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We study the selectivity and ion yield of four level atoms subject to resonant radiation from
three powerful laser �elds. The optimal conditions for achieving high selectivity without
a signi�cant decrease of the ion yield of the selected isotope are determined analytically
and the results are compared with numerical calculations for the case of uranium. The
limitations imposed by Doppler broadening due to a Maxwellian velocity distribution are
also studied.

I. Introduction

A four step pulsed photo-ionization scheme is usu-

ally employed in laser isotope separation of heavy

atoms [1]. Under typical conditions, Doppler broad-

ening is much greater than the natural widths and res-

onant radiation of low intensity ionizes only a small

fraction of the atoms. This problem is overcomed by

using high intensity laser radiation. Under this condi-

tion, a large fraction of undesired isotopes is ionized if

the laser radiation is tuned to the center of the line for

the atomic transitions of the selected isotope. Then,

the selectivity drops with increasing laser intensities.

This problem can be avoided with a detuning from in-

termediate resonance of the laser frequencies.

In reference [2], rough estimates are made for the

selectivity in multi-step pulsed photo-ionization spec-

troscopy considering each step independent of the oth-

ers. However, when power broadening becomes signif-

icant and the laser pulses act simultaneously these es-

timations are no longer valid and one must solve a set

of coupled equations (the Schroedinger equation for the

density matrix). The restriction on the selectivity be-

comes more severe when one needs to obtain also high

ion yield.

Despite the fact that the dynamics of two and three-

step photo-ionization was studied, including the selec-

tivity problem, in refs. [3-11], the problem of optimizing

the selectivity without a signi�cant decrease in the ion-

ization yield was �rst studied in reference [12]. There,

the selectivity of a three step process was studied within

a certain approximation (the relaxation mode approxi-

mation) that permits to obtain analytical results. Un-

fortunately, a three step process is inadequate for heavy

atoms if one is interested in an industrial application.

The four step process has been widely studied nu-

merically [13-15] from the point of view of ion yield.

However, selectivity considerations have not been taken

into account.

We extended the relaxation mode approximation to

an n-step process in [16]. Here, we apply the results

of reference [16] to describe the dynamics of four step

pulsed photo-ionization of atoms.

In a three level system [12], the simultaneous varia-

tion of the laser frequencies at the �rst and second steps

!1 = !12 + � and !2 = !23 � � (!i are the laser fre-

quencies and !ij are the frequencies of the transitions

of the selected isotope, � being the detuning from reso-

nance) over a wide range of � increases drastically the

selectivity without a�ecting signi�cantly the ionization

probability of the selected isotope. We will show that
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in a four level system, in the limit of large detuning, the

ionization probability of the selected isotope has a local

maximumwhenever !1+!2+!3 = !12+!23+!34. This

fact leaves us with two degrees of freedom �1 = !1�!12
and �2 = !2 � !23 (we consider �xed the laser intensi-

ties).

We will �nd optimal values for �1 and �2 in the short

pulse case, with allowance for Doppler broadening. Fi-

nally we will also show results of numerical simulations.

The parameters of the computation do not corresponds

exactly to any atom, although their values are close to

the case of uranium under ionization through a Ryd-

berg state.

II. Relaxation mode approximation in four-step

pulsed photo-ionization

We will consider the dynamics of a four-level atom

subject to resonant laser radiation of frequencies !1, !2

and !3 close to the atomic transitions !12, !23 and !34

respectively. We will assume that the frequencies !ij

are not too close to each other, so that each pulse ex-

cites only its own transition. The equations for the slow

density matrix elements �ij are well described by the

rotating-wave approximation [17] and can be written in

the following form,

i
dX

dt
= (H0 + i�)X (1)

where X is a column vector with elements �11, : : :, �44,

�12, �21, : : :, �34, �43, the matrix � depends on the da-

cay rates and the elements of the symmetrical matrix

H0 are given by,

�H01;5 = H01;6 = H02;5 = �H02;6 = v1

�H02;12 = H02;13 = H03;12 = �H03;13 = v2

�H03;15 = H03;16 = H04;15 = �H04;16 = v3

�H05;5 = H06;6 = f2 = �1

�H07;7 = H08;8 = f3 = �1 + �2

�H09;9 = H010;10 = f4 = �1 + �2 + �3

�H011;11 = H012;12 = f2 � f3 (2)

�H013;13 = H014;14 = f2 � f4

�H015;15 = H016;16 = f3 � f4

�H08;12 = H07;11 = H09;13 = �H010;14 = v1

�H05;7 = H06;8 = H013;15 = �H014;16 = v2

�H07;9 = H08;10 = H012;14 = �H011;13 = v3

with the remaining being zero. The vi are the matrix

elements of the Hamiltonian interaction between the

atom and the e.m. �eld in the dipolar approximation,

�i = !i�!i;i+1�ux!1=c is the detuning from resonance

and ux is the velocity of the atom in the direction of the

laser beams (supposed to be all in the �x direction).

For simplicity we will take v1 = v2 = v3 = v. It can

be shown, in the three level case, using the results of ref-

erence [12] that a departure from this condition strongly

distorts the selectivity function S(�1; �2; �3).The distor-

tion is such that to recover high selectivity it is neces-

sary to increase the detuning and this causes a decrease

in the ion yield.

The ionization probability of a certain isotope is,

�i(�; ux) =

Z �

0

i �44(t; ux) dt (3)

where � is the duration of the ionizing laser pulses (as-

sumed to be sincronized rectangular pulses) and i is

the ionization rate.

If we assume a Maxwellian distribution of velocities,

the total ion yield is,

ni =

Z 1
�1

dux f(ux) �i(�; ux) (4)

where f(ux) =
1p
�uT

exp (�u2x=u2T ) and u2T = kT=m

The initial condition is �11(t = 0) = 1. The solution

for �44 obtained from equation (1) is,

�44(t) = i

Z 1
�1

d


2�
e�i
t (F�1)41 (5)

where F (
) = 
I � (H0 + i�), I is a 16x16 identity

matrix and the element of the matrix F�1 appearing in

equation (5) can be written as,

(F�1)41 =
A(
)

D(
)
(6)

In the last equation A(
) = (Adj F )14 is the adjoint de-

terminant of the element (F )14 and D(
) = detF (
).

In the present case we are interested in the situation

for strong laser �elds, thus the conditions

vi >> max(�ij) (7)

are satis�ed.
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E�cient ionization is achieved with long laser

pulses, then we assume,

� >> 1=vi (8)

The denominator of the integrand in equation (5)

has sixteen poles. If equation (7) is satis�ed, it is possi-

ble to show that under certain conditions to be derived

latter (see equations (9)- (15)) twelve of these corre-

spond to highly oscillating frequencies and the four re-

maining (the relaxation modes) are purely imaginary

and of the order of the homogeneous widths �ij . Then,

taking equation (8) into account, we can neglect the

contribution of the highly oscillating modes to �44(t).

The relaxation mode approximation consists of obtain-

ing the four relaxation modes without computing the

oscillating modes.

Let 
i, i = 1; : : : ; 16 be the solutions of the equa-

tion detF (
) = 0. We arrange them so that 
i = �i�i,
i = 1; : : : ; 4 (�i being real numbers) are the relaxation

modes, and 
j , j = 5; : : : ; 16 are the oscillating modes.

Thus, for the relaxation mode approximation to be

valid it is necessary that,


i >> max(�j); i � 5; j = 1; : : : ; 4 (9)

Strictly speaking, equation (9) should be satis�ed

only for those 
i, i � 5, that populate the upper state.

In situations where coherent trapping is possible (like

in uranium AVLIS, where a 620 cm�1 meta-stable state

is involved) some of the highly oscillating modes van-

ish, but the same occurs with �44 (A(
i) = 0). Thus,

although equation (9) is not satis�ed for these 
i, the

relaxation mode approximation is still valid.

First of all, we will �nd when equation (9) holds.

We analyze the solutions to the equation D(
) = 0 in

the following cases,

a) v >> �j

It can be shown by direct computation of D(
)

that the oscillating modes are,


2
j ' v2 j = 5; : : : ; 8


2
j ' 5v2 j = 9; : : : ; 12


2
j ' (6 + 2

p
5)v2 j = 13; 14 (10)


2
j ' (6� 2

p
5)v2 j = 15; 16

b) �i >> vj; �1 + �2 >> vj ; �2 + �3 >> vj and

�1 + �2 + �3 >> vj

In this case we have,


2
j ' �21 j = 5; 6


2
j ' �22 j = 7; 8


2
j ' (�1 + �2)

2 j = 9; 10


2
j ' �23 j = 11; 12 (11)


2
j ' (�2 + �3)

2 j = 13; 14


2
j ' (�1 + �2 + �3)

2 j = 15; 16

c) �i >> v; �1 + �2 >> v; �1 + �2 + �3 << v

Now the oscillating modes are,


2
j ' �21 j = 5; : : : ; 8


2
j ' �22 j = 9; 10 (12)


2
j ' (�1 + �2)

2 j = 11; : : : ; 14


2
j ' �22 v

4

�21(�1 + �2)2
j = 15; 16

d) �2; �3 >> v; �1 << v; �2 + �3 << v

In this case we can show that,


2
j ' �22 j = 5; : : : ; 10


2
j ' v2 j = 11; : : : ; 14 (13)


2
j ' 4v2 j = 15; 16

e) �2 << v; �1; �3 >> v; �1 + �3 << v

Now we have,


2
j ' �21 j = 5; : : : ; 12


2
j ' 4v2 j = 13; 14 (14)


2
j ' 4v6

�41
j = 15; 16

f) �3 << v; �1; �2 >> v; �1 + �2 << v

In this case we obtain,


2
j ' �21 j = 5; : : : ; 10


2
j ' v2 j = 11; : : : ; 16 (15)

In cases c) and e) we see that 
j; j = 15; 16 de-

creases with increasing �1; �2. For the relaxation mode
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approximation to be valid in these two cases, equa-

tion (9) restricts the values of �1; �2 to,

�����1 (�1 + �2)

�2

���� <<
v2

max(�i)
(case c)

�21 <<
2v3

max(�i)
(case e) (16)

Using equation (9) it is possible to simplify the de-

terminants D(
) and A(
) at small frequencies obtain-

ing a fourth and third order polynomials for D(
) and

A(
) respectively,

D(
) ' D4

4 + iD3


3 �D2

2 � iD1
 +D0 =

= D4(
 + i�1)(
 + i�2)(
 + i�3)(
 + i�4)

A(
) ' iA3

3 �A2


2 � iA1
 +A0

(17)

We will not give here the expressions for Di and Ai

because they are very large polynomials1.

From equations (3), (5) and (17) we obtain,

�i =
i
D4

4X
j=1

A(�i�j )(1� exp (��j� ))
�j
Q

k 6=j(�k � �j)
(18)

For simplicity, we take the ionization rate to be the

only non-vanishing decay rate, thus,

�4;4 = 2�j;j = �i; j = 9; 10; 13; 14;15;16 (19)

the remaining elements of the matrix � being zero. We

stress the fact that the assumption made for � has no

e�ect on the coe�cients D4 and A3 in equation (17)

because they depend only on vi and �j , thus the con-

clusions we obtain in the next section for the short pulse

case are not a�ected by the form taken by �.

From equation (18) it is easy to show that �i ! 1

when � ! 1. This is obtained from the fact that

D0 = iA0. In the case under consideration we have,

D0 = 4i v
12; A0 = 3i v

12 (20)

III. The case of short pulses

In the limit of short pulses, when � is small so that

exp (��i� ) ' 1 � �i� (but still large enough to satisfy

equation (8)) we have,

�i = i�A3=D4 (21)

From the previous equation we can show in the limit

of large detuning (�i >> v), that the optimum condi-

tion to avoid a decrease in the ion yield of the selected

isotope is,

�1 + �2 + �3 = 0 (22)

To obtain this result we computed the following expres-

sion,

c

f(�1; �2; x) = �i(�1; �2; �3)
���
�3=��1��2

� �i(�1; �2; �3)
���
�3=��1��2��

(23)

d
In equation (23) we parameterize �1 and �2 in the fol-

lowing way,

�1 = �cos�

�2 = �sin� (24)

Instead of showing the analytic form of f(�1; �2; x),

we rather plot that expression in Fig. 1 for the case

� = 40v, x = 0:1v. We see in this �gure that f is posi-

tive everywhere with minima at � = �=4 and � = 3�=4.

Then we conclude that the condition (22) should hold

to avoid a decrease in the ion yield.

Now we investigate the selectivity as a function of

�1 and �2 with �3 being �xed by the condition (22).

Let �1, �2 and �3 be the isotopic shifts of the �rst-

step, second-step and third-step atomic transitions re-

spectively for the undesired isotope, then the ion yield

for the undesired isotope is,

n
(u)
i = �i(�1 +�1; �2 +�2;��1 � �2 +�3) (25)

1they are available by e-mail



108 Brazilian Journal of Physics, vol. 27, no. 2, june, 1997

whereas for the selected isotope is,

n
(s)
i = �i(�1; �2;��1 � �2) (26)

Figure 1. f(�cos�; �sin�; x)=(i�) versus � with � = 40v,
x = 0:1v (see equation (23)).

We now consider four cases,

case 1) �1 >> v, �2 >> v, �1 + �2 >> v.

In this case we obtain from equations (21), (25)

and (26),

n
(s)
i ' i�

2v2

�22

n
(u)
i ' i�

2v6

�21(�1 + �2)2�2
(27)

where � = �1 +�2 +�3

From equations (27) we obtain the selectivity S =

n
(s)
i =n

(u)
i ,

S ' �21(�1 + �2)
2�2

�22
(28)

which is an increasing function of �1 and �2 if �1 ' �2.

case 2) �1 << v, �2 >> v

In this case we obtain,

n
(s)
i ' i�

3v2

2�22

n
(u)
i ' i�

2v4(3v2 +�2 ���1 +�2
1)

�22(v
2 ��2 +��1)2(4v2 +�2

1)
(29)

Then,

S ' 3(v2 ��2 +��1)2(4v2 +�2
1)

4v4(3v2 +�2 ���1 +�2
1)

(30)

which does not depends on �2. If v >> �1;�2, then

S ! 1, thus there is no selectivity in this case.

case 3) �2 << v, �1 >> v

We have in this case,

n
(s)
i ' i�=2

n
(u)
i ' i�

2v6(4v2 +�2 +�2
2)

�41�
2(4v2 +�2

2)
(31)

S ' �41�
2(4v2 +�2

2)

4v6(4v2 +�2 +�2
2)

case 4) �1; �2 >> v, �3 << v.

In this case �1 ' ��2. Here we show only the ex-

pressions in the limit v >> �j. The result is,

n
(s)
i ' i�

3v2

2�21

n
(u)
i ' i�

3v2

2�21
(32)

S ' 1

Figure 2. Log plot of the selectivity S in case 3. �1 = �,
�2 = 0, �3 = ��. The dashed curve corresponds to the short
pulse case (equation (21)). The solid curve corresponds to
equation (18). The values of the parameters are v = 1 GHz,
i = 10�3 GHz, �1 = �2 = 2 GHz, �3 = 1 GHz and for
the solid curve � = 45 ns. � measured in GHz.

We conclude that the most favorable situation is

that of case 3 in which selectivity increases as �41 and

the decrease in the ion yield of the selected isotope has a

lower bound of i�=2. This situation changes when the

laser pulse duration is increased. In Fig. 2 we show the

selectivity for case 3. The dashed curve corresponds to

the short pulse approximationwhereas the solid curve is

for a long pulse (calculated with equation (18)). Fig. 3

shows the selectivity for case 1. We see that for the

short pulse case (dashed curves), and for large detun-

ing, the most favorable condition is that of case 3. This

situation is reversed for long pulses (solid curves). From

the point of view of the ion yield of the selected isotope,

the conditions of case 3 are the most favorable in both
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the short and long pulse cases. In Fig. 4 we show the

ion yield in case 1 (long pulse) where we see a strong de-

crease for large detuning. This is not so in case 3, where

we a obtain ni � 0:99 in the range �20 < � < 20.

We note that the two cases where there is no selec-

tivity at large detuning (cases 2 and 4) correspond to

the minima at Fig. 1.

Figure 3. The same as �gure 2 for case 1. �1 = �, �2 = �,
�3 = �2�.

Figure 4. Ion yield of the selected isotope from equa-
tion (18). �1 = �, �2 = �, �3 = �2�. v = 1 GHz,
i = 10�3 GHz, � = 45 ns.

IV. Doppler broadening

We will take into account the e�ect of Doppler

broadening when the atoms have a Maxwellian velocity

distribution in the case of short pulses and large de-

tuning. We will restrict here to the situation in which

�2 = 0, �1 = ��3 = �. As we saw in the previous sec-

tion, this appears to be the optimum situation (case 3).

The remaining cases can be treated in a similar way.

We consider the three laser beams propagating in

the +x or �x directions. For an atom with a velocity

~u = (ux; uy; uz) the detunings from resonance are,

�1 = �1 + � � k1ux

�2 = �2 � k2ux (33)

�3 = �3 � � � k3ux

Here ki = �!i=c can be positive or negative depending

on the direction of propagation of the laser beams. We

take ki > 0 if the corresponding beam propagates in

the +x direction and negative otherwise. For the case

of the selected isotope we should set �1 = �2 = �3 = 0

in equation (33).

First we replace equation (33) in (21) and take

the limit of large �. After this we take the limit

v >> �i � kiux. The resulting expression for �i is,

�i = i�v
6=P (34)

where,

c

P = 2v6 + c1c2c3v
2� + c2c3v

2�2 + c1c
2
3�
3 + c23�

4=2

c1 = (�1 ��3) � (h1 � h3)z

c2 = (2�1 + 3�2 + 2�3)� (2h1 + 3h2 + 2h3)z (35)

c3 = (�1 +�2 +�3) � (h1 + h2 + h3)z

Here we have introduced z = ux=uT and hi = kiuT .
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Replacing (34) in equation (4) we have,

ni =
i�v

6

p
�

Z 1
�1

dz
e�z

2

P
(36)

The denominator P in the integrand of equation (36) is a polynomial of third degree in z. It can be shown that the

two extrema have the following expressions for large detuning,

z0 =
�

h
+

(h1�2 � h2�1 + h3�2 � h2�3)v
2

�2h2
+ O(��3)

z1 =
�

3(h1 � h3)
+ O(�0) (37)

where h = h1 + h2 + h3.

d
From (37) we can see that due to the presence

of e�z
2

we can approximate P in equation (36) by a

quadratic expansion near z0 as a consequence of the

fact that z1 !1 when � !1. In the limit v >> �i

this expansion has the following form,

P ' 2v6 +
1

2
h2�4(z � z0)

2 (38)

Finally, from equations (38) and (36) we obtain,

ni ' i�

2�

Z 1
�1

dy;
e�(y+z0)

2

1 + h2�4

4v6 y
2

(39)

Following the analysis made in reference [12] for the

three level case, we de�ne the parameter,

� =
h�2

2v3
(40)

The relative ion yield for the selected isotope, obtained

from equation (39) is,

n
(s)
i = i�

p
�
v3

h�2
(41)

For the relative ion yield of the undesired isotope we

must distinguish three di�erent regimes. First, when

� << 1 we recover the short pulse case; the Doppler

broadening is masked by the power broadening and we

obtain equations (31) in the limit v >> �i.

The second and third regimes corresponds to the re-

gion � >> 1. In this case the ion yield for the undesired

isotope can be expressed as follows,

n
(u)
i = i�

2v6

�2�4
+ i�

p
�v3

h�2
e��

2=h2 (42)

When � >> h2

�2 e
�2=h2 , the second term dominates

equation (42), then the selectivity approaches,

S = e�
2=h2 (43)

We see in this situation that the selectivity is indepen-

dent of the detuning and the ion yield of the selected

isotope decreases with ��2 (see equation (41)).

Finally, in the region 1 << � << h2

�2 e
�2=h2 the �rst

term dominates equation (42) and the selectivity is,

S =

p
�

2

�2�2

hv3
(44)

These conclusions have been compared with numer-

ical simulations for long pulses (� = 45 ns). We will

not show �gures for these cases. Instead we summarize

the results.

We performed simulations for T = 2000 oK in the

case of uranium. One can show that the selectivity in

case 3 (section 3) is greater than in case 1 for large

detuning with short pulses. This situation is reversed

for long pulses, like in the case without Doppler broad-

ening. However, the ion yield in case 3 decrease much

slower than in case 1. We also performed simulations for

di�erent directions of the laser beams in case 3. These

showed that the most favorable case has one beam prop-

agating in opposite direction to the other two beams.

There is no great di�erence between the three possible

combinations. When the three beams propagate in the

same direction, the selectivity is slightly smaller than
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in the case of one beam reversed. The same is true for

the ion yield.

V. Conclusions.

We studied the selectivity and ion yield in a four

level system subject to high power resonant laser �elds.

This study is suitable for application to isotope sep-

aration of heavy atoms. We found the conditions to

achieve high selectivity without a strong decrease in the

ion yield of the selected isotope. We also determined

the limits imposed on the selectivity by the Doppler

broadening studying the short pulse case. In general,

we can say that the condition to avoid a decrease of the

ion yield of the selected isotope is �1+�2+�3 = 0. Con-

strained to this two dimensional surface in the detuning

space, we showed that there are two regions without

selectivity: �1 = 0 and �3 = 0. The most favorable

situation in the short pulse case is �2 = 0. For longer

pulses the situation changes slightly, being �i >> v

more favorable than the case �2 = 0 for the selectivity.

However, the condition �2 = 0 has always the greatest

ion yield of the selected isotope. We stress that these

results corresponds to the case of at least two large

detunings. In the case of small detunings, there are

local maxima with greater ion yield. But these points

have selectivity much smaller than in the case of large

detunings and seem to be of no interest for industrial

applications.

References

[1] J. A. Paisner, Appl. Phys. B46 253 (1988)

[2] V. S. Letokhov, Laser Photoionization Spectroscopy

1987 (Orlando: Academic)

[3] J. E. Bjorkholm and P. F. Liao, Phys. Rev. A14 751
(1976)

[4] R. M. Whitley and C. R. Stroud, Phys. Rev.A14 1498
(1976)

[5] B. W. Shore and J. Ackerhalt, Phys. Rev. A15 1640
(1977)

[6] R. Salomaa, J. Phys. B: At. Mol Phys 10 3005 (1977)

[7] R. Salomaa and S. Stenholm Appl. Phys. 17 309 (1978)

[8] B. Dai and P. Lambropoulos Z. Phys. D3 11 (1986)

[9] B. Dai and P. Lambropoulos Phys. Rev. A34 3954
(1986)

[10] K. Shimoda Appl. Phys. 9 239 (1976)

[11] H. Kaburaki J. Nucl. Sci. Technol. 28[10] 900 (1991)

[12] S. V. Fomichev, J. Phys. D: Appl. Phys. 26 349 (1993).

[13] K. Katoh y A. Suzuki, Jou. of Nucl. Sci. and Tech., 27
(6) 554 (1990).

[14] K. Katoh, et al. Ann. Nucl. Energy 17 279 (1990)

[15] K. Nakahara, et al. J. Nucl. Sci. Technol. 30[3] 212
(1993)

[16] G. L. Demarco and R. C. Trinchero, Informe T�ecnico

CNEA-CAB 4040 (1994).

[17] M. Sargent III, M. Scully, W. Lamb, 1974, Laser

Physics, Addison-Wesley Publishing Co., Reading,
Mass.


