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Two examples of the new physics a�orded by double layer two dimensional electron systems
are described. After a short introduction, I will briey discuss the � = 1 quantized Hall
e�ect in bilayer systems. This integer QHE state exhibits an interesting array of many-body
phenomena, including a remarkable \textural" phase transition. In the second example I
will describe recent experiments on the tunneling of electrons between the two layers. In
particular, the dramatic suppression, at high magnetic �elds, of the tunneling density of
states at the Fermi level will be described.

I. Introduction

Double layer two dimensional electron systems

(2DES) have been the subject of increasingly intense

scrutiny. These systems have proven extremely inter-

esting in two rather disparate ways. On the one hand,

when the layers are close enough together that inter-

layer tunneling and/or Coulomb interactions are strong,

new electronic con�gurations appear that depend crit-

ically on the combination of interlayer e�ects with the

\old-fashioned" physics of a single layer 2D system. A

good example of this is the recent discovery[1;2] of a

fractional quantized Hall e�ect (QHE) at one-half �ll-

ing of the lowest Landau level. This new QHE state

is distinctly bilayer in nature and has no counterpart

in single layer 2D systems. On the other hand, double

layer 2D electron systems have also proven very valu-

able by providing new ways to study a single layer sys-

tem. A example of this is the development of a remark-

ably sensitive tool for measuring the thermodynamic

compressibility of a 2DES[3]. This new technique re-

lies on double layer 2D electron systems in which the

layers are only weakly electrostatically coupled. This

paper briey describes experiments from both of these

categories. I will begin with the strongly coupled case

by discussing the unusual physics of the � = 1 inte-

ger quantized Hall e�ect in double layer systems. After

that I will turn to weakly coupled structures and review

the application of double layer systems to the measure-

ment of the tunneling density of states of 2D electron

gases at high magnetic �eld.

The experiments described below rely upon the

availability of double layer 2D systems in which each

layer has high mobility and well-controlled density.

Both of these requirements can now be met using

MBE-grown double quantum wells (DQWs) in the

GaAs/AlGaAs system. A typical sample consists of

two � 200�A -wide quantum wells separated by an un-

doped AlGaAs barrier. Depending upon the experi-

ment, the composition and thickness of this barrier can

be adjusted to achieve the desired levels of tunnel and

Coulomb interlayer coupling. Doping is achieved by

depositing Si delta-layers both above and below the

DQW.The precise location of these layers is determined

by the desired electron densities. A typical sample con-

tains a density of 1:5�1011cm�2 in each well. While the

electron mobilitydepends sensitively upon the quantum

well thicknesses, values exceeding 3�106cm2/Vs (in the

dark) have been achieved.

The experiments which utilize a double layer 2DES

in order to study a single layer system usually require

that separate electrical connections be made to the in-

dividual layers. The technique we have developed for

doing this has been discussed in detail elsewhere[4] . The

basic idea is quite simple. Each contact consists of a
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standard di�used In dot (which contacts both 2DESs)

and a pair of Schottky gates \surrounding" it, one on

the sample top surface and one on its back side. These

gates are positioned so that any current owing in or

out of the In dot must pass the gates. By applying an

appropriate bias to one of the two gates we can fully

deplete the closer 2DES without adversely a�ecting the

remote 2DES. In this way a given In contact \sees" the

rest of the sample through either one or the other of

the 2DESs, but not both. These contacts are low resis-

tance (typically 100
), are well isolated from the unde-

sired 2DES (by more than 50M
), and can be switched

between layers during an experiment. The ready avail-

ability of such contacts has open up a wide class of

experiments on low dimensional electronic systems.

II. The bilayer � = 1 QHE

In strongly coupled double layer 2D electron sys-

tems the �lling factor � is de�ned in terms of the total

electron density in the sample: � = Ntoth=eB: Con-

sequently, for a sample which is balanced so that each

layer has the same density, � = 1 corresponds to the in-

dividual layers being at �1 = �2 = 1=2: If the layers are

so far apart that they are e�ectively decoupled, then

at this �lling factor no QHE would be expected since

no Hall plateau has ever been observed at �xy = 2h=e2

in a single layer 2D system. Thus, as � = 1 quantized

Hall states are readily observed in bilayer systems, they

must arise from interlayer couplings. As it turns out,

both single-particle tunneling and interlayer Coulomb

interactions can produce this quantized Hall state. On

the one hand, owing to tunneling the otherwise doubly

degenerate lowest subband of the DQW con�nement

potential is split into a symmetric and an antisymmet-

ric state. Provided the magnitude �SAS of the splitting

is large enough, then when the Fermi level is pinned

in this gap a quantized Hall plateau will appear. In

this case the � = 1 many-body ground state is just a

fully �lled Landau level of symmetric state electrons.

On the other hand, even without tunneling, interlayer

electron-electron interactions can produce[5] a QHE at

� = 1. The situation is analogous to what one would

have in a �ctitious single layer 2D system which has

zero g-factor. A QHE would still appear at � = 1, only

the energy gap associated with ipping a spin would be

due entirely to Coulomb interactions (i.e. exchange)[6].

In the present double layer case, while we will always

assume that the spins of the electrons are polarized by

the Zeeman energy, the interplay of intra- and interlayer

Coulomb interactions is su�cient, when the layers are

close enough together, to open up an energy gap at

� = 1:

The interplay of these two distinct mechanisms for

producing a � = 1 quantized Hall plateau in double

layer 2D electron systems has proven to be quite fasci-

nating. My purpose here is merely outline some of the

more important experimental observations. The reader

interested in more detail is referred to the chapters by

myself and by S.M. Girvin and A.H. MacDonald in ref.

[7] and to MacDonald's contribution[8] to these confer-

ence proceedings.

The experimental[9] phase diagram for the double

layer � = 1 QHE is shown in Fig. 1. On the hori-

zontal axis is the tunneling strength, parameterized by

the ratio of the symmetric/antisymmetric gap �SAS to

the characteristic Coulomb energy e2="`0 (evaluated at

� = 1). The vertical axis is the ratio of the spacing d be-

tween the two 2D layers (center-to-center between the

quantum wells) to the magnetic length `0 =
p
~=eB:

This is essentially the ratio of the average intra- to

interlayer Coulomb interactions. Each symbol in the

�gure represents a di�erent double quantum well sam-

ple. In each the GaAs quantum wells are 180�A wide

but the barrier parameters (thickness and alloy pro�le)

and the 2D sheet densities di�er. Solid symbols denote

samples which show a quantized Hall e�ect at � = 1;

open symbols denote those which do not. The �gure

demonstrates that there exists a well de�ned boundary,

estimated by the dashed line, between a QHE phase

at small d=`0 and, as expected, a non-QHE phase at

larger layer separations. Perhaps surprising, however,

is the clear evidence that the � = 1 QHE evolves con-

tinuously from a regime dominated by tunneling (large

�SAS) to one where only Coulomb interactions are im-

portant (�SAS = 0). No compressible phase appears

to separate the two regimes. This suggests that while

the underlying physical mechanisms are quite di�erent,

the � = 1 ground states that they lead to are smoothly

connected.
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Figure 1. Phase diagram for � = 1 QHE in double layer 2D

electron systems. Solid symbols denote samples which show

a � = 1 QHE, open symbols denote those that do not.

More dramatic than the phase diagram in Fig. 1 is

the dependence of the bilayer � = 1 QHE on an ad-

ditional magnetic �eld component Bk aligned parallel

to the 2D planes[9]. Fig. 2 shows the energy gap � at

� = 1 as a function of the angle � between the total

applied magnetic �eld Btot and the direction perpen-

dicular to the 2D plane (the perpendicular �eld B?,

and thus the �lling factor � being kept �xed). (The

gap � is determined from the thermally activated be-

havior of the resistivity �xx of the 2D system. This

quantity represents the energy required to create a well-

separated quasielectron/quasihole pair. It should not

be confused with the tunneling gap �SAS; as the two

are equal only under certain idealized circumstances.)

The sample used for Fig. 2 is positioned deep in the

many-body portion of the phase diagram in Fig. 1. It

is clear from the �gure that the � = 1 state is initially

very sensitive to the added parallel magnetic �eld but

then, beyond about � = 80, becomes insensitive to it.

The unusual angular dependence in Fig. 2 was

entirely unexpected and has been attributed to a re-

markable new phase transition in the � = 1 ground

state. To visualize this transition it is convenient to

introduce the pseudospin formalism. (Recall that the

real electron spins are assumed to be aligned along

the magnetic �eld by the Zeeman energy.) In this

language an electron in one 2D layer is pseudospin

\up" (�z = +1) while an electron in the opposite

layer is \down" (�z = �1): From the Pauli spin al-

gebra we know that an electron in a symmetric DQW

state (jsym> = (jup> + jdown>)/p2) is an eigenstate

of pseudospin with �x = +1; while an antisymmetric

electron has �x = �1: In the absence of Coulomb in-

teractions, at � = 1 each electron is in a symmetric

DQW eigenstate. Consequently, the ground state is

fully pseudospin polarized along the x̂-direction. The

energy gap is just �SAS since that is the amount of

energy needed to ip an electron's pseudospin. For suf-

�ciently small layer spacings, turning on the Coulomb

interaction increases the energy gap by an exchange en-

ergy, but the ground state remains polarized along the

x-axis. For the sample in Fig. 2, the gap is dominated

by the exchange energy and the tunneling merely serves

to orient the pseudospin. If a parallel magnetic �eld is

now applied, it can be shown[10;11] that the tunneling

matrix element acquires a phase which advances lin-

early across the sample in the direction perpendicular

to the parallel �eld. As a consequence, the direction in

pseudospin space which de�nes symmetric eigenstates

is no longer x̂ but instead rotates as one moves per-

pendicular to the parallel �eld component. Thus, if the

� = 1 ground state is to maintain the energetic advan-

tage of tunneling, then the pseudospin must acquire a

twisted \texture". The wavelength � of this texture is

set by the parallel �eld required to inject one ux quan-

tum between the two 2D layers: � = h=edBk. Were it

not for the Coulomb interaction, this twisting would

have no observable e�ect. On the other hand, since

neighboring electrons no longer have precisely parallel

pseudospins, the twisting costs exchange energy. As the

parallel �eld is increased, this cost rises and eventually

exceeds �SAS. the energetic bene�t obtained by track-

ing the twisting texture. At this point the ground state

becomes unstable against a phase transition[10;11] to a

new, uniformly polarized, many-body state[12]. This

scenario is schematically illustrated in Fig. 3. As Fig.

4 demonstrates, the calculated critical parallel �eld (or

tilt angle �) is in reasonably good agreement with the

experiments. Interestingly, the twist wavelength at the

critical angle in Fig. 2 is roughly � � 2500�A. This is

far larger than the magnetic length `0 � 120�A and the

layer separation d = 210�A. It suggests instead a re-

markable long range phase coherence in this quantized

Hall state[10;11;7;8]:
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Figure 2. Energy gap � vs. tilt angle � for � = 1 QHE at
�xed perpendicular magnetic �eld B? = 5.2T (solid dots).
This sample is the leftmost solid star in the phase diagram
in Fig. 1. The open triangles are for the � = 2=3 QHE
and show that this QHE state exhibits no anomalous tilt
behavior. The inset shows a typical Arrhenius plot of the
resistivity �xx at � = 1.

Figure 3. Schematic illustration of the textural phase tran-
sition at � = 1: Arrows represent the pseudospin �eld. The
x̂-axis of pseudospin space points \up" and has been arbi-
trarily taken to be parallel to the in-plane magnetic �eld
Bk. The wavelength � of the textural twist is indicated.

Figure 4. Critical angle vs. normalized tunneling gap for
� = 1 tilted �eld phase transition. Dashed line is the the-
oretical prediction[10] . Open and solid symbols are the re-
sults of experiment. Solid symbols include a correction to
the magnitude of the tunneling gap produced by the parallel
�eld. Sample from �gure 2 is the symbol in the lower left
corner.

III. Tunneling at high magnetic �eld

Tunneling is an enormously powerful tool for exam-

ining many-body e�ects in electronic systems, as the

classic studies of the density of states in superconduc-

tors demonstrate[13]. While fabricating tunnel junc-

tions out of thin metal �lms and oxide layers is rela-

tively straightforward, tunneling into a 2D electron sys-

tem buried deep inside a semiconductor heterostructure

presents a new challenge. Our approach to this prob-

lem has been to utilize double layer 2D systems having

separate electrical contacts to the individual layers. If

the layers are only weakly coupled then the measured

tunneling I-V characteristic is determined by the con-

volution of the tunneling density of states in the two

layers. Using this technique we have obtained a num-

ber of interesting results ranging from a quantitative

measurement of the electron-electron scattering rate at

zero magnetic �eld[14] to the detection of a �nal state

interlayer exciton at high magnetic �eld[15].

In what follows, I will concentrate on the high �eld

experiments. Fig. 5 compares the tunneling conduc-

tance dI/dV versus interlayer voltage V observed at

zero and high magnetic �eld in a DQW sample con-

sisting of two 200�A -wide quantum wells separated by

a 175�A thick Al0:3Ga0:7As barrier layer. The two 2DES

are nominally identical, each having a density of about

1:5�1011cm�2 and a mobility of roughly 3�106cm2/Vs.

The 175�A tunnel barrier is su�ciently thick that the

2D layers are only very weakly coupled. Bilayer QHE

states, like those discussed in the previous section, are

not observable in such samples. Although the sym-

metric/antisymmetric gap �SAS is typically less than

1�eV, the tunneling conductance itself is readily de-

tectable.

As Fig. 5 shows, the tunneling conductance at B=0

exhibits a narrow resonance. This is a consequence of

the conservation of energy and in-plane momentum. If

these conservation laws are valid then tunneling be-

tween two 2D electron systems can only occur when

there is a precise alignment of the subband energy lev-

els in the two quantum wells[16]. For the sample used

in Fig. 5, which has equal densities in the two 2D sys-

tems, this alignment occurs when the individual Fermi

levels are aligned as well, i.e. at V=0. In general, how-

ever, the resonance appears at a voltage equal to the
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di�erence in the Fermi energies in the two quantum

wells. The residual observed linewidth of the zero �eld

tunnel resonance is determined by the lifetime of the

electronic momentum states in the 2D systems. At low

temperature this is set by the elastic scattering rate

o� of the static disorder in the sample, while at higher

temperatures inelastic electron-electron scattering pro-

cesses dominate[14].

Figure 5. Low temperature tunneling conductance at zero

and high magnetic �eld for a double layer 2D sample with

a 175A Al0:3Ga0:7As barrier.

At high magnetic �elds the tunneling characteristics

appear completely di�erent[17]. For the data in Fig. 5,

the 13 Tesla magnetic �eld is su�cient to put the Fermi

level of each 2DES into the lowest spin branch of the

lowest Landau level, with the individual �lling factors

being about �1 = �2 � 1=2. As the �gure makes plain,

in addition to being spread out over a very wide range

in energy, the tunneling conductance around zero bias

(V=0) is heavily suppressed. This suppression, which

persists over wide ranges of magnetic �eld and is ob-

served whether or not either 2DES is in a fractional

quantum Hall state, represents a pseudogap tied to the

Fermi level. Indeed, unlike the zero �eld tunnel res-

onance, this region of suppressed tunneling is always

found around V=0, even if the 2DES densities are un-

equal. This is a purely many-body e�ect, and stems

from the energetic penalty accompanying the rapid in-

jection of a magnetically con�ned electron into an \in-

terstitial" position in the strongly correlated electron

liquid created by Landau quantization[17;18]. Even if

the 2DES is thermodynamically gapless (i.e. compress-

ible), a pseudogap appears in the tunneling spectrum

so long as the injection (and extraction) process is fast

compared to the time required for the 2DES to re-

lax charge density uctuations. In agreement with ex-

periment, the gap magnitude is of order e2="�r, where

�r � N�1=2 is the mean inter-electron separation. Above

this gap the tunnel current rises to a broad peak (in

Fig. 5 this is where dI/dV crosses zero near 7meV).

This peak reects all tunneling processes between the

lowest Landau levels of each 2DES and its substantial

width is due to electron-electron interactions, not disor-

der. At high magnetic �elds this Coulomb broadening

is, however, less than the cyclotron energy ~!c and so

the tunnel current falls back to near zero at higher volt-

ages in the (single-particle) gap between Landau levels.

This qualitative picture has been supported by re-

cent studies[15] of the density dependence of the tunnel

current. In order to change the densities of both 2DES's

in situ, metal gate electrodes are deposited on both the

top and bottom surfaces of the sample. If these gates

are appropriately biased, then the densities in the two

quantum wells can be kept equal but varied over a wide

range. Fig. 6 shows tunneling I-V data taken with such

a gated sample. The data traces shown were taken with

individual 2DES densities ranging from about 0.5 to

1:3 � 1011cm�2. The magnetic �elds were chosen so

that each trace corresponds to Landau level �lling frac-

tion � = 1=2 in each layer. This was done since only at

�xed �lling factor does the qualitative model described

above predict the density dependence of the tunneling

spectrum be proportional to
p
N . Fig. 6a shows that,

as expected, when the density is increased, the tunnel-

ing spectrum broadens and moves out to higher energy.

In Fig. 6b the voltage axis has been divided by
p
N

and it is apparent that the anticipated collapse of the

various data onto a single curve does not occur. Thus

the simple model described above is inadequate.

In Fig. 6c the mean voltage < V > and rms width

� of the tunneling peaks shown in Fig. 6a are plot-

ted versus
p
N . Both quantities are apparently linearly

dependent on
p
N but while � extrapolates to nearly

zero at N=0, the mean voltage < V > extrapolates to

a signi�cant negative value Vex � �1:4mV: We have

recently argued[15] that this negative intercept reects

the Coulombic attraction, in the �nal state, between a

tunneled electron and the hole it leaves behind in the

source electrode. Such an e�ect is clearly plausible since
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Figure 6. Density dependence of tunneling spectra at � = 1=2 from sample D. (a) Normalized tunneling I-V characteristics

at T=0.6K. Left to right: N=0.62, 0.80, 1.0, 1.15, and 1:28 � 1011cm�2. (b) Same as (a) but voltage axis divided by
p
N

(with N in units of 10�2). Data does not collapse onto a single curve. (c) Mean voltage and rms width of � = 1=2 tunneling

peak vs.
p
N at several densities. (d) Collapse of I-V characteristics onto a single curve after subtracting Vex = �1:4mV

from V and then dividing by
p
N:

the separation between the two 2D layers (d = 400�A in

the sample used for Fig. 6) is comparable to the average

spacing between the electrons in a given layer. Further-

more, the magnitude of the excitonic shift is quite sen-

sible; in units of the interlayer Coulomb energy e2="d,

the shift Vex comes out about 0.5. Finally, by including

such a interlayer excitonic e�ect into the overall tun-

neling model, the observed density dependence makes

sense. This is shown quite clearly in Fig. 6d where

the data of Fig. 6a are replotted after �rst shifting the

voltage axis of each trace by Vex and then dividing byp
N ; now the traces do collapse onto a single curve.

It is interesting to consider why such an excitonic ef-

fect is detectable in tunneling between 2D electron sys-

tems at high magnetic �eld but is not observable using

ordinary metal tunnel junctions. For typical 2D elec-

tron systems in GaAs, with densities in the 1011cm�2

range, it is easy to apply a magnetic �eld large enough

to force the Fermi level into the lowest Landau level,

quench the kinetic energy, and thereby produce a very

strongly correlated system. Under these conditions an

electron tunneling in or out of the 2DES produces, ini-

tially at least, a strongly localized charge defect[18]. If

both junction electrodes are two-dimensional, an inter-

layer exciton, analogous to a vacancy-interstitial pair,

results. This exciton is relatively long-lived since not

only can the electron and hole not escape into the

third dimension, the magnetic �eld inhibits their ra-

dial spreading in the plane[18]. These conditions can-

not be obtained with ordinary metal tunnel junctions.

Their high electron density not only makes the screen-

ing length very short but also eliminates the possibil-

ity of reaching the lowest Landau level with laboratory

magnetic �elds.
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