetration length, small coher-

ence length and specially, the pronounced anisotropy

or layered structure. In conclusion all free energy pro-

cesses should be always compared to the thermal energy

available,KB T , for the high temperature superconduc-

tors. The present study addresses a zero temperature

question, the proposal of new models laying between

the anisotropic London theory (three dimensional) and

the London limit of the Lawrence Doniach model (two-

dimensional). It is well-known that thermal 
uctua-

tions do play an important role for both the London

theory [7] and for the LLD model [11] and surely will

also play an important role for the present model, al-

though we do not discuss this matter any further in this

paper.

An interesting property of the continuous London

model free energy is its twofold formulation, either in

terms of the local magnetic �eld ~h and the vorticity

~�, or in terms of the phase of the order parameter, �,

and the magnetic potential ~A. This property can be re-

garded as a simple consequence to a free energy which is

a sum of kinetic and magnetic �eld energies, where the

kinetic energy density is locally expressed as a function

of the supercurrent. Curiously this property is absent

in the LLD theory, which only admits a formulation in

terms of the last set of variables, � and ~A. The LLD

free energy can not be expressed in terms of the local

supercurrent and the local magnetic �eld, and we take

this as the starting point for our theoretical considera-

tions. We show in this paper that formulating the LLD

theory in terms of the average value of the supercur-

rent, instead of its local value, provides a broader view

of the LLD theory. We take here that this broader view

of the LLD theory opens the way to formulate new phe-

nomenological models. For instance, we show here that

the addition of an extra assumption yields a generalized

continuous London model which contains the interlayer

spacing s as a parameneter. This assumption is that

the supercurrent, at any point of the bu�er layers, can
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be Taylor expanded around the layers. Taking that

the layers are no longer perfect insulators yields a well-

de�ned nearly continuum limit of the layered theory, as

shown here. We recall that our goal in this paper is not

the study of a particular toy model, obtained throgh the

Taylor expansion assumption, but really to show that

our broad interpretation of the LLD provides a route

to formulate intermediate theories sitting in between

the continuum London model and the standard LLD

model. The zeroth-order expansion of our free energy

in powers of s is the anisotropic London theory. Sur-

prisingly, even under our simplifying assumptions, we

�nd that our passage to the continuum is not uniquely

de�ned and yields two nearly continummmodels which

are here presented.

To make our point of view clear we start reviewing

the well-known continuous isotropic London theory in

section II. In the next section, III, we obtain a broader

formulation of the LLD theory considered so far, and

regard it as a general phenomenological model for the

layered superconductor. In section IV we introduce

some assumptions about the supercurrent behavior at

the bu�er layers and obtain a new model that gives the

continuous anisotropic London theory in lowest order

expansion. We show that there are two possible mod-

els in this near continuum limit. Finally in section V

we present our conclusions of this study.

II. London Theory

The simplest model for a superconductor is the Lon-

don theory, which takes into account the magnetic and

kinetic energies. The free energy is a sum of these two

energies, the former expressed in terms of the local mag-

netic �eld ~h(~x) and the latter in terms of the local su-

per
uid velocity ~V (~x). Call � the super
uid density,

m and q the mass and charge of a super
uid element

(q = 2e, m = 2me), and ~J = q�~V its local supercurrent

density. The London free energy is,

F =
1

8�

Z
d3~x [(4��=c)2 ~J2 +~h2] ; (1)

where �2 = mc2=(4�q2�) is the well-known London

penetration length. Obviously these two energy con-

tributions are not independent because the supercon-

ducting 
uid is charged, and so, the supercurrent also

contributes to the local �eld. There are two possible

ways to link these terms and the way this is done is

important for our considerations on the LLD theory.

1) ~F [ ~A; �]. Assume the minimal coupling, which

leads to a well de�ned prescrition that links the super-

current contains to the vector potential. The minimal

coupling is introduced at the level of the Ginzburg-

Landau complex order parameter,  =
p
� exp i�,

where the supercurrent density is ~J(~x) = q�(~~r�(~x)�
q=c ~A(~x))=m;. where the vector potential is ~A(~x) and

�(~x) is the phase of the condensate. Thus magnetic and

kinetic energies are related in the following way,

c

F [ ~A; �] =
1

8�

Z
d3~x [

1

�2
��0

2�
~r�� ~A

�2
+
�
~r� ~A

�2
]: (2)

d
leading to the extreme equations,

~A+ �2~r� (~r� ~A) =
�0

2�
~r�: (3)

2) ~F [~h]. The current and the magnetic �eld are lo-

cally well de�ned, consequently Amp�ere's law, ~r�~h =

4� ~J=c, should work, yielding the free energy expression,

F [~h] =
1

8�

Z
d3~x [�2

�
~r�~h�2 +~h2] : (4)

and the corresponding variational equation is

~h� �2~r2~h = �0~�: (5)

The vorticity �eld ~�(~x) has been introduced because

we think of a multiple connected space, with normal

state �laments inside, like worm holes, where part of

the external �eld penetrates. Thus ~�(~x) vanishes ev-

erywhere except inside such �laments - the vortex lines

- where London theory fails. London theory only ap-

plies to the superconducting space excluding the core

of the vortex lines. In case the superconductor �lls all

the space, except the �laments, it is easy to show there
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are no sources or sinkholes for them: ~r � ~� = 0 follows

from applying the divergence of Eq.(5) and using that

~r �~h = 0.

We know that these two ways of seeing London the-

ory are equivalent, and so, the phase and the vorticity

are related, according to ~� = ~r � ~r�. Notice that

the free energy F [~A; �] has one more equation than

F [~h], obtained from the phase �, the variational equa-

tion ~r � ��0

2�
~r� � ~A

�
= 0, whose content is no other

than current conservation, ~r � ~J = 0.

In summary we have just found that the continuous

London theory can be formulated either in terms of the

local magnetic �eld ~h or the set ( ~A; �). and changing

from one set to the other is a straightforward transfor-

mation. We show, in the next section, that for the LLD

theory the situation is quite distinct.

III. The London Limit of The Lawrence-Doniach

Theory

In the previous section we have de�ned the continu-

ous London theory free energy as a sum of kinetic and

magnetic �eld energies of the superconductor (Eq.(1)),

naturally expressed in terms of the local supercurrent

and magnetic �eld. There is no similar formulation of

the LLD theory. The LLD free energy functional is ob-

tained from the Lawrence-Doniach theory by taking the

order parameter as 	(~r; n) =
p
� exp [i�(~r; n)], where �

is constant. The superconducting planes are located at

z = ns, n an integer, and ~r is a two-dimensional vector

along the layers.

c

F =
1

8�

Z
d3~x ~h(~x)2 + s

X
n

Z
d2~r fn(~r);

fn(~r) =
~
2�

2ma

�@�n
@~r

� 2�

�0

~An

�2
+

~
2�

mcs2
�
1� cos(�n+1 � �n � �n+1;n)

�
; (6)

where �n+1;n(~r) =
2�
�0

R (n+1)s
ns

Ac(~r; z0) dz0 and mc and ma are the mass parameters, along and orthogonal to the

c-axis respectively. Hence the LLD free energy is naturally expressed in terms of the vector potential ~A(~x) and the

phase of the order parameter on the layers, �(~r; ns), ~x = (~r; z).

Minimizing this free energy with respect to the vector potential yields Amp�ere's law form where we obtain the

supercurrent components, along the plane and along the c-axis.

~J?(~r; z) = s
X
n

(q�~=ma)(@�n=@~r � 2� ~An=�0)�(z � ns) (7)

Jc(~r; z) =
X
n

(q�~=mcs)sin(�n+1 � �n � �n+1;n)Sn;n+1(z) ; (8)

Sn;n+1(z) is a function de�ned to be one in the interval ns � z < (n + 1)s and zero elsewhere. The Lawrence-

Doniach [3,4,5] supercurrent component perpendicular to the c-axis, ~J?(~r; z), diverges over the superconducting

planes because they have no thickness. This component vanishes elsewhere because the regions between the bu�er

layers are perfect insulators in the LLD theory. The (Josephson) component along the c-axis, Jc(~r; z), is constant

in the region between any two layers since it only depends on the di�erence between phases at layers n and n + 1.

The counterpart of Eq.(1) for the LLD theory follows by expressing the LLD kinetic part in term of average

values of the supercurrent components:

(q�~=ma)(@�n=@~r � 2� ~An=�0) = h ~J?(~r; n)in+1=2;n�1=2; (9)

and

(q�~=mcs)sin(�n+1 � �n � �n+1;n) = hJc(~r; n)in+1;n; (10)
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where the average values are de�ned over s, the distance between two superconducting sheets,

h ~J?(~r; n)in+1=2;n�1=2 � (1=s)

Z (n+1=2)s

(n�1=2)s

dz0 ~J?(~r; z
0) ; (11)

and

hJc(~r; n)in+1;n � (1=s)

Z (n+1)s

ns

dz0Jc(~r; z
0) : (12)

In terms of these average values we propose the following free energy,

F =
1

8�

Z
d3~x ~h(~x)2 + s

X
n

Z
d2~rfn(~r) (13)

fn(~r) = (4��a=c)
2[h ~J?(~r; n)i(n+1=2;n�1=2)]2 +

+ 2(4��c=c)
2J2m

�
1�

s
1� [h ~Jc(~r; n)i(n+1;n)]2

J2m

�
: (14)

as the LLD counterpart of Eq.(1).

d
The constant Jm is the maximum Josephson su-

percurrent, (4�Jm=c = �0=(2��2cs)), a natural con-

sequence of the layered structure where the minimum

wavelength along the c-axis must be the interlayer sep-

aration s (Jm = q�vm, vm = (~=s)=mc); Notice that

the Josephson contribution is expressed in terms of a

square root because whereas the Josephson energy is

proportional to cosine, the average Josephson current

is proportional to the sine of the phase di�erence. The

choice of the positive square root assures that the con-

tinuous London theory is obtained in the limit s! 0.

Our claim in this paper is that Eq.(14) is a broader

view of the LLD theory than the original one, Eq.(6),

because it can allow a description of the bu�er layers,

other than just purely insulating. In the next section

we propose a new toy model starting from Eq.(14), to

show that this is indeed possible.

IV. Beyond the London-Lawrence-Doniach

Model

The picture of strictly two-dimensional supercon-

ducting sheets surrounded by an absolute vacuum en-

viroment, as in the original Lawrence-Doniach model,

is no longer a requirement for the Eq.(14) model. The

average values of the supercurrent over the interplane

distance s, is the route for the proposal of new three-

dimensional models. We show this by adding a working

assumption on the behavior of the supercurrent in the

bu�er layers, namely, they can be smoothly obtained

from their values at the superconducting sheets. In the

bu�er regions, ns � z < (n+ 1)s, the supercurrent can

be determined from its value on the superconducting

layer ns by a Taylor expansion:

c

~J(~r; z) =
1X
q=0

(z � ns)q

q!

@q ~J(~r; z)

@zq
jz=ns ; (15)

In this way the mean supercurrents over s just become power series around the layers,

h ~J?(~r; ns)in+1=2;n�1=2 = dz(s)J?(~r; z)jz=ns ; dz(s) =
sinh

�
s
2
@
@z

�
s
2
@
@z

; (16)

hJc(~r; n)in+1;n = d0z(s)Jc(~r; z)jz=ns ; d0z(s) =
exp

�
s @
@z

� � 1

s @
@z

: (17)
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Two major features of the layered structure remain, the upper limit Jm, and the di�erential operators d0z(s)

and dz(s), this last representing the energy cost for a sigini�cant supercurrent change on a scale de�ned by s.

At the expense of introducing these di�erential operators, the new model recovers, the local dependence on the

supercurrent components at the superconducting planes.

F =
1

8�

Z
d3~x ~h(~x)2 + s

X
n

Z
d2~r fn(~r)

fn(~r) = (4��a=c)
2[dz(s) ~J?(~r; z)jz=ns]2 +

+ 2(4��c=c)
2J2m

�
1�

q
1� [d0z(s) ~Jc(~r; z)jz=ns=Jm]2

�
: (18)

In summary starting from our broad intepretation of the LLD theory, given by Eq.(14), we have reached Eq.(18),

which contains the Taylor expansion assumption. Notice that the free energies of Eq.(14) and Eq.(18) have not been

completely determined yet, it remains to connect the local supercurrent at the planes to ~h or ( ~A; �), similarly to our

introductory treatment of the continuous London theory. Because we are ultimately interested in the continuum

limit, this question is treated next, after the passage to this limit.

At the limit where all relevant lengths are much larger than s a passage to the continum limit is justi�ed,

s
P

n

R
d2~r! R

d3~x.

F =
1

8�

Z
d3~x f~h2 + (4��a=c)

2(dz(s) ~J?)
2 +

+ 2(4��c=c)
2J2m[1�

q
1� (d0z(s) ~Jc=Jm)

2]g : (19)

Obviously all terms introduced by the full expansions of the di�erential operators, d0z(s) and dz(s), are not necessary,

At any moment a Taylor expansion in s and the maximum Josephson current, Jm, can be applied, producing

corrections to the anisotropic continuous London theory. Let us look at the lowest order corrections to the continuous

anisotropic London theory. The di�erential operator along the c-axis gives linear corrections in s, d0z(s) = 1 +

(s@=@z)=2+(s@=@z)2=6+O(s3), and along the planes, corrections appear in quadratic order, dz(s) = 1+(s@=@z)2=6+

O(s4). Up to lowest order, which corresponds to terms proportionaL to s2 the theory is already non-linear because

of the Jm contributions, since 1=J2m is proportional to s2. The contribution of such non-linear term to the torque

has been igonored in past[14]

F =
1

8�

Z
d3~x f~h2 + (4��a=c)

2 ~J2? + (4��c=c)
2J2c +

+
s2

8�
[�1

3
(4��a=c)

2
�@ ~J?
@z

�2
+ (4��c=c)

2
�@Jc
@z

�2
+

(4��c=c)
2

4(q�~=mc)2
J4c ]g (20)

Such nonlinear contribution is expected to contribute in many situations and can be treated approximately by a

mean �eld theory: J4c � hJ2c i J2c , where the average is taken in all space. This shows that the e�ect of this non-linear
term is the enhancement of the London penetration length along the c-axis. Applications of the present study to

the magnetic torque will be seen elsewhere.

To proceed any further and obtain the variational equations for this continuum model, we have to relate the

supercurrent to the variational variables ~h or ( ~A; �), similarly to our section II discussion of the continuous London

theory. Varying the free energy under the small displacements, � ~J?(~x) and � ~Jc(~x), gives that,

�F =
1

4�

Z
d3~x f�~h �~h+ (4��a=c)

2� ~J? � d2z(s) ~J? +

+ (4��c=c)
2�Jcd

0

z(�s)[
d0z(s) ~Jcq

1� (d0z(s) ~Jc=Jm)
2

]g: (21)
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At this point we introduce the two possible choices:

1) ~J [ ~A; �] - We assume the familiar relations ~J? = q�(~~@� � q=c ~A?)=ma, and Jc = q�(~@c� � q=cAc)=mc to be

valid at the planes. Amp�ere's law becomes

(~r�~h)? = 4�d2z(s)
~J?=c (~r�~h)c = 4�

c
d0z(�s)f

d0z(s)Jcp
1� (d0z(s)Jc=Jm)

2
g; (22)

The corresponding Euler-Lagrange equation for � gives no content other than current conservation, whose expression

involves the operators d0z(s) and dz(s). Multiplying these equations by d2z(s) and d
0
z(�s), respectively, and solving

for d0z(s)Jc=Jm �rst, yields that

(~r�~h)? = 4�d2z(s) ~J?=c (23)

4�

c
Jc = (d0z(s))

�1f d0z(s)
�1(~r�~h)cq

1 + (d0z(s))
�1(~r�~h)c)2=4�Jc=c

g: (24)

Thus one obtains that

~A + ~�2(~h; s)~r� (~r� ~A) =
�0

2�
~r� (25)

~�2(~h; s) =

=

0
B@
�2ad

�2
z (s) 0 0
0 �2ad

�2
z (s) 0

0 0 �2cd
0
z(s)

�1 d0
z
(�s)�1p

1�(d0
z
(�s)�1 ~r�~h)2

c
=(4�Jm=c)2

1
CA

2) ~J [~h]- Imposing Amp�ere's law one obtains that

~h+ ~r� [�2(~h; s) � ~r�~h] = �0~�; (26)

�2(~h; s) =

0
B@
�2ad

2
z(s) 0 0
0 �2ad

2
z(s) 0

0 0 �2cdz(�s) dz (s)p
1�(~r�dz(s)~h)2c=(4�Jm=c)2

1
CA

d

Applying the curl to Eq.(26) leads to an equation for

the local magnetic �eld, like Eq.(26). However they are

not the same, the latter has �(~h; s) whereas the former

has ~�(~h; s). Thus the vorticity ~� is not simply related

to the condensate's phase � as it is for the continuous

London theory.

V. Conclusion

The LLD theory is naturally expressed as a function

of ( ~A; �), the local magnetic potential and the phase of

the order parameter. Both three-dimensional London

and LLD free energies are sums of magnetic �eld and

of kinetic energies. The kinetic energy of the three-

dimensional London theory depends locally on the su-

percurrent. The LLD kinetic energy can be expressed

at best as a function of the average value of the super-

current over s, as shown here. We take this formulation

of the LLD free energy as the starting point for the pro-

posal of new models. In particular we consider here a

very simple choice of local supercurrent behavior inside

the bu�er layers that leads to a model distinct from the

original LLD theory. We assume that at the bu�er lay-

ers the supercurrent is obtained by a Taylor expansion

around the superconducting sheets. Dependence on the

local supercurrent is retrieved at the expense of intro-

ducing some in�nite order di�ential operators along the

c-axis. In this nearly continuum limit the model turns

into the anisotropic London (AL) theory with addi-

tional s2 dependent interactions. We �nd that even in

the lowest order corrections, proportional to s2, there

must be non-linear corrections to the London theory,



Mauro M. Doria and Edson Sardella 119

previously ignored by other authors [14]. To completely

determine the model it is necessary to express the su-

percurrent at the layers as a function of ~h (Amp�ere's

law) and ~v , or of ( ~A; �) (minimal coupling). Within the

Taylor expansion picture previously discussed, we con-

sider these two possible models in this nearly continuum

limit. We show that their corresponding free energies,

F [~h] and F [~A; �] yield distinct properties. A more de-

tailed study of the properties of the vortex lattice[15],

including applications to the torque[7], and its elastic

properites[16] will be seen elsewhere.
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