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Monte Carlo simulations of thermodynamicmodels are usually performed according to Boltz-
mann's canonical distribution, with a �xed temperature T . This can be very time consuming
on the computer since one needs to do a new computer run for each value of T . Salzburg
et al invented and Ferrenberg and Swendsen perfected the histogram method to circumvent
this, by measuring the Boltzmann probability distribution as a function of the energy E,
for a �xed T . Instead of repeating the simulations for another value T 0, the measured prob-
ability distribution is simply reweighted through analytic manipulations of the Boltzmann
formula. The simulated Boltzmann probability distribution has, however, exponentially de-
caying tails. Therefore the statistics are poor away from the peak which is centered around
the average energy. Since the peak of the new T 0 is centered somewhere on these tails, the
histogram method only works well for very small system sizes. We present a quite di�erent
approach, de�ning a non-biased random walk along the E axis with long range power-law
decaying tails, and measuring directly the degeneracy g(E), without thermodynamic con-
straints. Our arguments are general (model independent), and the method is shown to be
exact for the 1D Ising ferromagnet. Also for the 2D Ising ferromagnet, our numerical results
for di�erent thermodynamic quantities agree quite well with exact expressions.

I. Introduction

The Monte Carlo approach is a fundamental tool

to study the thermodynamic properties of model

systems[1]. Instead of taking into account all possible

states of the system, thermal averages are performed

among a �nite set of states. These states form a random

Markovian sequence generated according to a dynamic

rule which has as attractor �xed point the canonical

Boltzmann probability distribution

PT (E) =
1

ZT
g(E) exp(�E=T ) (1)

for each possible energy value E, where T is the �xed

temperature, g(E) is the degeneracy of energy level E,

and

ZT =
X

E

g(E) exp(�E=T ) (2)

is the partition function. Note that E corresponds to

the total energy, and we have taken the Boltzmann

constant kB = 1. There are many di�erent dynamic

rules obeying this probability distribution - the �rst

one being introduced in Ref.[2]. According to this rule

one tries to make some random movement in phase

space, for instance through a one-spin ip, starting

from the current state of the system. If this movement

leads to a decrease of the energy, it is performed. If,

however, an energy increment �E would result from

this movement, it is only performed with probability

exp(��E=T ). By repeating this rule many times, one

forms the quoted Markovian sequence of states, the

�
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thermal average < Q >T of some quantity Q (mag-

netization, susceptibility, speci�c heat, etc.) is then

simply the arithmetic mean of this quantity over the

visited states. Of course, one must take care of statis-

tical correlations and uctuations, in order to get accu-

rate values. There are many standard procedures[1] to

do this.

Normally one needs to calculate < Q >T as a func-

tion of T . So, one is forced to repeat the entire pro-

cedure described in the last paragraph for each di�er-

ent value of T . In order to save computer time, an

appealing strategy [3] consists in extracting out the T

dependence from equations (1) and (2). Note that T

only appears in the Boltzmann weight exponents, mak-

ing this task easy. First, the distribution PT (E) it-

self is measured by accumulating in a histogram the

number of visits to each value of E, during the Marko-

vian sequence of simulated states. Then, one can infer

another distribution PT 0(E) corresponding to a di�er-

ent value T 0 without performing any further computer

run, simply by reweighting equations (1) and (2). This

approach is known as the histogram method, and has

been popularized by Ref. [4]. In order to obtain the av-

erage < Q >T , one needs to accumulate also in another

histogram the measured values of Q corresponding to

each energy E. The thermal average at temperature T

is then

< Q >T=
X

E

< Q(E) > PT (E) ; (3)

where < Q(E) > means the average value of Q ob-

tained at �xed energy E, i.e. the microcanonical aver-

age. Once one has the reweighted distribution PT 0(E),

equation (3) can be applied to obtain< Q >T 0 for other

(not simulated) temperatures T 0.

The probability distribution PT (E) presents a sharp

peak at < E >T and decays exponentially on both

sides. The larger the system size, the narrower this

peak. Thus, the computer measured PT (E) is only

reliable around the peak, the statistics being poor in

the exponential tails. The reweighting procedure corre-

sponds to replacing the Boltzmann factors appearing in

equations (1) and (2) by other Boltzmann factors cor-

responding to the new value T 0, transforming the whole

function PT (E) into PT 0(E). In particular, the proba-

bility values are reduced near the former peak, and en-

hanced near the new peak position < E >T 0 . However,

since the statistics is poor near this new peak position,

the inferred PT 0(E) is not accurate. That is why the

histogram method, in spite of its elegant reasoning, has

di�culties in practice[5].

In the present work, we introduce a new method

conceived to avoid the exponential tails responsible for

the drawback of the histogram method. It is presented

in the next section. Section III is devoted to show that

our technique is exact for the simple case of the Ising

ferromagnet in one dimension, and to compare our nu-

merical results with the exactly known values for the

same model in two dimensions. Technical details con-

cerning the computer implementation of the method

for the Ising ferromagnet are presented in section IV

(which the reader can skip). Concluding remarks are

made in section V.

II. The Method

In this section, we will not restrict ourselves to any

particular model. Suppose one only knows how to com-

pute the energy E of some given state of the system in

the thermodynamic limit (in practice, the system may

be a large but �nite one). Our reasoning is based on

two steps. First, we de�ne a non-biased random walk

along the E axis. For that purpose, one needs �rst to

de�ne a set of dynamic movements. For instance, in the

case of N Ising spins one can adopt one-spin ips giv-

ing raise to N possible movements starting from each

state. Other dynamics (cluster ips, continuous spin

dynamics, etc.) can also be adopted, depending on the

problem being treated. Within this prede�ned dynam-

ics, starting from the current state with energy E, con-

sider all possible movements changing this state. These

movements can be classi�ed into two classes [6]:

class 1: E ����! E ��E

class 2: E ����! E +�E ;

where �E > 0. Suppose for the moment that all pos-

sible movements have the same j�Ej. This hypothesis
is not important, and will be disregarded at the end.

In the physical region of positive temperatures, g(E)

is a monotonically fast increasing function of the en-

ergy, and thus the number of possible movements of

class 2 is larger than the corresponding possibilities for
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class 1. In this way, if one naively de�nes the dynam-

ics by performing any randomly tossed movement, the

energy will increase monotonically up to the maximum

entropy region corresponding to in�nite temperature.

This naive dynamic rule corresponds to a biased ran-

dom walk along the energy axis. In order to construct

a non biased random walk, we propose the following

dynamics: if the currently chosen movement belongs to

class 1, it is accepted and performed; if, however, it

belongs to class 2, it is accepted and performed only

with probability Ndn=Nup, where Ndn and Nup are the

total numbers of possible movements of classes 1 and 2,

respectively, counted at the current state. This accep-

tance probability removes the bias, forcing the prob-

abilities of increasing or decreasing the energy to be

equal. Note that Ndn and Nup correspond to the po-

tential possible movements from which only one would

be actually performed at each step. Within this dy-

namic rule the region already visited along the energy

axis increases its width proportionally to �E
p
t, like

a random walk, where t is the number of performed

movements, i.e. the length of the Markovian sequence

of states. This makes our method completely distinct

from any other based on the Boltzmann distributions,

for which the visited energies are con�ned to narrow

windows due to the quoted exponential tails. Fig. 1

shows the number of visits as a function of the energy

for the Ising ferromagnet in two dimensions obtained

by both methods.

The second step of our reasoning concerns the di-

rect measurement of g(E). Following the non biased

random walk dynamics de�ned above, the probability

for the energy to jump from E to E +�E is the same

as that of jumping back from E +�E to E. This can

be mathematically stated as

< Nup(E) > g(E) = < Ndn(E +�E) > g(E +�E) ;

(4)

where the averages are again microcanonical. Equation

(4) can be rewritten as

ln g(E +�E)� lng(E) = ln
< Nup(E) >

< Ndn(E +�E) >
(5)

or

�(E) � d ln g(E)

dE
=

1

�E
ln

< Nup(E) >

< Ndn(E +�E) >
;

(5)

allowing one to measure g(E) and thus the entropy

change, from the averages <Nup(E)> and <Ndn(E)>

accumulated during the random walk.

Figure 1. Number of visits as a function of energy obtained
from the histogram method[3;4] (�xing the temperature at
the critical value), and from the present method, for the
Ising ferromagnet on a 32 � 32 square lattice. The energy
values are displayed by the density of broken bonds. On
that scale the whole physical positive-temperature range is
between 0 (ground state) and 0:5 (in�nite temperature),
while the critical point corresponds to 0:146. Within the
present method, the whole physical energy range is explored
for any system size. In contrast, the histogram method ex-
plores only a narrow window, the larger the system size the
narrower is this window: namely, for L = 32 (shown in the
�gure), 64, 128 and 256, we found widths 0:061, 0:031, 0:015
and 0:007, respectively.

Our method consists, then, in performing the ran-

dom walk dynamics de�ned above, and accumulating

values in four histograms along the E axis: the num-

ber of visits; the quantity Q one in interested in; the

average number Nup of movements of class 1; and Ndn

corresponding to class 2. At the end, g(E) is deter-

mined by eq. (5), and the thermal average < Q >T by

equations (1), (2) and (3).

As a last remark, let us stress that no thermody-

namic concepts are present in our method. Equations

like (1), (2) and (3) involve two completely di�erent

ingredients: 1) how the system exchanges energy with

the environment, in the particular present case through
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the Boltzmann equilibrium distribution represented by

the exponential term exp(�E=T ); and 2) the system

itself, i.e., how its internal energy levels are distributed

along the energy axis, represented here by its spectrum

g(E). Our method concerns only the latter, i.e., the

signature of the system, independent of its environ-

ment or thermal exchanges. The thermal average sums

whose results are exempli�ed in Figs. 3 and 4 are per-

formed only after the Markovian process was �nished,

and the spectrum g(E) of the system had already been

determined by the method. In this sense, conceptu-

ally, our method is completely distinct from all other

based on thermodynamic grounds. It is just this inde-

pendence from thermodynamic constraints which frees

us from the narrow window distributions characteristic

of statistical physics, allowing to obtain rather cheaply

the overview through the whole space of states. Ironi-

cally, is just in the study of statistical physics where our

method could become a powerful tool. Another impor-

tant feature of this thermodynamic-constraint freedom

characteristic of our method is the complete absence

of critical slowing down, distinguishing it from others

once more.

III. Ising Ferromagnet Test

Consider a ring with N Ising spins pointing up or

down. Each pair of neighboring spins may either be

parallel or anti-parallel, the contribution of this pair to

the total energy being zero or one, respectively. In other

words, the total energy E = 0; 2; 4 : : : is the number of

broken bonds (neighboring spins pointing in opposite

directions). In this case, the exact degeneracy can be

easily obtained as

g1D(E) = 2
N !

E!(N �E)!
; (6)

or

�(E) =
1

2
ln

(N �E)2

E2
; (7)

where we have taken the thermodynamic limit N=2 >

E >> 1.

Let's consider one-spin ips and implement our

method in this case. A movement will belong to class 1

if the spin to be ipped is currently surrounded by two

broken bonds. On the other hand, class 2 corresponds

to spins parallel to both neighbors. In both cases, the

energy jump is �E = �2. Neglecting �E compared to

E, one obtains the averages

< Ndn(E) > =
E2

N
(8)

corresponding to the probability (E=N )2 of �nding two

neighboring broken bonds, and analogously

< Nup(E) > =
(N �E)2

N
: (9)

Comparing eqs. (8) and (9) with eqs. (5) and (7) we

see that our method gives the exact result (6) for the

1D Ising ferromagnet.

The exact degeneracy g2D(E) of the Ising ferromag-

net in two dimensions was also recently derived for �-

nite systems[7], by using the algebraic software MATH-

EMATICA, from closed forms already known[8] for �-

nite square lattices. We use it for another non trivial

test of our method. Fig. 2 shows the plot of lng(E)

obtained by our simulation, for a 32� 32 square lattice

and the exact curve[7] . They are indistinguishable on

the scale of the plot.

Figure 2. Degeneracy g(E) for the Ising ferromagnet on a

32 � 32 square lattice (the exact result[8] could be explic-
itly obtained up to this size, through an algebraic MATHE-
MATICA program[7]). The energy values are displayed by
the density of broken bonds. The plot contains both the
exact curve and the results of our simulations and they are
indistinguishable at this scale. The shorter line displayed
slightly above corresponds to the histogram method[3;4] for
which the results remain restricted inside the narrow win-
dows mentioned on the caption of Fig. 1. Also shown is the
derivative which is the quantity we directly measured.
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Now, we no longer have the same absolute value

�E for all possible one-spin ips. Spins surrounded by

zero or four parallel neighbors correspond to �E = 4

and belong to classes 1 or 2, respectively. Analogously,

spins surrounded by one or three parallel neighbors cor-

respond to �E = 2 and also belong to classes 1 or 2,

respectively. One can adopt two distinct strategies to

deal with this feature. First, one can divide classes 1

and 2 into sub-classes 4 and 2, storing four histograms:

N
(4)
dn (E), N

(2)
dn (E), N

(2)
up (E) and N

(4)
up (E) counting spins

surrounded by zero, one, three or four parallel neigh-

bors, respectively. At the end one can measure the

degeneracy g2D(E) by two independent approaches, ei-

ther using eq. (5) with < N
(4)
up (E) >, < N

(4)
dn (E) >

and �E = 4, or, alternatively, with < N
(2)
up (E) >,

< N
(2)
dn (E) > and �E = 2. The second strategy corre-

sponds to store only two histograms for N1=�E
up (E) and

N
1=�E
dn (E), replacing eq. (5) by the equivalent form

�(E) � d ln g(E)

dE
= ln

< Nup(E)1=�E >

< Ndn(E +�E)1=�E >
:

(10)

Adopting the �rst strategy, we con�rmed that within

the statistical accuracy, both determinations of g2D(E)

give the same result. They also agree with the values

obtained through the second strategy which is partic-

ularly adapted to models where various possible values

of �E occur.

Fig. 3 shows the averaged energy and speci�c heat,

obtained by the present method, also indistinguishable

from the exact curves[9] . The inset shows the exact spe-

ci�c heat blowed up near the peak as a continuous line,

within the error bars of our results represented by the

crosses. For a larger lattice, Fig. 4 shows also the mag-

netization and susceptibility which can be compared

with canonical Monte Carlo simulations[10], since they

are not yet known exactly for �nite lattices. In order to

break the global spin ip symmetry, the magnetization

here is considered as the average of the absolute di�er-

ence between the population fractions of spins up and

down. In both Figs. 3 and 4 we considered the energy

as twice the number of broken bonds in order to �t the

usual form �JPS{S| of the Ising Hamiltonian.

Figure 3: Averaged energy and speci�c heat obtained from
the present method for the Ising ferromagnet on a 32 � 32
square lattice. The inset compares the exactly known
curve[9] with our results (symbols of the same size of the
error bars), near the speci�c heat peak: these curves are in-
distinguishable at the larger scale. Concerning CPU time,
we took less than 40 minutes on a PENTIUM PC running at
66Mhz, 50% more than the histogram method at the same
conditions.

IV. Technical Details

We have written a C program using some multispin

coding tricks[11] in order to accelerate the code. In par-

ticular, we have adopted the multilattice approach[12]

storing the states of 32 lattices in a L�L square array

of 32-bit integers, where L is the linear size of the lat-

tice. All 32 samples are processed in parallel by using

as often as possible bitwise logical operations instead of

algebraic ones[11]. The sites to be ipped are tossed at

random. We adopted the pseudo random number gen-

erator which consists in the multiplication of the cur-

rent random 32-bit odd unsigned integer R with 65539,

i.e.

R = 65539� R ; (11)

where only the �rst (less signi�cant) 32 bits of the result

are keeped. This truncation is automatically done by

most compilers. Di�erent random numbers are tossed

for the 32 lattices. We have also adopted periodic

boundary conditions. The starting state is random and

then thermalized by 10 entire lattice sweeps at the crit-

ical temperature (Metropolis dynamics). The physical

positive-temperature range of energies corresponds to

0 � e � 0:5, where e is the energy per bond. Since
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the Onsager critical energy corresponds to e � 0:146,

we decided to restrict our random walk energy range to

0 < e < 0:4, tossing a new initial state every time the

current energy goes out of this range. All our numerical

results correspond to the kind of calculations described

in this paragraph (except for data shown in Figs. 1 and

2, for which we have extended the range up to e = 0:5).

Figure 4: Curves obtained from the present method for the
Ising ferromagnet on a 128 � 128 square lattice. Only 104

whole lattice sweeps are used, the same amount adopted for
the smaller lattices in previous �gures.

Implementing our method as described above, the

correlations between successive states decay slowly:

around 10 lattice sweeps must be taken between su-

cessive data picked for latter averages, in order to ob-

tain good, correlation-free results. Another character-

istic feature of Ising one-spin ip dynamics is the fre-

quent blocking of the system in certain pathological

low energy states[13]. If for instance, the square lattice

presents a vertical strip of up spins in adjacent columns,

all other spins pointing down, the Markovian sequence

will be blocked in this state. This does not change the

results, because we only store values to perform the av-

erages if the current state di�ers from the previous one,

but computer time is wasted by these blockings.

In order to accelerate the code, we decided to over-

come both problems quoted in the previous paragraph.

To do this, we introduced 5 (non-averaging) lattice

sweeps of the Metropolis dynamics after each lattice

sweep using our random walk dynamics. The �xed

temperature adopted for these 5 extra thermalization

sweeps corresponds to that of the current energy as

measured by equation (10) (note that eq. (10) is for-

mally equal to the statistical de�nition of the inverse

temperature), extracting the averages from the val-

ues already accumulated in the histograms N1=�E
up and

N
1=�E
dn . In order to improve e�ciency even more one

can use the ratio between the corresponding values al-

ready accumulated in the histograms instead of the cur-

rent instantaneous ratio between the numbers of class

1 and class 2 spins.

As a result of all these acceleration tricks the total

computer time is less than 40 minutes on a PENTIUM

PC running at 66MHz frequency, for (1 + 5)� 104 lat-

tice sweeps for 32 samples of size 32� 32. The 64� 64

lattice simulation is 4 times slower, and so on. These

times are only 50% larger than we measured for the

histogram method under the same conditions.

Conclusions

We have presented a new histogram Monte Carlo

method which as compared to the traditional one based

on temperature[3;4] is based on histograms measured

from a random walk along the energy axis. These his-

tograms have the advantage of having much broader

tails allowing to extrapolate to a much larger range of

temperatures with a rather small number of samples.

We have tested our method on the two-dimensional

Ising model and succeeded in reproducing thermody-

namic quantities with high accuracy over the entire

physical temperature scale with very little e�ort.

Our method is very general and could be useful for

instance for simulations of spin glasses or spin models in

three dimensions. Work in this direction is in progress.
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