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An analysis is made of the completeness of the solutions of the angular equation of the
hyper-spherical method used in three body problems. In this method the relative distances
between two particles and the third one are given by r1 = R sin �; , r2 = R cos �. Some
relations obtained from this completeness between the non-adiabatic couplings of the radial
equations are investigated. It is shown that for large R the contribution of states with
positive eigenvalues is not negligible. This could explain ome discrepancies found using this
method with either �rst or second order radial equations for atomic helium and electron-
hydrogen systems.

Introduction

Hyperspherical coordinates have been used in

Atomic Physics to obtain bound state solutions for

three body systems[1�8] such a He and H�. They have

also been used for partial wave solutions and phase

shifts of e-H scattering[2;8�11].

The hyperspherical coordinates consist of the angu-

lar variables for the two electrons and (�;R), related to

the radial coordinates by:

r1 = R sin � ; r2 = R cos �

where the new angular variable � is in the interval

(0; �=2):

The two electron wave function for a state with total

angular momentumL and z-componentM is expressed

in the form:

c

	KLM =
X
u;l1;l2

(R5=2sin � cos �)�1FKL
� (R)uL�l1 l2 (R;�)Y

LM
l1l2 (
1;
2) (1:1)

where Y LM
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, which represents an angular state in which the two electrons have angular momentum l1 and l2

respectively, is given by:
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d

The index K is an energy quantum number that is dis-

crete for a two electron bound state or continuous if one

electron is free.

A generalization of the Bohr-Openheimer method is

used to solve the Schrodinger equation by separation of

variables. First one solves an equation for the angular
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variable � which has R as a parameter. The eigenval-

ues labelled by the index �, will be functions of R which

represent interaction potentials in the radial equations.

Both the angular and radial equations form actually

in�nite sets of coupled equations. For a numerical so-

lution a cuto� lmax has to be introduced for l1; l2 in

the angular equations as well as a limit on the number

of potential curves used in the radial equations. The

radial equations are second order di�erential equations

which depend on the potential functions as a diago-

nal interaction and also on non-diagonal, non-adiabatic

couplings, P��(R) and Q��(R) [1�4].

Assuming completeness of the solutions of the an-

gular equations the second order radial equations can

be replaced by a set of �rst order equations in which

the Q�� couplings are eliminated.[12] Recent numeri-

cal calculations for the e-H system, using the second

order radial equations with up to 6 potential curves,

for both the L = 0; L = 1 binding energy[1�8] as

well as for the low energy L = 0, phase shifts,[2;8�11]

give very good agreement with calculations using vari-

ational methods.[13�16] On the other hand the �rst or-

der radial equations without the Q�� 's have also been

used[8;9;17;18] giving results in disagreement with those

obtained with the second order equations.

In this paper the completeness of the angular equa-

tions is discussed in connection with relations between

the non-adiabatic couplings Q��(R) and P��(R): It is

shown that for large R the contribution to these rela-

tions of eigenstates of the angular equations with posi-

tive eigenvalues W�(R) = 2U�(R)R
2; is not negligible.

In deriving the �rst order radial equations from

truncated second order equations the sum of states used

to eliminate the Q�� 's extends only over a �nite set of

channel functions which for large R does not include an

in�nite set of states with positive W�(R). This could

explain the discrepancies found in the results of the two

formalisms.

In section II we give a brief review of the hyperspher-

ical method. Throughout this paper we use atomic

units (mec
2�2 = 1) In section III we consider some con-

sequences of the completeness of the angular equations

in connection with relations obtained from it, between

the non-adiabatic couplings Q�� and P�� of the radial

equations.

II. The angular and radial equations[1�4]

The angular equations for � are:

c
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and the coe�cients CLJ
l1l2l01l

0

2
are de�ned in terms of 3-J and 6-J symbols (Ref. [1]). The physical solutions in a state

of total spin S of the electron pair must satisfy the Pauli principle:

uL�l1 l2

�
R;

�

2
� �
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Hence they are obtained by imposing the boundary conditions at � = �=4 :
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We shall consider the uL�l1l2 's as components of a

vector uL� , with the pair l1l2 as the component indices.

From now on the superscript L will be omitted.

Invariance under parity implies that for any solution

of given parity the components u�l1l2 , are non-zero only

if (l1+ l2) is either even or odd according to the parity.

The solutions are normalized by:

hu�ju�i =
X
l1l2

Z �=2

uL�l1l2 (R;�)u
L
�l1l2

(R;�)d� = ���

(2:6)

The radial equations are:
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d
where the potential function U�(R) is related toW�(R)

by 2R2U�(R) = W�(R); and the non-adiabatic cou-

plings are given by:

P��(R) = hu� @

@R
u�i (2:8)

Q��(R) = hu� @2

@R2
u�i (2:9)

The Q�� 's can also be calculated by:

Q�� = _P�� � h _u�j _u�i (2:10)

where a dot represents derivative with respect to R.

By insertion of a complete set of functions in the

second term, and assuming completeness of the angu-

lar equations one obtains:

Q�� = _P�� �
X
�

P��P�� (2:11)

Using this relation one can replace the set of second

order radial equations by the following et of �rst order

equations:[12]

dF�
dR

+
X
�

P��F� = G� ; (2:12)
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X
�
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where the Q��'s have been eliminated.

At R = 0 the equations decouple and the so-

lutions are given in terms of Jacobi polynomials[19]

P l1+1=2;l2+1=2(cos2�), where j is an integer. The eigen-

values are W�(0) = m2; (m = 2j+ l1 + l2+2): We take

the index � to correspond to eigenstates of W�(R) in

increasingly order so that � = 1 corresponds to the low-

est potential curve. At R = 0 the eigenstates W�(0) are

degenerate form > L+2 but the degeneracy is removed

for R > 0 by the interaction terms proportional to R.

At asymptotic large R, Macek[1] has proposed that

the functions u�l1 l2 (�) for � < �
4 are given in leading

order in R�1 by the Coulomb one electron wave func-

tions of a variable � = R�, for bound states in the nu-

cleus of charge Z corresponding to a state with angular

momentum l1 and energy U� = � Z2

2n2
�

; (n� > l1). For

n� > 1 the Coulomb wave functions are degenerate.

The degeneracy of the wave functions u� is removed

when 1
R2 corrections are taken into account. The lead-

ing non-vanishing components u� will be given by

u�l1l2 = a�l1l2

r
R

2
�	l1

n�
(�) (2:14)

where 	l1
n�(�) is a Coulomb wave function with energy

U� as given above and angular momentum l1 < n�:

The coe�cients a�l1l2 are the solutions of the eigen-

value equations obtained using 1
R2 energy corrections

and degenerate perturbation theory.[3]

Macek's assumption is well born out by numerical

computations.

III. Investigation of completeness of the angular

equations

The angular equations (2.1) with R 6= 0, due to

the electron-electron interaction, form an in�nite set.
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When this interaction is neglected, the equations de-

couple as the angular momenta l1l2 become constants

of the motion. For a given pair of values of l1l2, taking

both values S = 0; 1 of the total spin the completeness

of solutions of the angular equations follows from a gen-

eral theorem[20] which applies when l1 6= 0 and l2 6= 0.

If l1 = 0 or l2 = 0, one needs boundary conditions

u�l1l2(�) = 0 at the boundaries � =
�
0; �

2

�
. At R = 0

the equations always decouple and the solution (with

these boundary conditions), are given in terms of Ja-

cobi polynomials P l1+1=2;+l2+1=2(x); x = cos 2�, which

form a complete orthogonal set in the interval (-1,1),

with measure (1�x)2l1+1(1+x)2l2+1dx. For R > 0, we

shall assume that the solutions of the in�nite system

of equations (with the same boundary conditions) also

form a complete set in the interval � =
�
0; �

2

�
:

We shall investigate this completeness in connection

with relations obtained from it, between the Q��'s and

the P�� 's.

First we consider the relation (2.11) espressing

Q�� 's in terms of P��'s. We have calculated, for a range

of values of R, the values ofQ11 as given by this relation

and compared with the values obtained from (2.9) or

(2.10). The angular equations for the case L = 1; S = 1,

were calculated using a cuto� lmax = 7 for l1 and l2.

The set of 15 solutions with the lowest potential curves

were used in the sum of P 2
1� in (2.11). The results are

given in Table I. One can see that for small values of

R the results are in good agreement but they become

increasingly di�erent as R increases. This shows that

for large R the contribution of solutions corresponding

to higher potential curves becomes non-negligible.

One can also obtain additional relations between the

P��'s and Q�� 's involving derivatives of the eigenvalues

W�(R):

Let us introduce a matrix H = H0 + RH1, where

H0 is diagonal with matrix element l1l2 given by:

H0 =
d2

d�2
� l1(l1 + 1)

sin2(�)
� l2(l2 + 1)

cos2 �
(3:1)

and RH1 corresponds to (�2R2) times the Coulomb in-

teraction potential which has a non-diagonal piece due

to the electron-electron interaction. Its R dependence

has been made explicit.

Table I. This table gives the values of Q11 as a func-

tion of R calculated from the de�nition (2.9) or (2.10)

as compared with the expression given by Eq. (2.11)

obtained using completeness. The maximum value of

� taken in the sum was � = 15, corresponding to the

lowest 15 potential curves.

R Q1;1 �P15
n=2P

2
1;n

0.02 -5.2339302E-003 -5.2244385E-003
2.02 -1.5405433E-002 -1.5377055E-002
4.02 -3.6085809E-002 -3.5821157E-002
8.02 -1.2543067E-002 -1.1368447E-002
12.02 -5.2493846E-003 -4.3807186E-003
18.02 -2.3191034E-003 -1.5383282E-003
24.05 -1.2990827E-003 -7.6045943E-004
30.05 -8.3152465E-004 -4.5427866E-004
38.05 -5.1839665E-004 -2.7093976E-004

The �-equation can then be written in vector form

as Hu� = �W�(R)u�. Taking �rst and second deriva-

tives of this equation with respect to R one obtains:

H _u� +H1u� = � _W�u� �W� _u� (3:2)

H�u� + 2H1 _u� = � �W�u� � 2 _W� _u� �W��u� (3:3)

Multiplying these equations by u� and integrating in �

one obtains[4]:

(W� �W�)P�� + hu�jH1ju�i = � _W���� (3:4)

(W� �W�)Q�� + 2hu�jH1j _u�i = � _W���� � 2 _W�P��

(3:5)

Eq. 3.4 is known as the Hellman-Feynman theorem.

This equation allows one to compute P�� without using

derivatives of the wave function, while the second equa-

tion will give Q�� in terms of the wave function and its

�rst derivative. In addition for � = � these equations

give:

_W� = �hu�jH1ju�i (3:6)

�W� = �2hu�jH1j _u�i (3:7)
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If one assumes completeness of the solutions of the an-

gular equations and introduce the complete set into Eq.

3.7 one obtains:

�W� = �2
X
�

(W� �W�)P��P�� (3:8)

or using Eq. 2.11

1

2

�W�

W�
+Q�� = �

X
�

W�

W�
P 2
�� (3:9)

As R!1, according to Macek's conjecture, the eigen-

values of the set of solutions of the angular equations

approach the set of binding energies 2U� = �Z2

n2
�

of

the Coulomb bound states. Then, since W� = 2U�R
2,

Eq.(3.9) would give:

1 + (R2Q�� = �
X n2�

n2�
(RP��)

2 (3:10)

For large R, the coe�cients in the asymptotic expan-

sions of the P��'s and Q�� 's can be calculated either

by �tting numerical results or by using Coulomb wave

functions with subsequent corrections in inverse pow-

ers of R. The leading terms in these expansions are
p(1)
��

R
for P�� and

q(2)
��

R2 for Q�;� . They can be obtained by

using the asymptotic wave functions a function of the

variable � and the following espression[1]

@

@R
u� =

1

R

�
1

2
+ �

@

@�

�
u�(�) : (3:11)

If n� = n� it has been shown[4] that p
(1)
�� = 0 and the

leading term becomes of order R�3. For � = 1; q
(2)
11

calculated numerically by taking the value of R2Q11

at R = 40 agrees very well with the theoretical value

which is q(2)11 = �:75: This result is independent of the
values of L; S and parity. Taking this result into Eq.

3.10, the left hand side becomes positive whereas the

right hand side is always negative. Therefore the use of

completeness of the solutions of the angular equations

seems to lead to a contradiction.

This paradox however can be resolved by remarking

that Eq.(3.10) is obtained by interchanging the order of

taking the limit R!1 with the summation of an in-

�nite series. This interchange would be allowed if the

convergence of the solutions of the equations to bound

state Coulomb wave functions as R!1 were uniform,

that is, if given an � one could �nd an R(�) such that

for R > R(�), j < u�(R)juC� > �1j < � for all solu-

tions u�(R) whose limiting values are uC�. One can

indeed �nd that the convergence is not uniform. For

any �nite value of R, as large as one wants, there is

always an in�nite discrete set of solutions whose eigen-

values are positive. The separation between the energy

levels 2U�(R) would approach zero as R ! 1. The

corresponding wave functions will, to order O(R�2);

be given by Coulomb wave functions with the corre-

sponding positive eigenvalues. For any �nite R it is the

contribution from this in�nite set of positive eigenvalue

solutions that give a non-negligible contribution to the

sum over states in the relations (2.11) and (3.9). Indeed

taking (3.9) for � = 1, for large R, W� ! �R2, and

the left hand side becomes very dose to (1 - .75) = .25.

It is then clear that, in order for the right hand side to

become positive, the states with positive energy have

to overcome the contribution from the negative energy

bound states.

These results also hold when the electron-electron

interaction is neglected and the angular equations de-

couple.

The correctness of this analysis was tested for Q11,

in Eq.(2.1) for an arbitrarily large R.

For large R, and � = 1; (n� = 1), Eqs. (2.8,10) and

(3.11) give:

p
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2
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Z
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2
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We have calculated p
(1)
�1 analytically using Eq.(2.14)

for the asymptotic wave functions u�. For states with

a given n� the result is:

p
(1)
�1 = a�;0L � 8pn�

�
n�

n2� � 1

�2�
n� � 1

n� + 1

�n�
(3:14)

Since for states with the same n�, ��a2�;0L = 1; it will

not be necessary to determine the coe�cients a�;0L in

order to obtain the sum of the squares S1 = ��(p
(1)
�1 )

2.

We have done this sum numerically for states with n�,

up to n� = 106. The result was S1 = :423753113:
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On the other hand we calculated what should be a

p
(1)
�1 , if in Eq.(3.12) u�;0L(�) is replaced by

q
R
2	

0
�(�)

where 	0
�(�) is a free Coulomb wave function cor-

responding to a state of angular momentum l = 0

and positive energy 2U� = 1
�2 . We used for the free

Coulombwave function an integral representation given

in Ref.[19], pg.539, Eq.(14.3.3). The result was:

c

p
(1)
�1 =

 
4�3

(1 + �2)2

�
2��

1� exp(�2��)
�1=2

exp(�2�tan�1
�
1

�

�!
(3:15)

d
With the normalization used in Ref.[19] the sum of the

squares of p(1)�1 for the free states will be given by

S2 =

Z
1

0
(p

(1)
�1 )

2 2

�

d�

�2
: (3:16)

This integral was calculated numerically giving S2 =

0:326246887: Adding this to the sum of (p
(1)
�;1)

2 for the

bound states one obtains, within the nine digit pre-

cision of the numerical calculation, the exact value of

�q(2)11 = :75:

We conclude from this analysis that at large R the

contribution from eigenstates of the angular equations

with positive eigenvalues W�(R) to the relations be-

tween the P�� 's and Q��'s obtained from complete-

ness become increasingly important and cannot be ne-

glected. This could explain some di�erences between

results obtained, especially for phase shifts, when using

a set of truncated �rst order equations as compared to

those using second order equations.
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