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Using the anticommuting nature of the generators of the Grassmann algebra, we show that
the moments of gaussian Grassmann multivariable integral are related to the cofactors of
the matrix of the gaussian exponential.

The path integral method has played a central role

in many branches in Physics. Among the physycal

quantities that can be written as a path integral, we

have the grand canonical partition function for self{

interacting fermionic system, whose path integral ex-

pression is1:
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d

where  (~x; � ) and � (~x; � ) are anticommuting variables

with continuous labels ~x and � , satis�ng anti{periodic

boundary conditions in the temperature parameter � .

� is the inverse of temperature (� = 1
kT

), and,

K =H � �N; (2)

H is the hamiltonian of the fermionic system, � the

chemical potencial and N the total number of parti-

cles operator. The variables of the funcional integral,

 (~x; � ) and � (~x; � ), are generators of a Grassmann al-

gebra.

The interaction part ofH, introduce in the exponen-

tial of expression (1), at least, one power term of the

variables of degree bigger than two. Due to our inabil-

ity to calculate integrals beyond the gaussian approxi-

mation, the contribution from the interacting terms of

hamiltonian to the r.h.s. of eq.(1) is obtained using per-

turbation theory. The terms in the perturbation serie

of eq.(1) corresponds to the moments of the gaussian

Grassmann integral. Formally, these integrals are cal-

culated by introducing in eq.(1) an external Grassmann

current and taking functional derivatives with respect

to it.

Recently, we studied a lattice version of expression

(1). The grand canonical partition function of self{

interacting fermionic models, in the high temperature

limit, was calculated writing eq.(1) as a multivariable

Grassmann integral2. For doing that, it was not enough

to have formal results for the moments of gaussian

grassmannian multivariable integrals, we needed their

explicity expressions.

�
E-mail: IRAZIET@IF.UFF.BR

y
E-mail: SMARTINS@IF.UFF.BR

z
E-mail: MTT@IF.UFF.BR



I.C. Charret et al. 721

Following references [2], we consider in this note

a regularized version of the fermionic system. It is

considered on a lattice with a �nite number of space

sites. In this case, the moments of gaussian fermionic

path integral is regularized and becomes a multivariable

grassmannian integral, where the integral variables are

generators of a Grassmann algebra. Here, we derive

a closed form for the moments of gaussian Grassmann

integrals, for a Grassmann algebra of dimension 22N ,

where N is any positive integer.

For a Grassmann algebra of dimension 22N , whose

generators are: f�1; � � � ; �N ;

��1; � � � ; ��Ng, it is a known result that3:

Z NY
i=1

d�id��i e

NP
i;j=1

��iAij�j

= det(A); (3)

where the entries Aij of matrixA are commuting quan-

tities. The matrix A does not need to have an inverse.

We will show in this note that the moments of inte-

gral (3) are cofactors of matrix A.

We �rst consider the case where there is only one

product ��l�k in the integrand of the gaussian integral

(3), that is,

M (l; k) �

Z NY
i=1

d�id��i ��l�k e

NP
i;j=1

��iAij�j

; (4)

where l; k are �xed and 1 � l; k � N .

Due to the de�nition of integration in the Grass-

mann algebra3 and that for all generators of the algebra

we have: ��2i = �2i = 0; i = 1; � � � ; N , the only non{null

terms in eq.(4) are the ones where the integrand has N

products of the form: ��i�j. Expanding the exponential

on the r.h.s. of eq.(4) and only keeping the non{null

terms, M (l; k) is written as:

c

M (l; k) =

Z NY
i=1

d�id��i ��l�k
1

(N � 1)!

NX
i1;���;iN�1=1
j1;���;jN�1=1

Ai1j1 � � �AiN�1jN�1
� (5)

� ��i1�j1 ��i2�j2 � � � ��iN�1
�jN�1

;

d

where the indices are such that in 6= l; n = 1; � � � ; N�1,

and jn 6= k; n = 1; � � � ; N � 1. Once the product ��in�jn

is a commutative quantity, each term in the sum of

eq.(5) appears (N � 1)! times. Those equal terms, in

the sum, correspond to the (N � 1)! permutations of a

given con�guration:

Ai1j1 Ai2j2 � � �AiN�1jN�1
:

The (N � 1)! distinct terms in eq.(4) can be gener-

ated by �xing one con�guration for fi1; i2; � � � ; iN�1g,

for example, we choose: fi1 = 1; � � � ; il�1 = l � 1; il =

l + 1; � � � ; iN�1 = Ng, and, taking all the terms com-

ing from the sum over the indices jn; n = 1; � � � ; N � 1.

Therefore, M (l; k) becomes

c

M (l; k) =

Z NY
i=1

d�id��i ��l�k

NX
j1;���;jN�1=1

jn 6=k

A1j1 � � �Al�1;jl�1Al+1;jl � � �ANjN�1
� (6)

� ��1�j1 ��2�j2 � � � ��l�1�jl�1 ��l+1�jl � � � ��N�jN�1
:

Renaming the variables: jl ! jl+1; jl+1 ! jl+2; � � � ; jN�1 ! jN , we have that:
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M (l; k) =

Z NY
i=1

d�id��i ��l�k

NX
j1;���;jl�1=1

jl+1 ;���;jN=1

A1j1 � � �Al�1;jl�1Al+1;jl+1 � � �ANjN � (7)

� ��1�j1 ��2�j2 � � � ��l�1�jl�1 ��l+1�jl+1 � � � ��N�jN :

d

Even though the restriction jn 6= k is not written

explicitly, it is guaranteed by the presence of �k in the

integrand of eq.(7).

De�ning the matrix B(l; k) as:

Bij(l; k) =

�
Aij ; if i 6= l and j 6= k

�il�jk; if i = l or j = k
; (8)

and i; j = 1; 2; � � � ; N , we have that

��l�k =
NX
jl=1

Bljl (l; k) ��l�jl : (9)

Substituting eq.(9) in expression (7), and remem-

bering that in this expression the indices jn never as-

sume the value k, Anjn can be replaced by Bnjn in

eq.(7). The expression of M (l; k) is written as:

c

M (l; k) =

Z NY
i=1

d�id��i

NX
j1;���;jN=1

B1j1 � � �Bl�1;jl�1Bl;jl � � �BNjN � (10)

� ��1�j1 � � � ��l�jl � � � ��N�jN :

Integrating over ��i, we get

M (l; k) =
NX

j1;���;jN=1

B1j1 � � �Bl�1;jl�1Bl;jl � � �BNjN

Z
d�N � � �d�1 �j1�j2 � � ��jN : (11)

d

Using the de�nition of determinant4;5, we �nally

have that

M (l; k) = detB (12)

= (�1)l+kA(l; k);

where A(l; k) is the minor determinant of matrix A,

when the line l and the column k are cut. M (l; k) is

the cofactor of matrix A.

Using an analogous procedure, we now consider the

case of moments of the gaussian Grassmann multivari-

able integral when we have m products:

��l1�k1 ��l2�k2 � � � ��lm�km

in the integrand of eq.(3), where m � N .

We represent the �xed sets of indices as: L =

fl1; l2; � � � ; lmg and K = fk1; k2; � � � ; kmg. In analogy

to eq.(4), we write M (L;K) as

c

M (L;K) �

Z NY
i=1

d�id��i ��l1�k1 � � � ��lm�km e

NP
i;j=1

��iAij�j

; (13)

where the products are ordered such that: l1 < l2 < � � � < lm and k1 < k2 < � � � < km.
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Using an analogous reasoning, as before, and keeping only the distinct terms in eq.(13), it becomes

M (L;K) =

Z NY
i=1

d�id��i ��l1�k1 � � � ��lm�km�

�
NX

j1;���;jl1�1
=1

jl1+1
;���;jl2�1

=1

...
jlm+1;���;jN=1

A1j1 � � �Al1�1;jl1�1Al1+1;jl1+1 � � � � �Al2�1;jl2�1Al2+1;jl2+1�

� � � �Alm�1;jlm�1
Alm+1;jlm+1

� � �ANjN � ��1�j1 � � � ��l1�1�jl1�1 ��l1+1�jl1+1 � � �

��l2�1�jl2�1 ��l2+1�jl2+1 � � � ��lm�1�jlm�1
��lm+1�jlm+1

� � � ��N�jN : (14)

Due to the presence of: ��l1 ; ��l2 ; � � � ��lm and �k1; �k2; � � � ; �km in the integrand of eq.(14), the lines l1; l2; � � � ; lm

and columns k1; k2; � � � ; km of matrix A do not contribute to M (L;K).

De�ning the matrix B(L;K) as

Bij(L;K) =

8>>>><
>>>>:

Aij; if i 6= l1; � � � ; ln and j 6= k1; � � �kn

�il1�jk1 ; if i = l1 or j = k1
...
�ilm�jkm ; if i = lm or j = km,

(15)

and i; j = 1; 2; � � � ; N , we can write that

��l1�k1 =
NX

jl1=1

Bl1jl1 (L;K) ��l1�jl1 ;

��l2�k2 =
NX

jl2=1

Bl2jl2 (L;K) ��l2�jl2 ;

...

��lm�km =
NX

jm=1

Blmjlm (L;K) ��lm�jlm : (16)

Once in expression (14) the lines: l1; � � � ; lm, and, the columns: k1; k2; � � � ; km of matrix A do not contribute,

then the elements Aij can be replaced by Bij(L;K). The expression M (L;K) is rewritten as

M (L;K) =

Z NY
i=1

d�id��i

NX
j1;���;jN=1

B1j1 � � �Bl�1;jl�1Bl;jl � � �BNjN �

� ��1�j1 � � � ��l�jl � � � ��N�jN = detB(L;K); (17)

since the r.h.s. of eq.(17) is equal to the r.h.s. of eq.(10).

From the de�nition of B(L;K) (eq.(15)) we �nally have

M (L;K) = (�1)(l1+l2+���+lm)+(k1+k2+���+km)A(L;K); (18)
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where A(K;L) is the determinant of the ma-

trix obtained from matrix A by cutting the lines:

fl1; l2; � � � ; lng, and, the columns: fk1; k2; � � � ; kng.

In summary, we can say that the e�ect of the pres-

ence of a product ��l�k in the integrand of the gaussian

integral (3), is to replace the line l of matrixA, Alj , by

�jk, and its column k, Aik, by �il. The results (12) and

(18) are valids even if the matrix A does not have an

inverse.

The determinant of matrices B(L;K) (eq.(15)) are

easily written in terms of a determinat of smaller di-

mension. We conclude that the presence of products

of Grassmann generators in the integrand of the gaus-

sian grassmannian integrals reduce the dimension of the

matrix which we have to calcule the determinant.

The results derived here are easily applied to a self{

interacting fermionic model regularized on a lattice6.
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