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In the present work we calculate the radiation emitted from a charged rotating ellipsoid
in the context of Classical Electrodynamics. The results are compared with its Quantum
Mechanical version. An explicit derivation of the correspondence principle is given, showing
that for angular momenta of the order of 60~ the classical regime is reached within 12%
accuracy.

I. Introduction

The correspondence principle states that the results

of Classical Physics should be contained in the Quan-

tum Mechanical results as limiting cases. The limit

should be reached for \large quantum numbers". This

idea has been a powerful guide for theoretical conjec-

tures and the construction of the Quantum theory.

Historically the most important and successful in-

vestigation based on this Principle is the spatial struc-

ture of the hydrogen atom. Many other applications

in several contexts followed to our knowledge. Not

as much attention has been devoted to the Correspon-

dence Principle in the context of the radiation emitted

by rotating charged bodies.

In what follows we set up a classical model for the

emitted radiations of a rotating charged ellipsoid. We

compare the results with the quantum mechanical ver-

sion of the model and answer the following question:

What is the order of magnitude of the angular momen-

tum of a rotating rigid body for which the classical

regime has been reached?

In section II we perform the classical calculations of

the emmitted radiation of a rotating ellipsoid. In sec-

tion III we construct its quantum version and compare

the results. Conclusions are given in section IV.

II. Classical calculation

The vector �eld associated to the quadrupole radi-

ation can be written as

Aquadr =
1

6c2r
�D (1)

where r is the distance between some origin O and the

observation point, c is the light velocity and

D =
X
�;�

D�;�n� n =
r

r
(2)

with

D�;� =

Z
V 0
[3x0�x

0
� � r

02��;�]�(x
0)d3x0 (3)

�(x0) being the charge density which generates the elec-

tromagnetic �elds. It is enough to calculate the mag-

netic �eld,

H =
1

6c3r

:::

D �n (4)

in order to obtain Poynting's vector

~� =
c

4�
H2n (5)

and the radiation intensity in the solid angle d


dI = j~�jdS (6)

=
c

4�
H2r2d
 : (7)

The integrated intensity is thus given as

�Work partially supported by CNPq.



S. G. Mokarzel et al. 761

I =
1

180c5

X
�;�

(
:::

D�;�)
2 : (8)

Figure 1. Classical Model.

Now consider the ellipsoid in Fig. 1, which rotates

with constant angular velocity ~! around an arbitrary

axis. In the body's rotating frame the quadrupole ten-

sor D�;� is given by

D0
�;� =

ze

5
(a2 � b2)

0
@ 1 0 0

0 1 0
0 0 �2

1
A (9)

where ze corresponds to the total charge. In order to

obtain D�;�; ie, eq.(9) in the laboratory system, one

needs to calculate

D
;� = T
;�T�;�D
0
�;� = T
;�D

0
�;�T�;� (10)

where the matrix T e�ects such transformation and can

be written as

T
;� =

0
@ T11 T12 T13

T21 T22 T23
T31 T32 T33

1
A (11)

where

T11 = cos  cos�� cos � sin� sin  

T12 = �sin  cos �� cos � sin � cos  

T13 = sin � sin �

T21 = cos  sin �+ cos � cos � sin  

T22 = �sin  sin �+ cos � cos  cos �

T23 = �sin � cos �
T31 = sin � sin  

T32 = sin � cos  

T33 = cos �

Using the above expressions we get

c

D
;� =
ze

5
(a2 � b2)�

0
@ 1� 3 sin2� sin2 � 3 sin2� sin � cos � �3 sin � cos � sin �

3 sin2� sin� cos� 1� 3 sin2� cos2 � 3 sin � cos � sin �
�3 sin2� cos � sin� 3 sin � cos � cos � 3 sin2 � � 2

1
A (12)

d
It is an interesting exercise in classical mechanics to

obtain for the present case, from Euler's equations the

following important relations

� = cte cos� =
K

J
� =

J

|
t (13)

where K is the projection of the angular moment on

the rotor axis,

J is the total angular moment, and

| is the moment of inertia

It is now a simple matter to obtain
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c

X
�;


(
:::

D
;�)
2 =

hze
5
(a2 � b2)3 _�3

i2
(32� 62cos2 � + 30cos4 �)

=
3

25
[ze(a2 � b2)]2

�
J

|

�6�
96� 186

K2

J2
+ 90

K4

J4

�
(14)

Inserting this expression into (8) we get

I =
1

180c5
3

25
[ze(a2 � b2)]2

�
J

|

�6�
96� 186

K2

J2
+ 90

K4

J4

�
(15)

d
In order to compare with the quantal result we

rewrite the above expressions in terms of the average

radius R0 and deformation parameter � according to

(ref. [1])

RMAX = a = R0

"
1 +

r
5

16�
(2�)

#

Rmin = b = R0

"
1 +

r
5

16�
(��)

#
(16)

Assuming � small (not an essential hypothesis) we get

(a2 � b2) �= 3

2

r
5

�
R2
0� (17)

according to which the classical expression for the emit-

ted radiation is given by

c

Iclas =
�

75c5

�
3

4�
zeR2

0�

�2�
J

|

�6�
96� 186

K2

J2
+ 90

K4

J4

�
(18)

d
III. Quantum calculation

The essential ingredients for the corresponding

quantum calculation are the following:

a) the system's hamiltonian

H = HR +Hrad +Hint (19)

where HR describes the nucleus and models a rigid ro-

tor with axial symmetry

H =
1

2|
J2 + J23

�
1

2|3
� 1

2|

�
(20)

and | stands for the moment of inertia in x��y direc-
tions and |3 for the z direction. J is the angular mo-

mentum operator and J3 its z{projection on the proper

axis. The eigenfunctions and eigenvalues ofHR are well

known (refs. [2-4])

c

HRD
J
MK(��
) =

�
~
2J(J + 1)

2|
+ ~

2K2

�
1

2|3

1

2|

��
DJ
MK(��
) (21)

where

DJ
MK(��
) = hJmKje�i=~ �Ĵze�i=~ �Ĵye�i=~ 
Ĵz jJMKi
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b) The Quantized Radiation Field Hrad (refs. [5])

Hrad =
1

8�

Z �
1

c2
_A2 + (r�A)2

�
d3r (22)

with

A(r; t) =

r
~c2

2�2

X
�

Z
dkp
2wk

[e�k�b
y
�(k)e

�(k�r�wkt)ek�b�(k)e
(k�r�wkt)] (23)

d

where � describes the possible polarization of the �eld

and by, b are the usual photon creation and annihilation

operator (see ref. [5])

c) The interaction hamiltonian Hint,

Hint = �1

c

Z
j �Adr (24)

where j stands for the nuclear current operator.

d) Fermi's Golden rule which gives the transition prob-

ability per unit time from an initial state jii, in our case
the rotor in a given excited state and zero photons, to a

�nal state jfi where the nucleus is de-excited by means

of emitting a photon

dw(i! fk�) =
2�

~

k2

~c
jMfij2d
 (25)

with

Mfi(k; �) � hf ;k�jHint i; 00i (26)

The calculation now is standard and contained in many

text books. For details the reader is referred to (ref.

[5]) whose notation we follow. There the calculation is

performed step by step until the �nal result

c

w(Ej : i! f) = 8�c
e2

~c

j + 1

j[(2j + 1)!!]2
k2j+1B(Ej : i! f) (27)

with

B(Ej : i! f) =
1

[2ji + 1]e2
(Jf jjQ(E)

j jjJi)2 (28)

d

In eq.(28) (Jf jjQ(E)
j jjJi) stands for the reduced ma-

trix element of the electric multipole operator, de�ned

as:

Q
(E)
jm �

Z
drrjY �

jm� (29)

In the above expressions the dynamics of the transi-

tion is contained in B(E2 : i ! f), in particular in

the reduced matrix element (Jf jjQ(E)
j jjJi): The factors

involving the photon angular momentum j and k2j+1

come from the usual expansion of the electromagnetic

�eld for large wavelengths as compared to the system's

sizes involved.

The calculation of B(E2) for a rigid rotor can be

found in ref([1]) with techniques of ([2]) and is given by

c

B(E2 : J + 1! J) =
1

e2

�
3

4�
zeR2

0�

�2

� 6

4

(J �K + 1)(J +K + 1)�
J + 1

2

�
(J + 2)(J + 1)J

�
2J + 1

2J + 3

�2

(30)

B(E2 : J + 2! J) =
1

e2

�
3

4�
zeR2

0�

�2

� 3

8

(J �K + 2)(J +K + 2)(J �K + 1)(J +K + 1)�
J + 5

2

� �
J + 3

2

�
(J + 2)(J + 1)

(31)

which gives for the transition probability
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T (E2)J+1!J =
�

75c5

�
3

4�
zeR2

0�

�2 �
~

|
(J + 1)

�6
K2 � 6

(J �K + 1)(J +K + 1)

(J + 2)
�
J + 1

2

�
(J + 1)J

�
2J + 1

2J + 3

�2

(32)

T (E2)J+2!J =
�

75c5

�
3

4�
zeR2

0�

�2 �
~

|
(2J + 3)

�6
� 3

2

(J �K + 2)(J +K + 2)(J �K + 1)(J +K + 1)�
J + 5

2

� �
J + 3

2

�
(J + 2)(J + 1)

(33)

d
We are now in a position to investigate the Cor-

respondence Principle, i.e, to compare Quantum and

Classical results in the limit of total large angular mo-

menta

First Case: K = 0

In this case there will be no J + 1 ! J transition,

since it proportional to K. It becomes then a simple

matter to verify that eq.(33) tends, in this limit, to

c

T (E2)J+2!J ! �

75c5

�
3

4�
zeR2

0�

�2�
J

|

�6

96 = T cl(E2)J+2!J (34)

which corresponds precisely to the classical expression eq.(18) when � = �
2 , ie the rotating system is contained in

the x� y plane (see Fig 1).

Second Case: K 6= 0

This corresponds to having arbitrary �. In this case there will be a contribution from the transition J + 1! J .

when performing the classical limit in the eqs. (32 and 33) we shall consider K �nite, K � 1 and K
J � 1. We �nd

T (E2)J+1!J ! T cl(E2)J+1!J

�
3

4�
zeR2

0�

�2�
J

|

�6
"
6

�
K

J

�2

� 6

�
K

J

�4
#

(35)

T (E2)J+2!J ! T cl(E2)J+2!J

�
3

4�
zeR2

0�

�2�
J

|

�6
"
96� 192

�
K

J

�2

+ 96

�
K

J

�4
#

(36)

d
Finally, the Correspondence Principle in this case

can be written as

T cl(E2)J+1!J + T cl(E2)J+2!J = Iclas (37)

where Iclas as given in eq.(18)

The accuracy of the classical limit for J �= 60~

can be studied by comparing the classical and quan-

tal radiation intensity as function of J , for the case,

K = 0. In Fig. 2 we show the percentage of discre-

pancy jT cl(E2)J+2!J�Iclasj
Iclas

100 as a function of J .

We see that when J �= 60~ this discrepancy is

around 12%.

IV. Conclusions

In the present work we have investigated the cor-

respondence principle in the context of the radiation

emitted by a rotating ellipsoid. We found that the clas-

sical limit is reached for angular momenta of the order

60~ within 12% accuracy. In fact angular momenta of

the order 60~ have recently been found experimentally

in superdeformed nuclei produced by means of the fu-

sion of several combinations of nuclei. Their masses lie

in the range 160 - 170 and their spectra are found to be

in excellent agreement with those predicted by the pro-

late rigid rotor with axis ratio very close to 2:1. Such

structure covers a spin interval from 34~ to 58~ (refs.

[6-8]).
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Figure 2. Percentage of discrepancy between quantum and
classical result as a function of the total angular momentum.
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