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We apply the �-expansion perturbation scheme to the ��4 self-interacting scalar �eld theory
in 3+1 D at �nite temperature. In the �-expansion the interaction term is written as �(�2)1+�

and � is considered as the perturbation parameter. We compute within this perturbative
approach the renormalized mass at �nite temperature at a �nite order in �. The results are
compared with the usual loop-expansion at �nite temperature.

I. Introduction

The study of �eld theories at �nite temperatures has

long been an important issue in high energy physics (for

a general review see [1]). However, in many situations,

when working with �eld theories at �nite temperatures,

usual perturbations schemes break down due to the ap-

pearance of infrared divergences (for example, close to

critical temperatures, in �eld theories with symmetry

breaking and for massless �eld theories, like QCD, or

for small values of \e�ective masses"). In those situ-

ations, we must usually perform a resummation pro-

cedure to take in to account relevant contributions in

the infrared region (see for example [2]) or make use of

nonperturbative approaches for studying the theory in

the infrared region, as a renormalization group study

or by the �-expansion technique, for example.

Recently a new perturbation scheme in

�eld theory was proposed, known as the

�-expansion [3, 4]. In this novel perturbation scheme,

instead of using Lagrangian parameters for the ex-

pansion, like an expansion in the interaction coupling

constant � in the ��4 theory (regarding � as a weak-

coupling constant) or the usual loop-expansion (in pow-

ers of ~) the �-expansion makes use of an arti�cial

parameter (�).

In the usual ��4 theory in 3+1D, the interaction

term is rewritten as �M4(M�2�2)1+�, where M is an

arbitrary mass parameter introduced to make the cou-

pling constant � dimensionless. � is regarded as a small

positive parameter that can be used as a perturba-

tive parameter in the theory, for example when Green's

functions are computed.

If one expands the interaction term in powers of �

we get ��4 ! �M2�2+�M2�2
P1

n=1
�n

n!

�
ln(M�2�2)

�n
.

Therefore, the �-expansion generates a mass term which

can not only make the behavior of the theory in the in-

frared region better, but also introduces nonperturba-

tive e�ects in the coupling � once M is �xed according

to an appropriate procedure, as described below.

We recover the original interaction term for � = 1

and the dependence on the arbitrary mass parameterM

goes away. However, in this paper, we will be interested

exactly in what happens when we keep the �-expansion

up to a �nite order in � and when the results carry a

dependence on M . We will be particularly interested

in computing the renormalized mass mR, at �nite tem-

perature, in the ��4 scalar model at some �nite order

in �. Since in this case mR is dependent on M , we

must choose an optimization scheme to �x the value of

M . Here we choose the Principle of Minimal Sensitivity

(PMS) [5] , where the quantities we are interested in are

required to be stationary with respect toM . We are go-

ing to show that, in the evaluation of the renormalized

mass at �nite temperature, by �xing the mass param-

eter M through this variational method, we obtain a

gap equation for the e�ective mass at �nite tempera-
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ture without having to use the usual resummation of

diagrams (see, for instance, [2]).

The paper in organized in the following way: In

Section II, we give a brief review of the �-expansion

technique and show how to compute the vertex Green's

functions at �nite temperature. In Section III, we

demonstrate the procedure by computing the e�ective

mass at �nite temperature and obtain the gap equation.

In Section IV, we have our conclusions and comments

on further applications of the method.

II. The �-expansion approach: computing

Green's functions at �nite temperature

We begin by giving a short review of the �-expansion

approach. The ��4 Lagrangian density for a scalar �eld

�, in 3+1D, given by

L =
1

2
(@��)

2 �
�2

2
�2 �

�

4
�4 (1)

is rewritten as

L =
1

2
(@��)

2 �
�2

2
�2 �

�

4
M4(M�2�2)1+� : (2)

Expanding (2) in powers of � we get

c

L =
1

2
(@��)

2 �
1

2
(�2 +

�

4
2M2)�2 �

�

4
M2�2

1X
n=1

�n

n!

�
ln(M�2�2)

�n
: (3)

If one uses that

1X
n=0

�n

n!

�
ln(M�2�2)

�n
=

1X
n=0

�n

n!

dn

dkn
(M�2�2)kjk=0 = e�@k(M�2�2)kjk=0 ; (4)

then (3) can be written as [4]

L =
1

2
(@��)

2 �
1

2
(�2 +

�

4
2M2)�2 �Dk�

2k+2jk=0 ; (5)

where, from the relation (4), Dk is a derivative operator given by

Dk =
�

4
M2

�
e�@k � 1

� �
M�2

�k
: (6)

In Ref. [4] it was shown that the n-point Green's function G(n)(x1; x2; : : : ; xn) can be written as1

G(n)(x1; x2; : : : ; xn) =
1Y
p=0

1

p!

Z
d4y1d

4y2 : : :d
4yph0jT�(x1)�(x2) : : :�(xn)�

Dk1Dk2 : : :Dkp

�
�2(y1)

�k1+1 �
�2(y2)

�k2+1
: : :
�
�2(yp)

�kp+1
j0icjk=0 ; (7)

d

which can be computed, as shown in Ref. [4], by �rst

considering the ki's as integers with the same value such

that we can draw all diagrams coming from (7). From

(6), if the k's are integers then Dk can be regarded as

small and (7) can be computed by ordinary diagram-

matic perturbation. At the end, considering the k's as

continuous with ki 6= kj; i 6= j, we apply the derivative

operators Dki and �nally we make all k's igual to zero.

Once we know how to compute the Green's func-

tions, we can obtain the renormalized mass mR, the

renormalized coupling constant �R and the wave-

function renormalization constant Z from the usual def-

initions:

m2
R = Z

h
G(2)
c (p2)

i�1
jp2=0 ; (8)

1In Ref. [3] the Green's functions are de�ned di�erently but the �nal results are completely analogous.
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�R = �Z2G(4)
c (0; 0; 0; 0) ; (9)

and

Z�1 = 1 +
d

dp2

h
G(2)
c (p2)

i�1
jp2=0 ; (10)

where G
(2)
c (p2) and G

(4)
c (p1; p2; p3; p4) are the con-

nected two-point and four-point Euclidean Green's

functions, in momentum space, respectively.

At lowest order (�), the two-point Green's function

G(2) is given by an one-vertex diagram as [4]

G
(2)
(1v) = �Dk1

(2k1 + 2)!

2k1k1!
[I(m)]

k1 jk1=0 ; (11)

where Dk1 is given by (6) and I(m) is the usual loop

integral, at T 6= 0, given by [2]

I(m) =
1

�

n=+1X
n=�1

Z
d3q

(2�)3
1

!2n + q2 +m2
; (12)

where, from (3), m2 = �2 + �
42M

2, � = T�1 is the

inverse of the temperature and !n = 2�n
�
.

Subtracting the zero temperature divergent

contribution2 of (12), one can write the following ex-

pansion [6] for I(m) in powers of m2�2:

c

I(m) =
T 2

12
�
mT

4�
�
m2

8�2

�
ln(

m

4�T
) +  �

1

2

�
+
m4

T 2

�(3)

27�4
+ O

�
m4�4

�
: (13)

A consistent evaluation of the quantities (8)-(10) at an order higher than � must also include the evaluation of
Green's functions of an equivalent order in the number of vertices.

The two-vertex Green's function, G(2)
(2v), from (7), would be given by (including symmetry factors)

G
(2)
(2v) =

1

2!

2X
n=0

2!

(2� n)!n!
Dk1Dk2

+1X
l=2

(2k1 + 2)!

2k1+
(n�l)

2

�
k1 +

(n�l)
2

�
!
[I(m)]k1+

(n�l)
2 �

�
(2k2 + 2)!

2k2+1�
(n+l)

2

�
k2 + 1� (n+l)

2

�
!
[I(m)]k2+1�

(n+l)
2

Jl(~p)

l!
jk1;k2=0 ; (14)

d

where, (14) must be evaluated subject to the following

constraint in the positive integer numbers n and l: n+ l

must be even in order to have an even number of �eld

lines leaving each vertex. In (14), Jl(~p) represents in-

ternal propagators (between vertices) that at T 6= 0 are

given by

Jl(~~p; !n) =
lY

i=1

1

�

X
ni

Z
d3qi

(2�)3

�3(~~p�
Pl

j=1 ~qj)�n;
P

j
nj

!2ni + ~qi
2 +m2

(15)

where !n = 2�n
�
, !ni = 2�ni

�
are the Matsubara fre-

quencies (n, ni = 0;�1;�2; : : :). ~p (the external mo-

mentum) is de�ned by:

~p =

�
0 ; for n = 0 or n = 2;
p ; for n = 1 :

(16)

Green's functions of higher vertices can be equiv-

alently de�ned, using the prescriptions given before.

However, for the purposes of this paper, equations (11)

and (14) will su�ce for us.

Using Eq. (6) for the derivative operator Dk in (11)

and (14) and using that e�@k � 1 can be expanded as

� @
@k

+ �2

2!
@2

@k2
+ : : : , we obtain for the two-point Green's

function, up to two vertices, the expression

2From the expressions we will obtain later, it is straightforward to show that renormalization by the introduction of counterterms
in the Lagrangian density is enough. Thus we are going to refer only to the �nite (T 6= 0) contributions. For a discussion of the
renormalization up to order �2, at T = 0, see [4] and Bender and Jones in [3].
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c

G(2) = G
(2)
(1v) +G

(2)
(2v) + : : : = Dk1

~G(2)
(1v)(k1)jk1=0 +Dk1Dk2

~G(2)
(2v)(k1; k2)jk1;k2=0 + : : : =

=
�

4
M2

�
�
@

@k1
+
�2

2!

@2

@k21
+ : : :

��
M�2

�k1 ~G
(2)
(1v)(k1)jk1=0 +

+
�2

16
M4

�
�2

@2

@k1@k2
+ : : :

��
M�2

�k1+k2 ~G
(2)
(2v)(k1; k2)jk1;k2=0 + : : : ; (17)

d

where we have explicited the terms up to order �2. As

an example of the evaluation procedure, we compute

below the e�ective mass at �nite temperature and at

order �2.

III. Computing the E�ective Mass at T 6= 0

First, let us comment about expanding up to order

�2 in the limit of high temperatures, m� � 1. When

evaluating quantities like e�ective masses up to order

�2, for consistency we must also include contributions

coming from the two-vertex Green's function, since its

leading term in � is of order �2 (see Eq. (17)). However,

if we restrict our analysis in the limit of high tempera-

ture and extending the results of [4] for G
(2)
(2v) up to or-

der �2 (evaluated in [4] at zero temperature), a rather

analogous evaluation at �nite temperature allows one

to show that G
(2)
(2v), when compared with G

(2)
(1v), con-

tributes with subleading corrections3 to the e�ective

mass me� (T ) at �nite temperature, when we restrict

the evaluations in the high temperature limit m� � 1.

For the same reason above, since the wave function

Z�1, at order �2, receives contributions only fromG
(2)
(2v),

in the high temperature limit we can write Z�1
m��1
' 1.

We may, therefore, restrict just to (11), for m� � 1.

Up to second order in �, we get the following expression

for the two-point Green's function given by (11):

c

G
(2)
(1v) = �

�

4
2M2

(
�

�
ln

�
I(m)

2M2

�
+ 2 (3)�  (1)

�
+
�2

2!

"�
ln

�
I(m)

2M2

�
+ 2 (3) �  (1)

�2
+ 4 0(3) �  0(1)]g+O(�3) ; (18)

d

where  (x) and  0(x) are the psi-function and its �rst

derivative [8], respectively.

Substituting (18) in (8), we get the following ex-

pression for the e�ective mass up to second order in �,

within the one-vertex two-point Green's function:

m2
e� = �2 +

�

4
2M2 � G

(2)
(1v) ; (19)

with G
(2)
(1v) given by (18).

The whole dependence of (19) on the arbitrary mass

parameter M can be removed by requiring that[5, 7]

@m2
e�

@M2
= 0 ; (20)

at each order in the �-expansion. The condition (20)

�xes the value of the mass parameter M as being the

one that leaves m2
e� stationary (the PMS condition).

3An explicitly evaluation shows that G
(2)
(2v)

m��1
�! constant

T2 , while, from Eq. (18) and (13), G
(2)
(1v)

m��1
�! constant� (lnT )2.
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Using the variational procedure above, we get the

following expressions for the mass parameterM at each

order in �, for � = 1, and in the high temperature limit

(I(m) ' T2

12 , in Eq. (13)):

c

2M2 =

(
T2

12 exp [2 (3)�  (1)] ; up to order �
T2

12 exp
h
2 (3)�  (1)�

p
 0(1)� 4 0(3)

i
; up to order �2

; (21)

Using (21) for M2 back in (19), we get the following expression for the e�ective mass at �nite temperature, up
to orders � and �2, respectively:

m2
e�(T ) =

(
�2 + �

4
T2

12 exp [2 (3)�  (1)] ;

�2 + �
4
T2

12 exp
h
2 (3) �  (1) �

p
 0(1)� 4 0(3)

i �
1 +

p
 0(1)� 4 0(3)

�
:

(22)

d

It is easy to show that (22) must converge to the

usual 1-loop approximation for the �nite temperature

e�ective mass [2]. From (11), we can write

m2
e� = �2 +

�

4
M2 (2� + 2)!

2��!

�
M�2I(m)

��
; (23)

such that, in the high temperature limit, for I(m) ' T2

12

and for � = 1, we get the usual result, m2
e� (T ) '

�2+�T2

4 . However it is remarkable that even for � = 1

and at lowest order, the expansion (19) is still consis-

tent with the usual result obtained via loop expansion.

From (22), at �rst order in � (the �rst term in the right

hand side in (22)), using the numerical values for the

 -functions [8], we get m2
e�(T ) ' �2 + �0 T

2

4 , where

�0 = �
12 exp[2 (3) �  (1)] ' 0:94�. At second order in

�, we have: m2
e�(T ) ' �2 + �00 T

2

4 , where, from (22),

c

�00 =
�

12
exp

h
2 (3) �  (1) �

p
 0(1) � 4 0(3)

i �
1 +

p
 0(1)� 4 0(3)

�
' 0:91� :

d

With the consistent evaluation of terms of higher order

in � with the introduction of higher order-vertex terms,

it is expected that �0(�00)! �.

It is interesting to see that, from (12) and (13),

the loop integrals are written with propagators carrying

the extra factor �
42M

2. However the variational con-

dition, Eq. (20), used to �x the value of M , makes it

possible to express the propagators with a �nite tem-

perature mass. At �rst order in �, using (18) in (19)

we obtain that 2M2 = I(m) exp[2 (3) �  (1)], where

m2 = �2 + �
42M

2. If one rede�nes the coupling � as

�0 = �
12 exp[2 (3) �  (1)] ' 0:94� (or �00 ' 0:91�, at

order �2), we then get, from the �rst order in � term of

(18) substituted in (19) and for � = 1,

m2
e� = �2 + 3�0I(me� ) ; (24)

where the I(me� ) term can be expanded as in (13).

We recognize Eq. (24) as a gap equation. Eq. (24) is

similar to the gap equation in the ��4 model, obtained

by incorporating, in the loop expansion, the largest in-

frared divergences, summing up the so called daisy (or

superdaisy) diagrams [2, 9].

If one expands (24) in the high temperature limit,

we can obtain an approximate equation for me�

m2
e� = �2 +

�0

4
T 2 � 3

�0

4�
Tme� ; (25)

from which we obtain, assuming me� � 0, the solution
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(valid up to O(�
2T2

m2
eff

) )

me� = �3
�0

8�
T +

s�
3�0T

8�

�2

+ �2 +
�0

4
T 2 ; (26)

which is in accordance with the result obtained in [9],

by considering the contribution of superdaisy diagrams

in the gap equation, taking into account the leading

infrared contributions at high temperatures.

IV. Conclusions

The use of the �-expansion, as shown in [7], for the

particular case of the massless scalar �(�4)4 theory with

O(N ) global symmetry, at �nite temperature, repro-

duces quite well the exact result (N ! 1 limit) for

the gap equation, up to order �2. These results con�rm

our conclusions in that they show that the use of the

PMS condition in the �-expansion is self-consistent and

is able to lead to nonperturbative results.

It would also be interesting to use the �-expansion

for evaluating higher order corrections for e�ective po-

tentials at �nite temperature, in connection with the

program of resummation, which has been an important

problem in the recent literature (see, for example, [9]

and references therein). Work in this direction is in

progress.

The �-expansion has also been employed in the eval-

uation of critical exponents [10], using exactly its abil-

ity of exploring the infrared region, for T close to Tc,

the critical temperature in spontaneously broken the-

ories. A variant of the �-expansion used here, called

the linear �-expansion [11], has proven to be a powerful

tool for studying vacuum contributions on self-energies

and in energy densities of very di�erent �eld theories

(for an example, see for instance [12]). The version

of the �-expansion used in this paper, usually called

the non-linear or logarithmic �-expansion, shares many

properties with the linear one, representing, therefore, a

promising method for getting vacuum uctuation con-

tributions, not only quantum but also thermal contri-

butions, as we have briey demonstrated in this paper.
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