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We study the time evolution of current sheets under the in
uence of stagnation point 
ows
driven by external forces. It is shown that signi�cant physical processes occur during the
formation of the current sheet, which is originated from the advection of a sparse magnetic

ux. The advection and intensi�cation of the magnetic �eld at a stagnation 
ow can give
rise to large amounts of Joule dissipation over hydrodynamic time scales. Depending on the
balance between the incoming magnetic 
ux and the dissipation rate, these e�ects may lead
to an accelerated extinction of the magnetic �eld, the formation of steady state dissipative
layers, or to solutions that grow without bound linearly with time. The basic elements of the

ow enhanced dissipation mechanism are discussed using order of magnitude considerations.
Analytic time dependent solutions that describe the evolution of the magnetic �eld are
obtained for planar 
ows. Starting from generic initial and boundary conditions for the
magnetic �eld component lying on the plane of the 
ow, it is shown that the sublayer in
which a change of sign of the magnetic �eld occurs tends to vanish in a short time during the
formation of the current sheet. On the other hand, the magnetic �eld component normal
to the 
ow plane is always rapidly extinguished. Thus, con�gurations commonly considered
as models to steady state reconnection or tearing instability studies, are exceptional cases
rather than generic magnetic structures. In three dimensional stagnation 
ows, all magnetic
�elds not sustained by a continuous injection of magnetic energy are completely annihilated
in a few hydrodynamic times. Self similar solutions that describe the ampli�cation and
decay of the magnetic �eld for planar and axial-symmetric 
ows are also obtained. Several
applications, including solar plasma current sheaths, the dayside magnetospheric stagnation
point, and the formation of hot spots in the Plasma Focus experiments, are discussed.
The theory of the stability of these dissipative structures is commented upon. Thermal
e�ects due to the rise of the temperature in the current sheath and the ensuing conductivity
increment, enhance the ampli�cation and extintion processes. These e�ects are illustrated
with numerical solution examples. Finally, compressibility e�ects that set a limit to the
validity of the solutions are brie
y outlined.

I. Introduction

The material presented here (prepared for the VI

Latin American Workshop on Plasma Physics, Foz do

Igua�cu, 24{28 October, 1994) is based on research work

performed at the Instituto de F��sica del Plasma (CON-

ICET and FCEyN/UBA), Buenos Aires. A more pre-

cise title should be \fast MHD dissipative processes

associated with stagnation point 
ows." The content

is mainly about convection and stretching of magnetic

�eld lines in this kind of 
ows. Convection carries the

magnetic lines toward the current layer and concen-

trates the magnetic �eld. Convection also intensi�es

the cooling of the current sheath by transporting cold

material from external regions. The stretching of mag-

netic �eld lines increases the magnetic �eld intensity

at the expense of the work done by the pressure in

the 
ow. The ampli�cation of the magnetic �eld in-

creases the Joule dissipation. These e�ects may lead

to an accelerated extinction of the �eld, or to a steady

state with strongly dissipative layers, depending on the

balance between the incoming magnetic 
ux and the
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dissipation rate.

Current sheets are characteristic regions in labora-

tory and astrophysical plasmas, where magnetic energy

is concentrated. These are scenarios for the fast re-

lease of the stored energy into other forms of energy by

reconnection of magnetic lines, Joule heating, or resis-

tive instabilities.[3;40;59] By a fast process we mean a

magnetic evolution, ampli�cation or extinction, faster

than the ordinary di�usion time �D � L2=�m (L: scale

length of the �eld; �m: magnetic di�usivity) or dif-

fusion speed vD � �m=L. The tearing instability of

a current sheath in di�usive equilibrium[14;59;58] has a

growth rate 
 � (�D�A)
�1=2 (�A = L=VA; VA: Alfv�en

speed), so that �A << � = 
�1 << �D. This is a

process faster than di�usion but slower than the Alfven

time. The reconnection of magnetic lines[1;3;42;49;57;59]

may occur with the so called Sweet-Parker scaling,[37;54]

that leads to the reconnection speed (vi: in
ux speed)

vi=VAi � 1=S
1=2
i (VAi = Bi=

p
4��, Alfven speed at

in
ow magnetic �eld; Si = VAiL=�m, Lundquist num-

ber at in
ow values). This speed is to be compared

with vD=VAi � 1=Si, so that it is much larger than the

di�usion speed. The corresponding time scale �SP =

L=vi � �D=S
1=2
i is much shorter than �D for Si >> 1,

but it is still too long for reconnection precesses conjec-

tured to happen, e.g., in solar physics. The Petsheck

reconnection model[39;49;57] allows much larger values

vi=VAi � �=8lnSi and can be considered as a very fast

process. However, it has been questioned during the

last decade as incompatible with numerical solutions of

the MHD dissipative equations, originating a lively pro

and con debate about its validity. [2;1;3;12;25;40;41;42]

The current sheath build-up or extinction processes

studied in these lectures (no reconnection considered)

are driven by external forces, and the Alfvenic Mach

number MA = vi=VAi can, in principle, be arbitrarily

large (see Section IX). The characteristic time scale,

being of the order of the hydrodynamic time, is much

shorter than the Sweet-Parker scaling or the tearing in-

stability growth time. The large dissipation rate may

produce a rise of the temperature in the current sheath

and a conductivity increment. The magnetic �eld grows

further and the current layer shrinks, with an addi-

tional rise of the Joule dissipation. The �eld ampli�-

cation may become so large as to exhaust the strength

of the external driver, or produce a substantial density

variation (plasma depletion) which, however, is not ac-

counted for in the analysis reported here.

The time evolution of resistive layers under the in-


uence of a stagnation 
ow has not been su�ciently

explored yet, as can be noted in surveys of the �eld

(e. g., [1,40,49,57]). We show here that advection and

intensi�cation of magnetic �elds (by line `stretching')

at a stagnation 
ow, as can develop when the plasma is

locally squeezed by external agents, may produce con-

siderable amount of Joule dissipation in a short time.

This mechanism can provide explanations for fast dis-

sipation rates in several plasma systems, often render-

ing `anomalous' resistivity hypotheses super
uous. Our

purpose is to point out the signi�cant physical conse-

quences of the transient processes that occur during

the formation of a current sheet, originated from the

advection of a sparse magnetic seed or from external

continuous injection of magnetic 
ux.

It is shown that advection and enhancement of a

magnetic �eld in a stagnation 
ow may produce in a

short time te a large Joule dissipation (D per unit area

and per unit time) in a small slab (width �). The

scaling is (approximately) te=th = (1=2) lnRm; D =

Wo
p
Rm=th; �=ho = 1=

p
Rm. Here th = ho=Uo is the

hydrodynamic time (ho; Uo, characteristic length and

speed, respectively), Rm is the magnetic Reynolds num-

ber assumed to be large, and Wo is the magnetic en-

ergy (per unit area) contained in a slab of width ho at

t = 0.[17] A set of analytic time dependent solutions

describe the evolution of current sheets at a plasma

stagnation 
ow, where considerable intensi�cation of

magnetic energy and high dissipation rates occur. In

planar geometry it is shown that (without 
ux injec-

tion) a generic magnetic �eld component, lying on the

plane of the 
ow, after a transient where ampli�cation

and decay of its odd part takes place, leaves a large even

remnant concentrated in a thin resistive slab. If the ex-

ternal cause of the plasma in
ow is switched o�, the

magnetic layer extinguishes at a much slower rate than

the corresponding build-up process. When a continu-

ous injection of magnetic 
ux takes place it is found

that in general the even component of the magnetic

�eld becomes dominant over the odd part, after some

time. The exception is the special case where the in-

coming magnetic 
ux from both sides is carefully bal-
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anced. Thus, starting from generic initial and boundary

conditions, one may expect that the sublayer in which a

change of sign of the magnetic �eld occurs, vanishes in

a short time during the current sheet formation. As a

consequence, possible steady state scenarios envisaged

for reconnection processes or tearing instabilities, may

not materialize.[18] On the other hand, a magnetic �eld

component normal to the 
ow plane is always extin-

guished, even with constant 
ux injection. There is

no ampli�cation e�ect for this component, except in

systems driven by injected 
ux growing in time. Stag-

nation 
ows in three dimensions (axially symmetric di-

verging out
ows) have magnetic �eld evolution proper-

ties quite di�erent from those described by the planar

current sheath models. The magnetic �eld is ampli�ed

in a �rst stage, but is ultimately extinguished when

there is no 
ux injection. Steady state current sheaths

that are weaker than in the planar case can be sustained

only by 
ux injection which grows in time.

A radial convergence of a plasma 
ow with outlets

along the axis (in cylindrical geometry) is driven by

an azimuthal magnetic �eld component. It is shown

that a magnetic �eld component parallel to the axis of

the plasma con�guration is ampli�ed evolving into a

strongly dissipative �lament in very short times. The

results may explain the formation of hot spots in the

plasma column stage of Plasma Focus experiments.[15]

Consequences of the current sheath models for so-

lar plasma current sheaths, and the dayside magneto-

spheric stagnation point are also discussed. Thermal

e�ects enhance the ampli�cation and extinction pro-

cesses, while plasma compressibility sets a limit to the

validity of the solutions studied here, and may a�ect

the magnetic �eld build-up. These topics, still open,

are brie
y outlined.

Although our subject is related to the �elds of recon-

nection of magnetic �eld lines, tearing instabilities, or

MHD dynamo theories, among others, no attempt has

been made to enter in these areas, except for a few short

remarks. These are, however, very large and impor-

tant subjects. The interested readers should familiarize

themselves with these related areas, consulting the ma-

jor surveys cited here. During the preparation of the

paper two important monographs,[3;37], have been pub-

lished. Our work complements the progress achieved

by the e�ort of many authors providing detailed ana-

lytical models for some particular processes. These, we

believe, are useful to gain further insight in the physics

of this complex �eld.

II. Reduced MHD equations in curvilinear co-

ordinates

II.1 Incompressible 
ows.

In view of the tutorial nature of these lectures we

give here a short review of the basic MHD equations

with resistive and viscous di�usion e�ects and their re-

duction to a simpler set. This reduction is possible

when the system has a manifest translational or rota-

tional symmetry, and the incompressibility condition,

divv = 0, allows for the introduction of Euler potential

for the 
ow and magnetic �eld.

Incompressibility is the natural assumption when

dealing with MHD processes in liquids, like those in-

dicated in Table I. In plasmas ��=� � (1=c2s)�p=�,

where cs is the sound speed (cs = 9:8� 105(
Te=�)
1=2

cm s�1; Te in eV and � = mi=mp). An estimate of

�p=� in dynamical processes where the plasma speed

variation is � U0 and the magnetic �eld may vary

� B0, is given by (�p=�) � U2
0 + B2

0=8��, as follows

from a comparison of the terms grad p, gradB2=8�, and

�v.gradv in the equation of motion. Thus, �p=� �
M2 + 1=
�, where M = U=cs is the Mach number and

� = 8�nKT=B2 = 4� 10�11nT=B2 (where T is in eV,

n: particles cm�3;B is in Gauss). The incompressibil-

ity assumption ��=� << 1 is valid if M2 << 1 and

� >> 1 hold during the evolution of the plasma. Note

that in this context a static value of � is irrelevant,

what counts is the di�erence of initial and �nal values,

i.e., �p � B�B=4�.

II.2 Basic equations.

When incompressibility and uniform density are as-

sumed, and if the viscous and resistive transport pro-

cesses in the plasma are isotropic, then the MHD equa-

tions can be written as (see, e.g., [1,30,31,40,45]).
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c

divv = 0; (1)

�gradP =
@v

@t
+ ! � v � 1

c�
j�B+ � curl!; (2)

1

�
j = E+

1

c
v �B� mi

�qc
j�B+ grad (

mi

�q
pe); (3)

4�

c
j = curlB; (4)

�1

c

@B

@t
= curlE; (5)

divB = 0: (6)

d

In these equations we have used the de�nitions

! = curlv; P =
p

�
+

1

2
jvj2 + V; (7)

and the other symbols have the following meanings: v,

velocity; B, E, magnetic and electric �elds; j, electric

current density; p, pe, plasma and electron pressure; �,

mass density; �, �, kinematical viscosity and electrical

conductivity; mi, q, mass and charge of the plasma ions;

V gravitational potential per unit mass. Mechanical cgs

units, and electrical ues units are used throughout; c is

the speed of light in vacuum. Important restrictions of

the set of equations (1){(6) are:

(i) the plasma density is uniform, � = const.,

(ii) � and � are assumed to be constants.

Note that Ohm's law, Eq. (3), includes the Hall ef-

fect and a thermoelectrical term.

Electrodynamic potentials A, �e, with the gauge

choice,

divA = 0 (8)

such that

B = curlA; (9)

E = �1

c

@A

@t
� grad�e; (10)

will also be used in the formalism. We now introduce

auxilliary variables, all of them with kinematical, i.e.,

spatio-temporal, dimensions

h
def
=

Bp
4��

; �
def
=

cEp
4��

; a
def
=

Ap
4��

; �e
def
=

c�ep
4��

; J
def
=

r
4�

�c2
j; (11)

so that we may write, for instance,

1

c�
j�B = J� h (12)

for the Lorentz force per unit mass, and

� = �@a
@t
� grad�e; (13)

instead of Eq. (10). The equations of linear momentum

and Ohm's law become

�gradP =
@v

@t
+ ! � v + �curl! � J� h; (14)

�gradQ =
@a

@t
+ h� v + �mcurlh� 1

k
J� h;(15)

where we de�ned

Q
def
= �e � pe

k�
;

1

k

def
=

cmi

q
p
4��

; (16)

and �m = c2=4�� is the magnetic di�usivity. Since v

and ! are solenoidal �elds we have

curl (! � v) = v.grad! � !.gradv = fv; !g; (17)
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where fv; !g is the commutator of the vector �elds v

and !. The contravariant component of the commuta-

tor is given in any curvilinear coordinate system by

fv; !g = vj
@!i

@xj
� !j

@vi

@xj
; (18)

provided the contravariant components vi, !i, are used

here. Integrability of Eqs. (14){(15) requires that the

curl of the rhs be zero. Thus eliminating P and Q we

obtain

@!

@t
+ fv; !g+ � curl curl! = fh;Jg; (19)

@h

@t
+ fv;hg+ �m curl curlh = �1

k
fh;Jg: (20)

The �rst two terms in these equations form the con-

vected time 
ux derivative

D!

Dt

def
=

@!

@t
+ fv; !g;

which is a Lie derivative in an Euclidean spatio-

temporal space (t;x).[45] When dissipative terms are

negligible and Hall's term is ignored (1=k ! 0), Eq. (20)

is equivalent to
DB

Dt
= 0;

the equation for the conservation of the magnetic 
ux

in ideal MHD. When Hall's e�ect is retained, but

� = �m = 0, adding Eqs. (19){(20) we get

D(! +
)

Dt
= 0; (21)

where 
 = kh = qB=mic. This equation expresses the

invariance of the 
ux of ! + 
 in the so-called Hall-

MHD.[56]

II.3 Stream function and magnetic 
ux function

Since divv = 0 and divh = 0 we can represent v

and h locally as

v = grad � � grad �; (22)

k = grad � grad�; (23)

where �, �,  , and � are called Euler potentials. The

Euler representation is discussed in Refs. [30,45,53].

The 
ux of v (and, similarly, of h) through any open

surface S bounded by a closed contour C is given byZ
S

v.dS =

I
C

�d� = �
I
C

�d� (24)

The special choices (i) � = z, �(x; y) and (ii) � = �,

�(r; z) (similarly � = z, (i) (�x; y) or, (ii)  (r; z)) give
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the stream function (and magnetic 
ux function) rep-

resentation for planar symmetric motions and for axial

symmetric 
ows, respectively. For (i) we have in Carte-

sian coordinates

vx =
@�

@y
; vy = � @�

@x
;

hx =
@ 

@y
; hy = �@ 

@x
;

and Eq.(24) shows that [�(x2; y2) � �(x1; y1)]z or

[ (x2; y2)� (x1; y1)]z are the 
uxes of v and h, respec-

tively, through a surface spanned by any line segment

joining (x1; y1) and (x2; y2) and a segment of height z.

For (ii)

v<r> =
1

r

@�

@z
; v<z> = �1

r

@�

@r
;

h<r> =
1

r

@ 

@z
; h<z> = �1

r

@ 

@r
;

for the physical components of v in cylindrical coor-

dinates. From Eq.(24) it follows that 2��(r; z) and

2� (r; z) are the 
uxes of v and h, respectively,

through a disk of radius r, lying on the z = const.

plane.

A considerable reduction of the set of six equations

(19){(20) is achieved when the con�guration has an ig-

norable coordinate,[20] and is outlined in the Appendix.

II.4 Reduced MHD equations with translatory

and rotational symmetry

It is convenient to write down the special cases that

are needed in the paper, using the equations of the Ap-

pendix. We consider �rst cases with planar symmetry

so that ds2 = (l�d�)
2 + (l�d�)

2 + dz2, l
 = 1 and 


stands for the z cartesian coordinate. The D2 coincides

with the two-dimensional Laplacian r2, that is

c

r2� = div grad � =
l�
l�

�
@

@�

�
l�
l�

@�

@�

�
+

@

@�

�
l�
l�

@�

@�

��
: (25)

The equations for the MHD 
ows are�
@

@t
� �r2

�
r2� =

1p
g

�
[r2 ;  ]� [r2�; �]

�
; (26)�

@

@t
� �r2

�
vz =

1p
g
([�; vz]� [ ; hz]) ; (27)

�@ 
@t

= ��mr2 � 1p
g

�
[�;  ] +� 1p

g
� [hz;  ]

1

k

�
; (28)�

@

@t
� �mr2

�
hz =

1p
g
([�; hz]� [ ; hz])� 1p

g

�
[ ;r2 ]

� 1
k
: (29)

For cartesian coordinates g = l� = l� = 1, and

[�;  ] =
@�

@x

@ 

@y
� @�

@y

@ 

@x
:

Here

�� = dx
@

@y
� dy

@

@x
;

and we �nd

dP = ���
�
@

@t
� �r2

�
� +r2� d� + d

v2z
2
�r2 d � d

h2z
2
: (30)

Note that when considering steady state cases we can always set, for example,  = �Ezt+ 0(�; �), where Ez is a

constant electric �eld, so that a constant may appear in the lhs of Eq. (28). Similar considerations apply to other

equations.

Consider now the case of axial symmetric MHD 
ows written in cylindrical coordinates. Omitting the Hall e�ect

for simplicity, 1=k = 0, we have in this case,
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� = z; � = r; 
 = '; l� = l� = 1; l' = r;
p
g = r;

and

D2 =
@2

@z2
+ r

@

@r

�
1

r

@

@r

�
; [f; g] =

f

z

g

r
� f

r

g

z
:

The reduced equations are

1

r2

�
@

@t
� �D2

�
D2� =

1

r

 
[
1

r2
D2 ;  ] + [

1

r2
;
h2'
2
]� [

1

r2
D2�; �]� [

1

r2
;
v2'
2
]

!
;

(31)�
@

@t
� �D2

�
v' =

1

r
([h';  ]� [v'; �]) ; (32)�

@

@t
� �mD2

�
 =

1

r
[�;  ]; (33)

1

r2

�
@

@t
� �mD2

�
h' =

1

r

�
[�;

h'
r2

]� [ ;
v'
r2

]

�
: (34)

In addition, we have for P = (p=�) + jvj2=2 + V ,

�� =
1

r

�
dz

@

@r
� dr

@

@z

�

and

dP = ���
�
@

@t
� �D2

�
� +

1

r2

 
D2� d� + d

v2'
2

!
� 1

r2

 
D2 d + d

h2'
2

!
:

Here, the physical components for 
 = ' are v<'> = v'=r, h<'> = h'=r.

d
III. Dissipation of Magnetic Fields Enhanced by

Plasma Flows

III.1 Enhanced dissipation: basic mechanism

A 
ow that near the stagnation point is approxi-

mated by vx = ax; vy = �ay, carries the magnetic lines

(which lie parallel to the x axis) towards y = 0. (see

Fig. 1) The evolution of the magnetic �eld, Bx = B(y; t)

is studied starting from an initial seed �eld B(y; 0).[9]

The magnetic �eld equation is

@B

@t
� �m

@2B

@y2
=

@

@y
(fB) ; (35)

where f = �ay. A lateral gradient @p=@x = ��Cx is

the driver of the motion and characterizes the strength

of the stagnation 
ow, a =
p
C. It represents the

pressure drop from the central channel of the squeezed

plasma to a larger outlet volume in the surroundings.

This 
ow and magnetic �eld are a particular exact so-

lution of the MHD equations with resistivity and Hall

e�ect in Ohm's law (see Sections II and IV).

Assuming that the �eld extends initially up to a

distance ho (on both sides) from y = 0, with the speed

Uo = aho we may de�ne a magnetic Reynolds number

Rm = Uoho=�m. For large Rm di�usion is negligible

over most of the slab jyj � h0, except in a small inner

layer jyj � �. The size of the resistive layer can be esti-

mated setting the speed of the di�usion process, �m=�,

equal to the speed of advection of the magnetic �eld,

jvyj = a�. Hence �=ho = 1=
p
Rm. From jyj = ho to

jyj = � the �eld is almost `frozen{in', so that for the x

component we get

Bt = Bo
�x

�xo
;

where Bt and �x are, respectively, the magnetic �eld

and the line element at time t, corresponding to the

initial values Bo and �xo. Since the trajectories of the
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plasma elements are given by

x = xoe
at ; y = yoe

�at ;

we get

B(�; t) = B(yo; 0)
ho
�

= B(yo; 0)
p
Rm : (36)

This gives the order of magnitude of the ampli�cation

process, which is due to the `stretching', @x=@xo, of the

magnetic lines, as they are convected to the resistive

layer.[17]

Figure 1. Stagnation point 
ow and magnetic �eld lines.

From the previous estimates it follows that the mag-

netic energy (per unit area) at the maximum ampli�-

cation is (in order of magnitude)

WM � B2
M

8�
� �Wo

p
Rm ; (37)

where Wo � hoB
2
o=8� is an estimate of the initial en-

ergy content. We assume that most of the energy is

in a slab of size �. When this energy level has been

achieved the dissipation is, roughly, WM per 1=a time

units. The characteristic time for this enhancement is

given by (ho=� � exp(atM )),

atM � 1

2
lnRm : (38)

Energy dissipation reaches the highest rates at about

this time too. Compared with the di�usion time in the

absence of motion, tD = h2o=�m, we have

tM
tD

� lnRm

2Rm
: (39)

The initial energy in a volume Vo = hoLxLz is Wo =

(B2
o=8�)Vo. This energy is both concentrated and aug-

mented, so that one getsW =Wo

p
Rm, with an energy

density w = woRm in a very small volume Vf . There-

fore, the estimates of the energy per particle may reach

very high values, i. e., � = (2=3)(wo=n)Rm.

III.2 Intensi�cation and fast decay

The plausibility of a fast and intense dissipation of

magnetic �elds in a plasma can also be shown by a sim-

ple solution that describes the evolution of one Fourier

component of the initial �eld.

As the motion starts, there is a stray initial mag-

netic �eld,

B(y; 0) = bosin(koy) (40)

Trying the solution

B(y; t) = b(t)sin[k(t)y] ; (41)

we obtain

B(y; t) = bosin(koe
aty) exp[at� 1

2Rm
(e2at � 1)] : (42)

Here we have introduced an arbitrary length ho, the

size of the stagnation 
ow region in the y direction,

so that we may de�ne a characteristic in
ow speed,

jvyj = Uo = aho, and a magnetic Reynolds number

Rm = h2oa=�m. The initial �eld amplitude is �rst aug-

mented to a maximum value

bM = bo
p
Rm exp[�1

2
+

1

2Rm
] � bo

r
Rm

e
; (43)

in a time

atM =
1

2
lnRm � ln(hoko) ; (44)

followed by a decline, where the magnetic �eld extin-

guishes like exp[�(k2o�m=a) exp(2at)], as t!1.

This case shows two basic trends which are com-

mon to all solutions: i) the magnetic �eld ampli�cation
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scales with
p
Rm; ii) the characteristic time for the in-

tensi�cation (which is accompanied by enhanced dissi-

pation) scales with lnRm=2a. This is a few times (� 3

to 9 for Rm from 103 to 108) the period for traversing

the distance ho at the speed Uo, and is rather insensi-

tive to changes in the resistivity of the plasma. In the

absence of 
ow the magnetic �eld eq.(42) would decay

over times of the order td = 1=�mk
2
o , the classic dif-

fusion time. The 
ow then accelerates the decay by a

factor of the order td=tM � 2Rm= lnRm.

We compute the magnetic energy in a cell of one

wavelength size so that we may compare the total en-

ergy dissipated in it (from t = 0 to t =1) d, say, with

the initial energy content, �o = (�=ko)(b
2
o=8�). We �nd

for large Rm

d

�o
�
p
�Rm

hoko
: (45)

Summing up, this example indicates that in a time

roughly estimated by T = (1=2a) lnRm, a plasma with

a seed magnetic energy �o (per unit area) may receive

near
p
�Rm�o in Joule heating. This energy is deliv-

ered mainly in a slab of size � � (2�=ko) exp(�atM ) =

(2�=ko)
p
Rm in the y direction and a unit area.

III.3 In
uence of the transients of the stagnation


ow

If we consider time dependent 
ows of the type

f = a(t)y ; (46)

then one can see (from the equations of Section IV.1)

that a(t) satis�es the equation

.

a= C � a2 (47)

If the gradient @p=@x ceases to act at t = 0, the motion

decays rather slowly, starting from a rate ao =
p
C,

according to the law

a(t) =
ao

1 + aot
: (48)

It can be shown that the evolution of a Fourier compo-

nent like

B(y; t) = b(t)sin[k(t)y]

is given by

k(t) =
k1

1 + aot
(49)

b(t) =
b1

1 + aot
exp[� (hok1)

2

Rm

aot

1 + aot
] (50)

where k1; b1 are the values for t = 0. The decay of the

magnetic �eld takes place over a period of many times

1=ao. We may note that if the action of the gradient

stops (C = 0) at the time of maximum enhancement of

the magnetic �eld a period given by aot � (Rm=e)
1=2

must pass before the �eld decays to the original val-

ues. The dissipation will still be relevant during several

times 1=ao after the switch o� of @p=@x, since the mech-

anism of stretching of the magnetic lines continues to

act for some time, although slowly weakening. As a

consequence, a magnetic �eld highly localized in a re-

gion of size � = ho=
p
Rm which would decay in a time

�d � �2=�m = 1=ao (a transit time) in the absence of

a 
ow, extinguishes instead over the much longer time

�d
p
Rm during the decline of the motion.

IV. Build up of current sheets

IV.1 Planar 
ow and magnetic �eld evolution

The results presented here[18] rely on a solution of

the reduced MHD equations (Section II.4) of the form

� = xf(y; t)  =  (y; t) (51)

(�; �: stream function and magnetic 
ux, respectively;

vy = �@x�; Bx � B = @y�) which has a stagnation

point at the origin when f(0; t) = 0. The 
ow (see

Eq. (26)) is ruled by the equation

�f 000 = �C + f 02 � ff 00 +
@f 0

@t
(52)

where C is a constant that measures the pressure gradi-

ent in the x direction, and f 0 is a shorthand for @f=@y,

and � is the viscous di�usivity.

This con�guration with planar symmetry, where z is

the ignorable variable, can be extended by the inclusion
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of a Bz = D(y; t) component. (see Fig. 2) Thus, the

MHD equations allow the following (exact) reduction

vx = xa(t) vy = �ya(t) vz = 0 (53)

Bx = B(y; t) By = 0 Bz = D(y; t) (54)

@

@x
(
p

�
) = �C(t)x : (55)

Equation (52) gives _a = C � a2, which determines the

rate a(t) of the stagnation 
ow when the pressure gra-

dient (per unit length) C along the current sheet is

given. Equation (30) completes the determination of

the pressure �eld as

p

�
+
B2 +D2

8��
=
po
�
+

1

2
C(t)(y2 � x2)� a(t)2y2 (56)

(57)

For the magnetic �eld evolution we �nd (from Eqs. (28)

and (29))

@B

@t
=

@

@y
(ayB) + �m

@2B

@y2
(58)

@D

@t
= ay

@D

@y
+ �m

@2D

@y2
: (59)

Figure 2. Magnetic �eld components in the planar 
ow
model.

These equations are valid under the complete Ohm

equation (3) although, due to the particular space de-

pendence of the solution, the Hall term does not con-

tribute. Note that equation (58) besides advection in-

cludes an ampli�cation e�ect for B. This is due to the

magnetic line stretching provided by the vx component.

The component D does not show this e�ect. Equation

(58) implies the conservation of the total magnetic 
ux

F =
R1
�1Bdy in time when B decreases faster than

1=jyj as jyj ! 1, i. e., no 
ux injection. Thus, although

the system is dissipative, F is an invariant when there

is no 
ux injection. The evolution of the x magnetic

�eld component is studied starting from a given initial

distribution of stray or seed �eld B(y; 0). For a simple

irrotational 
ow

f = ay (60)

(a =
p
C) the transformation of variables

� =
y

ho
eat � =

1

2Rm
(e2at � 1) B�(�; �) = e�athoB(y; t)

leads to the di�usion equation

@B�

@�
=
@2B�

@�2
: (61)

Here we have introduced a scale length, ho, for the

region size so that the characteristic in
ow speed is

jvyj = Uo = hoa, and a magnetic Reynolds number

Rm = h2oa=�m can be de�ned. In the following discus-

sion Rm is assumed to be large.

IV.2 General solution of the initial value prob-

lem.

Knowing the initial �eld B�(�; 0) = hoB(y; 0) the

Poisson integral gives B� at a later time as

B�(�; �) =
1

2
p
��

Z 1

�1

e�(���)2=4�B�(�; 0)d� : (62)

Alternatively we may use the Fourier transform of the

initial condition

'(k; 0) = FkfB�(�; 0)g = 1p
2�

Z 1

�1

e�i�kB�(�; 0)d� :

(63)

Then we can compute B�(�; �) with the formula

B�(�; �) =
1p
2�

Z 1

�1

'(k; 0)e�i�ke�k
2�dk : (64)

Applying Parseval's identity we obtain the total mag-

netic energy (per unit area) as a function of time
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c

W (t) =

Z 1

�1

dy
jB�(y; t)j2

8�

=

Z 1

�1

dk
ho
8�
j'(k; 0)j2eat�(1=Rm)(hok)

2(eat�1) : (65)

Setting

W (t) =

Z 1

�1

B2

8�
dy

for the total magnetic energy per unit area in the x; z plane, we can compute the energy dissipated by Joule heating

in the system (per unit cross section in x; z) from t = 0 to a time t as

D(t) =

Z t

0

dt

Z 1

�1

j2

�
dy = a

Z t

0

W (t0)dt0 � [W (t)�W (0)] : (66)

Thus, knowledge of W (t), the magnetic energy as a function of time, is su�cient to obtain the energy dissipated in

a given period.

d
IV.3 Solutions without 
ux injection

The magnetic �eld equation for the irrotational 
ow

is invariant under y ! �y exchange, thus it allows for

solutions with de�nite parity in y. Consider �rst the

case of initial magnetic �elds with �nite (total) 
ux

(per unit length)

F =

Z 1

�1

B(y; 0)dy : (67)

Thus we require B(y; 0) that goes to zero faster than

1=jyj as jyj ! 1. For these cases vyB ! 0 as jyj ! 1,

so that there is no in
ow of magnetic �eld 
ux from

far away borders. From the Poisson integral it can be

proved that

lim
t!1

B(y; t) =

r
Rm

2�

1

ho
exp[�Rm

2
(
y

ho
)2]F (68)

from which we conclude:

The odd solutions originated by initial magnetic

�elds integrable in absolute value in (�1;1) decay

asymptotically as t ! 1 (F = 0). The corresponding

even solutions tend all to the Gaussian form eq. (68)

(F 6= 0).

Figure 3. Evolution of a rippled initial magnetic �eld.

Therefore, when no magnetic 
ux is supplied from

the outside, we may expect that the odd part of a seed

magnetic �eld will be ampli�ed �rst and �nally com-

pletely dissipated. An even part, instead, will be am-

pli�ed and concentrated in a thin layer of (half height)

width �=ho = 1:177=
p
Rm. This is illustrated in Fig. 3

where a rippled magnetic �eld is added to an even ini-

tial condition. The intensity of the magnetic �eld in
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this �lament reaches the peak value
p
Rm=2�F=ho =p

a=2��mF . If the even magnetic �eld existed ini-

tially only in a y interval of width ho, the initial mean

value of the magnetic �eld F=ho produces a peak valuep
Rm=2� times larger in the �nal state. The magnetic

�lament persists for as long as the 
ow continues, keep-

ing an exact balance between ampli�cation, transport,

and di�usion.

IV.4 Magnetic ampli�cation and decay of an odd

solution

The case of odd initial distributions of magnetic �eld

which oscillate in space and are modulated by a Gaus-

sian of the type

B(y; 0) = bos exp[�s
2

2
(
y

ho
)2]sin(~ky) (69)

is amenable to explicit solution formulas using the

Fourier technique.

For the odd initial condition we obtain

W (t)

W (0)
= g(t)eat

exp(g2h2o
~k2=2s2)� 1

exp(h2o
~k2=2s2)� 1

; (70)

where

g(t) =

p
Rm

s

�
1 + [(Rm=s

2)� 1]e�2at
��1=2

e�at ; (71)

and the limit for t ! 1 is zero. The odd �eld extin-

guishes completely. However, before that, an ampli�-

cation stage takes place, and considerable amounts of

energy can be dissipated during the whole process for

Rm >> 1. When (ho~k=2s)
2 << 1, the initial �eld is

approximately

B(y; 0) = 2sbo~ky exp[�(s2=2)(y=ho)2] (72)

(proportional to the derivative of the Gaussian) which

shows two main peaks of opposite magnetic intensity.

The energy evolution is then

W (t)

W (0)
= g(t)3eat : (73)

The time tM for the maximum energy ampli�cation is

given (for Rm >> 1) by

atM =
1

2
ln
Rm

2s2
� 1

2
ln 2 ; (74)

with a maximum energy

W (tM )

W (0)
=

2
p
Rm

33=2s
: (75)

The extinction takes place in a few transit times 1=a,

after tM .

IV.5 Evolution of the magnetic �eld component

normal to the 
ow.

The component Bz = D(y; t) of the magnetic �eld

(Fig. 2) is ruled by Eq. (59). The evolution is very

di�erent to that of the Bx component: there is no am-

pli�cation and all the solutions without 
ux injection

vanish. Assuming that D � 1=jyj1+e, e > 0, so that the

total 
ux integral exists F =
R1
�1Ddy, and ayD ! 0

for jyj ! 1, from Eq. (59) follows

@F

@t
= �aF: (76)

Thus all even solutions (F 6= 0) are extinguished in a

few units of 1=a as F = F0 exp(�at). All odd initial

magnetic �elds have F (0) = 0, and F is invariant and

remains null for these solutions. However, multiplying

Eq. (59) by D and integrating, we derive (for zero 
ux

injection)

c

@

@t

Z 1

�1

D2

8�
dy = �a

Z 1

�1

D2

8�
dy � 1

4��m

Z 1

�1

�
@D

@y

�2

dy; (77)

which shows that the magnetic energy decays, so that the odd solution also dies. Two steady state solutions are

the exception,

D = D0 = const:; D =
2D1p
�

Z pa=�my

0

e��
2

d�;
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but, of course, for these cases the 
ux and energy integrals do not exist. These solutions are sustained by a

continuous 
ux injection from the outside. In fact, we may note that, asymptotically, jvyDj � jayD0;1j for these
solutions, which means that, far away from the stagnation point where vy takes a constant value, the magnetic

�eld must increase linearly. In other words, the steady state solutions are supported by an increasing magnetic 
ux

injection from the plasma mainstream (see also Section VII.1). As soon as the 
ux injection decreases or returns

to a constant rate, these magnetic �elds begin to decline. The initial value problem for D can be solved in general

by transforming Eq.(59) into the form
@D

@�
=
@2D

@�2
(78)

by the change of variables

� =
y

y0
eat; � =

1

2Rm

�
e2at � 1

�
:

Then, the Poisson integral, Eq.(62), or the Fourier formula Eq. (64) can be applied.

V. The Energetics of the Current Sheet

V.I Magnetic energy

From the Maxwell equations and Ohm's law, the variation of magnetic energy is given as[45]

@

@t

jBj2
8�

= �div ( c
4�
E�B)� 1

c
(j�B).v � 1

�
jjj2 : (79)

On the other hand, from the MHD equations of motion the kinetic energy change is given by

@

@t
(
1

2
�jvj2) = �div

�
v(p+

1

2
�jvj2 � �grad

jvj2
2

)

�
+

1

c
(j�B).v � �� ; (80)

where

�� � �
@vk
@xj

@vk
@xj

is the viscous dissipation. When the velocity �eld is steady state, and eliminating the power of the Lorentz force

we have
@

@t

jBj2
8�

= �div ( c
4�
E�B)� div

�
v(p+

1

2
�jvj2 � �grad

jvj2
2

)

�
� 1

�
jjj2 � �� : (81)

On the other hand, from equation (58), and considering the irrotational 
ow (53), after multiplication by B,

integration over y, and integration by parts, we obtain

@

@t

Z 1

�1

jBj2
8�

dy = a

Z 1

�1

jBj2
8�

dy � �m
4�

Z 1

�1

(
@B

@y
)2dy (82)

d
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assuming that B ! 0 as y ! �1 at least as 1=y.

The �rst integral in the rhs gives the growth of mag-

netic energy provided by transport and stretching of

the magnetic lines, and the second integral gives the

loss due to Joule heating.

V.2 Energy augmentation and dissipation

To �nd the origin of the ampli�cation term we may

integrate the general equation (81) over a region R in

the (x; y) plane. Note, that for the irrotational motion

div (� grad jvj2=2)� �� = 0, and that here the Poynting

vector is

c
E�B

4�
=

c

4�
EzBxey (83)

(where ey is the unit vector in the y direction). Then

c

@

@t

Z
R

B2

8�
dydx = �

I
@R

c

4�
EzBxey.nd`�

I
@R

(v.n)(p+
1

2
�jvj2)d`

�
Z
R

�m
4�

(
@B

@y
)2dydx ; (84)

d
where n is the exterior normal on the boundary @R,
and d` is the corresponding di�erential length. The re-

gion R may be chosen as a rectangle centered on the

origin, de�ned by �Lx � x � Lx, �ho � y � ho, then

we let ho !1. We can see that the 
ux of the Poynt-

ing vector gives no contribution. Comparing eq. (82)

with eq.(84) we �ndZ 1

�1

a
B2

8�
dy:2Lx =

I
@R

B2

8�
(v.n)d` =

�
I
@R

(v.n)(p+
1

2
�jvj2)d` : (85)

(since vxj�Lx = �aLx).
Thus the term which provides the ampli�cation of

the magnetic energy derives from the diminution of the

net power exerted by the dynamic pressure p+1=2�jvj2
on the region considered. In fact, for the motion given

by eq.(53), MHD Bernouilli's equation

p+
1

2
�jvj2 + B2

8�
= const: (86)

holds (as can be seen from eq.(56)), and when the ve-

locity �eld is invariant in time, any local intensi�cation

of B2=8� is at the expense of a local descent of the

plasma pressure. It is clear that the cause of the cur-

rent sheath build-up is the asymptotic dynamic pres-

sure value. This is the cause of the squeezing of the


uid and the associated out
ow. To operate, the model

assumes the existence of pressure di�erences as large as

needed.

VI. Self Similar Solutions

VI.1 Reduction to ordinary di�erential equa-

tions

Equation (58) with f = ay admits an in�nite set

of solutions with self similarity.[18] It contains even and

odd solutions without 
ux injection, and an odd so-

lution with constant 
ux injection that approaches the

steady state. Using the principle of superposition of so-

lutions, many other examples can be worked out. Start-

ing from Eq. (58) with f = a(t)y, so that a(t) can in

general be a function of t, one may search for a solution

of the form

B(y; t) = b(t)H [
(t)(y � �(t))] : (87)

The self similar variable is z = 
(t)[y � �(t)], where


(t); �(t) are functions of time to be determined, and

b(t) is the time-varying amplitude of the similarity so-

lution. With this hypothesis one obtains that solutions

exist for time functions 
(t); b(t); �(t) such that

1


2�m
(a� _




) = q (88)

1


2�m
(a�

_b

b
) = p (89)

1


�m
( _� + a�) = k (90)
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where q; p; k are arbitrary constants. No generality is

lost by taking k = 0 and q = 1, and setting p � � + 1,

we get
d2H

dz2
+ z

dH

dz
+ (�+ 1)H = 0 ; (91)

which leads to a solution in terms of parabolic cylinder

functions.

When the plasma motion is in steady state, a =

const:, we take ~
 = ho
=
p
Rm, and �nd

~
(t) =
~
op

~
2 + (1� ~
2) exp(�2at) ; (92)

so that

b(T ) = bo exp[��at][~
2o+(1�~
2o) exp(�2at)]�p=2 : (93)

Thus, b(t) grows without bound unless p > 1.

The time tM where the maximum value of b(t) is

reached is given by

tM = �1

2
ln

�
(p� 1) ~
o

2

1� ~
o
2

�
: (94)

The maximum value of b(t) is, therefore,

b(tM ) = bo

s
1� ~
o

2

(p� 1) ~
o
2

�
p� 1

p(1� ~
o
2)

�p=2
: (95)

VI.2 Gaussian magnetic �eld and skew-

symmetric magnetic �eld sustained by 
ux in-

jection

When � = 0 we �nd two important solutions, which

can be checked directly by derivation,

H(e)(z) = exp(�z
2

2
) (even) (96)

H(o)(z) = exp(�z
2

2
)

Z z

0

exp(
�2

2
)d� (odd) (97)

The �rst equation gives Gaussian type magnetic �elds,

with changing intensity, spread, and peak position in

time. These are solutions without 
ux injection, which

all approach a Gaussian steady state centered at y = 0.

The second one is Dawson's function and approaches

the odd steady state supported by 
ux injection[49]. In

fact, for jzj ! 1, the asymptotic behaviour of this

solution is z�1 so that lim jyj ! 1 yB is �nite.

We can see that the case � = 0 leads to the same

time behaviour for ~
(t) and b(t), i. e., b(t) / ~
(t). Start-

ing with ~
 >> 1 for T = 0, corresponds to highly con-

centrated initial �elds. Eq. (92) shows that ~
 decreases

very fast to the asymptotic limit ~
 = 1 as T !1. The

same happens with the amplitude b. In fact, we can

obtain a Green's function, i. e., the delta function as

initial condition, setting ~
 = bo = 1, so that initially

B(y; 0) = �(y � �o).

Conversely, when ~
 << 1 for T = 0, we are consid-

ering initially very sparse �elds. Now Eq. (92) shows

that ~
 grows until the limit value ~
 = 1 is approached

as T !1. In this case b(T ) grows also until the Gaus-

sian steady state is obtained. This corresponds to the

ampli�cation process. For all values of 
 the center of

the self similar solution may change its position as time

progresses. Thus, we can see, for example, that the cen-

ter of the Gaussian, or the center of Dawson's function,

tends towards y = 0 as t!1. (See Fig. 4)

Figure 4. Time evolution of a Gaussian solution.

VI.3 Ampli�cation and decay of Hermite solu-

tions

From Eq. (96), by successive derivations, we may

�nd an in�nite subset of self similar solutions. In fact, if

we derive Eq. (91) n times we obtain the same equation

with � = n. On the other hand, from the generating

function of Hermite polynomials we have

Hn(z)e
� z2

2 = (�1)n( d
dz

)ne�
z2

2 ; (98)
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where Hn(z) indicates the Hermite polynomial of order

n. Thus

H(z) = Hn(z)e
� z2

2 (99)

is a self similar solution with p = (1 + n), n arbitrary

positive integer. It is basically of Gaussian type, mod-

ulated by oscillations of the magnetic �eld, according

to the zeros of the polynomials. Since ~
 ! 1, b decays

(b! 0) as t!1 as can be seen from (Eqs. (92){(93)),

for this subset of solutions. These are even and odd

solutions, without 
ux injection (they decrease faster

than 1=jyj as jyj ! 1). All of them have total mag-

netic 
ux F = 0, so they all produce a transient, with

intense energy dissipation for large Rm, and then die.

(See Fig. 5)

Figure 5. Self similar solutions for n=3.

The magnetic energy is given by

W (t) =W (0)

�
e�2�at

~
2o + (1� ~
2o) exp(�2at)
�(�+1)=2

:(100)

Thus, when � > 0 the energy tends to zero as t ! 1.

The case � = 0 gives W (1) =W (0)=~
o.

VI.4 Self similar solutions for the normal mag-

netic �eld component

Equation (59) for Bz = D(y; t) also allows self sim-

ilar solutions. The magnetic �eld pro�les are the same

as those found for the Bx component, but their tem-

poral behavior is di�erent. The self similar solutions

describe the extinction of the component normal to the


ow. Writing D = �(t)M(�) where � = 
(t)(y � d(t))

we �nd a set of di�erential equations for �(t), 
(t), d(t),

and M(�). Let p, q, and r be three constants. We �nd,

.
�

�
= �r�m 
2; (101)

.





= a� p�m 


2; (102)

.
d = �q�m 
 � a d; (103)

M 00 +M 0(p � + q) + rM = 0; (104)

for the similarity solutions. Setting pr + � + 1 and

p� + q =
p
pz, we obtain

d2M

dz2
+ z

dM

dz
+ (�+ 1)M = 0; (105)

so that the solutions of Sections VI.2 and VI.3 apply.

For � = n with n = 1; 2; 3; : : :, we obtain the Her-

mite functions, Eq. (99), and for � = 0 the Gaussian,

Eq. (96), and the Dawson integral, Eq. (97) functions.

The amplitude �(t) of these solutions, however, decays

to zero, as it is seen from Eq. (101).

VII. Formation of Current Sheets by Continu-

ous Flux Injection

VII.1 Boundary conditions in driven systems

When limjyj!1 yB is not zero, an incoming 
ux is

being added to the system by the plasma 
ow. This

condition corresponds to a �nite value for the 
ux rate

vyB, which in a realistic 
ow will be represented by

constant incoming velocity and magnetic �eld at large

distances. We can see that the di�usive term is asymp-

totically of decreasing importance, as it varies like 1=y3.

Thus for large y, we have the `freezing' of the magnetic

�eld in the plasma,

@B

@t
� ay

@B

@y
= aB ; (jyj ! 1) : (106)

Therefore

B(y; t) = F (yeat)eat (107)
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gives the possible asymptotic behaviour for large y; here

F (Y ) represents the spatial distribution of B, at an ini-

tial time t = 0 for large jY j values. Thus, depending

on the con�gurations of distant magnetic �elds the sys-

tem may be driven in general by time-varying 
uxes

(even assuming the incoming plasma speed constant in

time). The case F (Y ) = a1=Y for positive Y , say,

gives a 
ux injection constant in time, from that side

limy!+1 yB = a1 = const.. This is the type of 
ux

injection we consider here.

VII.2 Even solution: unbounded growth

An important point is to show that a system with

unbalanced 
ux injection from positive and negative y

sides, leads to a magnetic �eld which grows in time,

never approaching a steady state. Assume an initial

�eld B(y; 0) = B(y) such that limy!+1 yB0 = a1,

and limy!�1 yB0 = a01, with a1 6= a01. This initial

condition can be split into odd and even parts

Bo
0 =

1

2
(B0(y)�B0(�y)) ;

Be
0 =

1

2
(B0(y) +B0(�y)) : (108)

Then,

lim
y!+1

yBo
0 =

1

2
(a1 � a01) � �a1 ; (109)

and

lim
y!+1

yBe
0 =

1

2
(a1 + a01) � d : (110)

We now divide Be
0 in a `driven' or asymptotic part, and

an initial `seed', i. e.,

Be
0 =

d

jyj + (Be
0 �

d

jyj) ; forjyj � h0 ; (111)

where h0 > 1 is any �nite distance to the origin, so that

the `driven' part is

Bed
0 =

d

jyj ; forjyj � h0 ;

Bed
0 = 0 ; forjyj < h0 ; (112)

and the `seed' is

Bes
0 = Be

0 �
d

jyj ; forjyj � h0 ;

Bes
0 = Be

0 ; forjyj < h0 : (113)

Clearly, limjyj!1 yBes
0 = 0, the `seed' part is not sus-

tained by 
ux injection, and therefore the properties

derived in Section IV for a free system apply. Hence,

this part of the solution tends to the gaussian pro�le,

Eq. (68). The evolution of the driven part can be ob-

tained using Poisson's integral, Eq. (62),

c

Bed(y; t) = dh0

p
�p
�

Z
jyj>h0

d�

j�j exp[�(y � ��)2�] ; (114)

where we have set � = e�at and � = a=(2�m(1� e�2at)). From this formula one gets

Bed(y; t) = dh0

p
�p
�
e�y

2�

Z 1

h0

d�

�
exp[��2��2]2 cosh(2y���) : (115)

Since �! 0 as t!1 while �! a=2�m, the integral grows steadily as time elapses. In fact,Z 1

h0

d�

�
exp[��2��2] = 1

2

Z 1

�2�h0

d�

�
e�� = �1

2
Ei(��2�h20) (116)

where Ei is the exponential-integral function. The following property holds for x > 0

Ei(�x) = C + lnx�
Z x

0

(1� e�u)
du

u
(117)

(C = 0.5772. . . , Euler's constant). Thus, we get

Bed(y; t) � d

h0

p
�p
�
e�y

2�

"
� ln(�2�h20) +

Z �2�h2
0

0

(1� e�u)
du

u
� C

#
; (118)
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a lower bound that grows linearly with time, for

exp(at) >> 1, as

Bed(y; t) � d

h0

r
2Rm

�
e�(Rm=2)(y=h0)

2

at : (119)

This result has important physical consequences.

We have seen that the odd �elds tend to a unique steady

state current sheet represented by Dawson's function,

Eq. (97), as time goes by. This current sheet, simi-

larly to what happens during a short transient with the

odd �elds of non driven systems, is also reduced to a

thin layer and shows two peaks of magnetic �elds with

opposite sign, whose intensity scales with
p
Rm, for

Rm >> 1. The odd driven current sheet, as well as the

even nondriven part of the solution, both attain their

steady states in a few at units. Now, unless the 
ux

injection from both sides is carefully balanced, d � 0,

after some number of transit times (about at � 10, say)

the current sheet will be `dominated' by the even solu-

tion. The growing gaussian pro�le near the center (but

decreasing as 1=jyj on the far away wings) will even-

tually cancel the sublayer in which the change of sign

of the magnetic �eld (originated from the odd part of

the solution) occurs. In the case of exactly balanced


ux injection, which corresponds to the presence of an

electrostatic �eld Ez (constant in space), the presence

of an initial even component (a seed magnetic �eld)

may still interfere in the formation of the neutral sub-

layer. Fig. 6 is obtained by numerical integration in a

�nite interval (with in
ow speed normalized to one) and

shows the result of a constant odd magnetic 
ux injec-

tion (with nondimensional values �1 at the boundaries,
jy=h0j = 1). At t = 0 there is also an even seed �eld in

the system (B=B0 = 4cos(�y=2h0)). One can see the

development of the odd driven solution together with

the intensi�cation of the even component, so that the

asymptotic current sheet becomes asymmetric around

y = 0, with a reduced neutral sublayer (time is given

in units of 1=a).

Thus, possible scenarios for instabilities or recon-

nection processes, which one considers on the basis of

odd steady state solutions, may not materialize when

one examines the formation of the current sheet start-

ing from generic initial conditions.

VIII. Time Evolution of Current Sheets: Appli-

cations

As illustrative examples we have chosen di�erent

physical regimes: one corresponds to the conditions of

the solar atmosphere where prominences are formed,

another to fast annihilation of magnetic �elds in astro-

physical plasmas, and still another to the compressed

stage of a plasma focus experiment. It is not our in-

tention to elaborate upon the physics of these complex

plasma systems. Our purpose is limited to point out

that, if one assumes the presence of a stagnation 
ow

with a magnetic �eld in the mentioned scenarios, one

can get order of magnitude values in ranges adequate

to explain fast energy transfer processes.

Figure 6. Magnetic �eld with constant 
ux injection.
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VIII.1 Enhanced dissipation in solar plasmas

Current sheets above the photosphere, particularly

in connection with the rising of prominences, have been

widely discussed (see, e.g., Refs. [39,25,40]). Let us

consider a plasma slab of width ho � 102 km, the other

sides may be much largerLx � Lz � 3000 km. The slab

contains a seed �eld Bo � 300 Gauss and the plasma is

at about T = 2� 105 �K � 20 ev. The initial magnetic

energy in this region is therefore Wo � 3� 1020 Joule.

The slab is then squeezed, and we assume a character-

istic speed Uo = 1 km/sec for the 
ow (which is much

smaller than the sound speed). Since �m = 105cm2/sec,

we �nd Rm = 107, with a rate for the stagnation 
ow,

a = 10�2 sec. The energy intensi�cation is about

W � p
RmWo � 1024 Joule. This would be also, ap-

proximately, the energy dissipated by joule heating in

one at unit (i. e., every 100 sec). The time scale for the

process is typically t � (1=2a) lnRm � 800 sec. These

values �t well in order of magnitude with the energy

and time of large solar 
ares. The energy gain per par-

ticle in the �nal resistive layer (in this example � � 30

m) can be very large.

Similar estimates for current sheets in solar physics

have been developed by many authors.[40] However, the

energy ampli�cation starting from the initial seed is of-

ten ommitted (missing a signi�cant
p
Rm factor). In

addition, we note the importance of the stage of forma-

tion of the current sheet, in which the odd components

are annihilated in free systems, or are dominated by the

even components when there is magnetic 
ux injection

(Section VII.2)[18].

VIII.2 Fast annihilation in divergent axial-

symmetric 
ows

Whereas in a planar 
ow model the result is the

dominance of even magnetic components lying in the


ow plane, three dimensional diverging 
ows[18] are

characterized by the overall decay of any magnetic seed

initially present in the region of interest. As an example

of three dimensional 
ow, we show in Fig. 7 the stream-

lines for a uniform 
ow impinging on a spherical inter-

face in a viscous 
uid. Fig. 8 shows qualitatively the

three dimensional pattern near the stagnation point.

Even a constant magnetic 
ux injection cannot sustain

a steady state current sheath near a three dimensional

stagnation 
ow. Steady state structures require a grow-

ing 
ux rate from afar, equivalent to the injection of

magnetic energy at a �nite rate. Thus, the apparent

lack of a large magnetic �eld intensi�cation at the day

side magnetopause, could be explained by the three di-

mensional nature of the solar wind 
ow at the magne-

tosheath. This is the well-known plasma motion that

compresses the earth magnetic �eld, surrounding the

magnetospheric obstacle and spreading from the stag-

nation point in all directions.[47;50;57]

Figure 7. 3-D stagnation point 
ow at a spherical interface.

Let us consider an axial symmetric 
ow, y being the

symmetry axis, de�ned by

vx = x f 0; vy = �2f; vz = z f 0;

so that divv = 0. The vorticity is then ! =

(zf 00; 0;�xf 00), and fv; !g = v.grad! � !.gradv =

[2z(f 0f 00 � ff 000); 0; 2x(f 0f 00 � ff 000)], curl curl! =

�r2! = (�zr2f 00; 0;�xr2f 00). Thus, from Eq. (19),

and with one integration we �nd the equation for the


ow function f

�
@

@t
� �

@2

@y2

�
@f

@y
= C �

�
@f

@y

�2

+ 2f
@2f

@y2
; (120)
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which has a stagnation point at the origin if we require

that f(0; t) = 0. The constant C measures the pressure

gradients in the x; z directions. The magnetic �eld is

assumed of the form B = (Bx(y); 0; Bz(y)) so that

j =
c

4�

�
@Bz

@y
; 0;�@Bx

@y

�

and fB; jg = 0. Writing down Eq. (20) for this case we

�nd
@B

@t
= �m

@2B

@y2
+ 2f

@B

@y
+ f 0B ; (121)

where B stands for Bx or Bz. Clearly, it is possible to

combine di�erent initial or asymptotic boundary con-

ditions for Bx and Bz, and build a composite solution

for B, with shear of magnetic lines and a di�erent time

evolution for each component. We shall only report

here the properties of the evolution of one magnetic

�eld component as given by Eq. (121).

The pressure �eld, obtained from the y component

of Eq. (2), is given by

p = �(y; t)� 1

2
C(x2 + z2); (122)

�(y; t) = p0 �
�
B2

8�
+

1

2
�2f2 + 2��f 0

�
: (123)

We shall assume in the vicinity of the stagnation point

a simple, steady state, irrotational 
ow f = ay, where

a =
p
C , that satis�es Eq. (120) exactly. Using the

transformation of variables

� =
y

h0
e2at; � =

1

2Rm
(e2at�1); B�(�; �) = h0e

atB(y; t);

we obtain again the classical di�usion equation

@B�

@t
=
@2B�

@y2
; (124)

thus the solutions of the initial value problem of section

IV.2 can be used. Multiplying Eq. (121) by B(y; t) and

integrating by parts gives

@

@t

Z 1

�1

B2

8�
dy =

�m
4�

B
@B

@y

�1
�1

� �m
4�

Z 1

�1

�
@B

@y

�2

dy:

(125)

If B(y; t) goes to zero faster than 1=
p
jyj as jyj ! 1,

the total magnetic energy decreases monotonically to

zero due to the Joule dissipation. The term that corre-

sponds to magnetic line stretching, aB, is cancelled by

the increased advection, 2ay@B=@y, represented by the

factor 2. Thus, in a three dimensional 
ow the magnetic

�eld decays asymptotically for t ! 1, and there is no

mechanism that can balance di�usion in order to ob-

tain a steady state, as in the case of the Bx component

of the planar current sheath model. This result ap-

plies even when a constant incoming 
ux limjyj!1 yB

is being added to the system. For even magnetic �elds

the decay time can be estimated directly by integra-

tion of Eq.(121) assuming B ! 0 as 1=jyj1+e, e > 0,

as jyj ! 1, so that no injection of magnetic 
ux from

in�nity occurs,

@

@t

Z 1

�1

B(y; t)dy = �a
Z 1

�1

B(y; t)dy: (126)

Hence assuming F (t) =
R1
�1

B(y; t)dy 6= 0, we get

F (t) = F0 exp(�at). The decay occurs in a few charac-

teristic times 1=a.

Detailed descriptions of the decays and the be-

haviour of the odd solutions can be obtained from self

similar solutions, that also exist in this case. Setting,

as in Sections VI.1-VI.4, B = �(t)N [
(t)(y� d(t))], we
�nd

.
�

�
= a� r�m 
2; (127)

.





= 2a� �m 


2; (128)

.
d = �2a d� q�m 
; (129)
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where r and q are arbitrary constants, and

N 00 + zN 0 + (�+ 1)N = 0; (130)

where z = 
(t)[y � d(t)] + q, and �+ 1 = r. Therefore

the parabolic cylinder functions discussed in Sections

VI.2-VI.3 are possible similarity solutions in this case

also. Magnetic �elds that do not diverge in space as

jyj ! 1, require that � > 0. The temporal behaviour

here is di�erent to the planar model. Clearly, the point

�m

2 ! 2a is an attractor for Eq. (128), so that all

solutions tend asymptotically to that value, as t!1.

Therefore, Eq. (127) for the amplitude �, tends asymp-

totically to
.
�

�
! a[1� 2(�+ 1)]: (131)

Here all self similar solutions with � � 0 are extin-

guished. If initially a >> r�m

2
0 , which means that

(h20a=�m) = Rm >> r, (
�2 � h0), after a fast am-

pli�cation stage with � � exp(at) the solutions die as

� � exp[�a(1 + 2�)]. Although the three dimensional


ow produces the extinction of the self similar solutions,

considerable ampli�cation of the magnetic �eld and en-

ergy dissipation are obtained during the transient when

Rm is very large. These e�ects are illustrated in the fol-

lowing �gures. In Fig. 9 we can see the evolution of a

Gaussian pro�le with �=�0 = 1, (
0h0=R
1=4
m ) = 0:1, and

(d0=h0) = 20, showing the motion towards the origin,

the ampli�cation with a maximum � 2:2 at at � 2 and

the extinction with (�=�0) < 0:1 for at = 10. The am-

pli�cation and extinction of the amplitude b(t) of an el-

ementary solution of the class (B=B0) = b(t)cos[k(t)y]

with k0 = �=2, is shown in Fig. 10 as a function of

increasing values of the parameter Rm. The Joule dis-

sipation rate D=aW0 as a function of at for the same

elementary solution, and with Rm as a parameter is

shown in Fig. 11. Interestingly, in 3D 
ows there is no

magnetic energy ampli�cation, as can be seen in Fig. 12

which shows the decay of W (t)=W0 as a function of t,

for increasing values of Rm. Compare this behavior

with the two dimensional 
ow case where W (t)=W0 is

ampli�ed to values larger than 1 before extinction for

odd magnetic �eld solutions.

Figure 9. Gaussian self-similar solutions in a 3D 
ow.

Figure 10. Elementary solution for a 3D 
ow.

Figure 11. Joule dissipation in a 3D 
ow.
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Figure 12. Decay of magnetic energy in a 3D 
ow.

If there is in
ow of magnetic energy in the system,

i.e., if the magnetic �eld decreases as B � 1=
pjyj, for

jyj ! 1, so that jayjB2 ! const:, one can obtain

steady state solutions in the three dimensional 
ow. In

the limit of large Rm values one can obtain the solu-

tion using a boundary layer approximation. Outside of

the current sheet, where the currents are negligible, the

magnetic �eld equation reduces to

2y
@B

@y
+B = 0; jyj ! 1;

which is solved by

B =
1p
2jyj ; jyj ! 1;

and represents the asymptotic behavior for large y.

Note that the 
ux rate vyB � p
y diverges at in�nity

(this is a necesssary condition in view of the previous

results). The outer solution must be matched to the

resistive layer, which satis�es the equation

@2B

@r2
+ r

@B

@y
+

1

2
B = 0; (132)

where r =
p
Rm(y=h) with Rm = 2ah20=�m. Expressing

the magnetic �eld as

B(r) = p(r)e�r
2=4; (133)

leads to the equation

p00 � 1

4
r2p = 0; (134)

which is solved by odd and even parabolic cylinder func-

tions. Matching to the outside solution gives

c

Beven(y) =
�(1=4)p

�
R1=4
m e�

Rm
2

( y

h0
)2peven(

p
Rmy=h0); 0 <

y

h0
< �; (135)

=
1p

2jy=h0j
;

y

h0
> �; (136)

Bodd(y) = 2
�(3=4)p

�
R1=4
m e

�Rm
2

( y

h0
)2
podd(

p
Rmy=h0); 0 <

y

h0
< �; (137)

=
1p

2jy=h0j
;

y

h0
> �; (138)

d
where � is the width of the current layer (� � 1=

p
Rm).

Both odd and even solutions scale with R
1=4
m in spite

of the diverging 
ux rate, and in fact are less intense

than in the planar case. Note that the previous anal-

ysis is quite general, since any stagnation 
ow can be

approximated locally by f = ay in the vicinity of the

stagnation point.

A characteristic scale length for the dayside stagna-

tion point is h0 � 104 km (bow shock-magnetopause

distance), and the magnetosheath plasma velocity is

� 50 km s�1 (near the stagnation point).[44;51] The rate

of the stagnation point 
ow is then a � 5�10�3s�1, and

the characteristic times for the magnetic �eld evolution

associated with this 
ow are in the range of 3{10 min-
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utes. The magnetic di�usivity �m is an unknown and

much debated parameter in this region.[21] However,

MHD activity with periods ranging from seconds to 10

minutes are constantly perturbing the magnetosheath

plasma.[47] In addition, there are major changes in the

solar wind pressure and the advected magnetic �eld

with periods of several minutes.[11;23] Thus, it is prob-

able that the steady state current sheaths are never

established, and the magnetic �eld in front of the mag-

netopause is continuously growing and fading, adjust-

ing to the changes driven by the solar wind. Anyhow,

the observed growth of the average magnetic �eld ap-

proaching the magnetopause is at most about a factor

1.5, which would indicate a low value for Rm � 5, as-

suming a steady state magnetic �eld model and the

R
1=4
m scaling. This would imply a magnetic di�usiv-

ity in the 1013 cm2 s�1 range, an order of magnitude

suggested by several authors for the subsolar magne-

tosheath.

VIII.3 Plasma Focus.

The plasma focus is an electrical discharge of a

capacitor bank between coaxial cylindrical electrodes,

open in front like a gun (see Fig. 13). The ionized cur-

rent sheet (CS) originated at the breach (position (1))

is pushed forward by magnetic forces and after reach-

ing the mouth collapses to the axis of the device where

a dense and hot pinch is formed (position (2)). This

stage is called a plasma focus (PF).[43] The column of

plasma (length: 2{3 cm; diameter: 0.3{0.4 cm) which

lasts about 100 ns is an intense source of radiation (x{

ray 
ashes 10{100 keV), particle beams (ions with 1{10

Mev, emitted forwards along the axis, and relativis-

tic electrons, 1 Mev, launched backwards in the inner

hollow electrode[33]) and neutrons. These are obtained

when the device is �lled with deuterium (or a mixture

50 % { 50 % deuterium and tritium) and are produced

by the nuclear fusion reactions that take place in the

plasma column. These high energy plasma processes

are easily produced with fast capacitor banks of 20{80

kJ operating from 20 to 50 kV, with typical periods of

1 �s. Flashes of 1010{1011 neutrons of 2.4 Mev from

D{D reactions (and 1012{1013 neutrons (14 MeV) with

tritium operating devices from D{T reactions) with 40

to 80 ns duration, from a point{like source, can be

achieved with devices operating at 80 kV, 200 kJ by

using several radiation enhancement techniques.[36]

The device is simple and inexpensive to build. Its

size (including the vacuum system and the capacitor

bank) is moderate and can be transported in a small

truck. Technological applications of varied types are be-

ing developed now by many national and private labora-

tories worldwide, exploiting the singular characteristics

of this radiation source. The PF is being considered for

x{ray lithography of microelectronic components and

as a neutron source for a) neutrongraphy, or b) anal-

ysis of materials by neutron activation. The tiny size

of the source, the almost instantaneous yet intensive


ash, and its mobility, makes the device suitable for

neutron radiography[34] for the detection of failures or

dislocations in metals, particularly when in motion in

engines, rotors, turbines, etc. Similarly, transportabil-

ity and safety of operation makes the PF neutron source

adequate for mineral logging or other `in situ' material

analysis by activation, with a clear advantage over the

alternative of transporting conventional sources, which

are cumbersome and hazardous to manipulate. A PF

can be used as a pulsed x-ray source for x-ray lithog-

raphy with a resolution better that 0.1 �, avoiding the

drawbacks of conventional x-ray sources. We may re-

call that the increase in spatial resolution is of funda-

mental importance for microelectronic manufacturing

industries.

Figure 13. The Plasma Focus.

The plasma focus experiment is a source of high en-

ergy ion and electron beams (in the Mev range) as well
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as of intense radiation (e. g., x rays) 
ashes.[5;33] After

the formation of the compressed plasma column, very

small `hot spots' (i. e., regions of energy concentration)

and highly localized `neckings' (i. e., strong squeezings)

of the pinch, have been observed.[6;9;35] On the other

hand, �laments with self-magnetic �eld, imbedded in

the current sheet have been reported both during the

coaxial stage of the motion and in the pinched column

stage.[4;32] Note also that the focus phase is not an exact

cylindrical compression: it shows opening (divergence)

along the machine axis. Thus, an out
ow along the

plasma column takes place.

Let us consider a small plasma slab in the com-

pressed column phase embracing the magnetic �eld of

a �lament. For the application of the model we assume

initially ho = 0:1 cm (here in a radial direction), Lx �
0.1 cm (parallel to the axis of the PF), and Lz � 0:1

cm. The time scales of �ne structure events in the

records of the emission of particles (including neutrons

in deuterium discharges) or x rays are in the order of 10

nsec in PF experiments. We take then a = 108 sec�1

as the rate for a squeezed 
ow. This corresponds to

jvyj = hoa = 107 cm/sec, which is a typical speed for

a PF compression. For the plasma temperature in the

column we take (initially) � = 2 Kev, which gives (us-

ing Spitzer's resistivity) �m = 102 cm2/sec. Thus, we

are dealing with a stagnation 
ow with Rm = 104. For

the axial �lament �eld we shall assume an initial value

Bo � 105 Gauss. During the earlier (more tenuous)

coaxial stage, �lament �elds in the range 3� 103 { 104

Gauss have been measured, and/or theoretically esti-

mated. It is reasonable to expect higher values in the

�nal pinch, because of the general �eld intensi�cation

by compression. With peak currents of 5 � 105 Amp

azimuthal �elds nearB� = 106 Gauss can be reached

in a PF. Hence we are suggesting 1/10 of this value

as representative of �lament �elds in the compressed

stage.

It follows that a dissipative layer of width � � 10�3

cm could be formed with a magnetic energy density

w � woRm � 4 � 1012 erg/cm, in a time lapse of

tM � 40 nsec. Assuming a plasma density n � 1020

cm�3, there are about 1014 particles in the volume

Vf = 10�5 cm3 of a highly localized current layer

(Vf = �:Lx:Lz). Then, in 10 nsec (at = 1), the aver-

age plasma particle gets a share of �f = 2:5 Mev from

the energy dissipated in Joule heating. This estimate

is suggestive when correlated with the observed burst

of radiation and particles, from several small regions of

the plasma column, during the focus stage.

VIII.4 Convergent axial-symmetric 
ows

These estimates can be supported by a model in

cylindrical coordinates that represents better the geom-

etry of plasma focus in the �nal stage, after the column

is formed and a \necking" begins.[15] The equations

(31){(34) can be satis�ed exactly by � = (1=2)ar2z and

 =  (r; t) so that we have the following velocity and

magnetic �eld,

vz = az ; vr = �1

2
ar (v� = 0 ; a = constant)(139)

Bz = Bz(r; t) ; B� = B�(r; t) (Br = 0) :(140)

Equations (33){(34) reduces then to the following

@Bz

@t
= �m

1

r

@

@r
(r
@Bz

@r
) +

a

2

1

r

@

@r
(r2Bz); (141)

@(rB�)

@t
= �m

@

@r
(
1

r

@(rB�)

@r
) +

ar2

2

@

@r
(
rB�

r2
) : (142)

It is easy to verify that these equations are also valid

if the Hall term is taken into account. In fact (see Ap-

pendix)

[ ;
1

r2
D2 ] = [

h2�
2
;
1

r2
] = [h�;  ] = 0;

with the assumption that  and h� depends on r; t

only. It is also not di�cult to verify that a may also

be a function of time and satisfy
.

a= C � a2, the same

equation of the planar irrotational motions (see Section

III.3). Here C is related to the pressure gradient along

z: (@p=@z) = �Cz.
The change of Bz in time can be studied by self{

similar solutions of the type

Bz = b(t)H [s
Rm

2

(t)(

r

r0
)2] ; (143)

where s is an arbitrary real number, Rm � r20a=2�m, r0

a typical radial scale for the initial axial magnetic �eld,
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Bz(t = 0). H(z) is a function of the self{similar vari-

able z = (s=2)Rm
(t)(r=r0)
2, to be determined. The

time{varying amplitude b(t), and the changing spatial

scale factor 
(t) in Eq.(143) satisfy the following equa-

tions

d


dt
= a
(1� 
) ; (144)

db

dt
= ab[1� (�+ 1)
] (145)

where � is an arbitrary real number. Then H(z) is any

solution of the ordinary di�erential equation

zH 00 + (1 + z)H 0 + (� + 1)H = 0 : (146)

Solutions with regular behaviour for r = 0 are given

by H(z) = exp(�z)M(��; 1; z), M being Kummer's

function (con
uent hypergeometric). When � = n is a

positive integer we have M(�n; 1; z)=n! = Ln(z), the

Laguerre polynomial of order n. Thus we can choose

H(z) = n! e�zLn(z) (147)

and in view of the linearity of Eq. (141) we can add any

set of these self{similar solutions to obtain the solution

of the initial value problem for a given Bz at t = 0. The

radial scale factor and the amplitude are given by


 =

0


0 + (1� 
0)e�at
; (148)

b =
b0e

�nat

[
0 + (1� 
0)e�at]n+1
: (149)

The important case n = 0 gives the evolution of a

Gaussian magnetic �eld (s = 1)

Bz =
b0 exp[�Rm

2 
(t)( rr0 )
2]


0 + (1� 
0) exp(�at) : (150)

Taking 
0 = 1=Rm << 1, the �eld is concentrated in

a thin Gaussian �lament of radius � � r0R
�1=2
m , since


(1) = 1 as t ! 1. The �eld amplitude is inten-

si�ed from b0 at t = 0 to b0Rm for t ! 1. The

asymptotic state is approached in a short lapse of order

� � (1=2) lnRm (i. e., in a few hydrodynamic periods

1=a). While the plasma motion continues, the �lament

strongly dissipates energy as shown by

D =
�

16
R2
m

�
�m

b20
8�

�
; (151)

the asymptotic rate for Joule heating per unit length.

Figure 14. Self similar solutions for n=3 (radially conver-
gent 
ow).

Figure 15. Laguerre function for n=3.

For all n � 1, Eq. (149) shows that the �eld �rst

grows (if 
0 < 1) and then extinguishes completely. The

reason being that Eq. (141) conserves the total mag-

netic 
ux F =
R
�Bzd(r

2), which is zero for Eq. (147)

pro�les with n � 1. As time goes by, positive and

negative 
uxes are pushed together by the 
ow, and
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annihilate each other. The energy dissipated by these

components may also be considerable. As an example,

Figs. 14 and 15 show the time evolution and shape of

the self{similar solution for n = 3.

VIII.5 Collapse of a magnetic �eld �lament and

particle acceleration

In the secondary pinching driven by the B� compo-

nent we can take in order of magnitude b0 � 105 Gauss,

a � 108 s�1, r0 � 0:1 cm, Te � 2 keV, so that

�m � 102 cm2 /s and Rm � 104. We �nd, assum-

ing the plasma density in the range n � 1020 cm�3

and a length �z � 0:1 cm, a Joule heating equiva-

lent to 30 keV per particle and per nanosecond, over

a small volume � 10�6 cm�3 with � 3 � 10�3 cm in

radius. These values are consistent with the previous

estimates (Section VIII.3) based on the planar current

sheath model (we discuss the particle heating further

in Section X). The Bz magnetic �eld may grow up to

� 200 MGauss. These values can be correlated with

the appearance of hot spots in the hard X rays imaging

of the plasma column,[5;9] the neutron emission in deu-

terium discharges and with �elds in the 108 MGauss

range reported in the literature.[4;6;32;35]

It can be shown that the dissipation generated by

the B� component is negligible compared with that

originated by Bz, the reason being that there is no

stretching of �eld lines for this component. The maxi-

mum for B� in the collapse stage of the Plasma Focus

is in the 108 Gauss range, because experimental values

for B0 = 2I=cr0 are in the MGauss order, thus conva-

lidating the assumption that the B� component is the

driver for the process of intensi�cation and dissipation

of the axial component Bz.
[32;35]

The column of plasma that su�ers the necking with

axial out
ow will last only a short time period until

the collapse is completed. Indicating with r = �(t) the

radial position of the column free boundary we have

d�

dt
= vr]r=� = �1

2
a�:

Hence if a is a constant � = r0 exp[�(1=2)at] and

the collapse to the axis takes place in a few times

1=a. If the necking of the column starts at t = 0,

when a constant value C = C0 is established, with

a(t = 0) = 0, then from
.

a= C0 � a2, we obtain

a = a0 tanh(a0t), a0 =
p
C0, and for the motion of

the boundary � = r0=(cosh(a0t))
1=2 which approaches

asymptotically to the previous result. However, it is

plausible that the secondary pinching produces a pres-

sure gradient that grows with B2
�=8� as in an m = 0

pinch instability. Therefore, C(t) � C0(r0=�)
2 taking

B� � 2I=c� at the boundary. Note also that the axial

out
ow of the pinched plasma column prevents the sta-

bilization of the m = 0 mode due to the presence of the

axial �eld Bz. With this assumption for C(t) we can

write

.

a= C0

�
r0
�

�
� a2;

.

�= �1

2
a�;

with � = r0, and a = 0 at t = 0. Thus, setting

z = (�=r0) � 1 and � = a0t (a0 =
p
C0) we have

z00 = �
�
1

2
+ 3z02

�
1

z
; z = 1; z0 = 0; at � = 0;

denoting with z0 the derivative with respect to � . This

is a motion with unbounded aeleration as z ! 0. The

collapse takes place on a much shorter scale than 1=a0

(see Fig. 16). The ampli�cation of Bz is intensi�ed, but

more important at higher speed, so that the induced

electric �elds become very large. When the necking

of the column is completed the axial current is inter-

rupted. The fast decay of B� generates an Ez elec-

tric �eld oriented to restabilize the axial current. From

Faraday's induction law Ez � (1=c)(B�=�t)r0 where

�t is the time scale of the collapse. Thus, the acceler-

ating potential can be estimated as

�(V olt) � B0r0l

�t
� 10�8 (152)

where l is the acceleration length. Taking B� � 107 �
108 Gauss, r0 � l � 0:1 cm., and �t � 1 ns,[9] as-

suming �t � (1=10)(1=a) we obtain values of � in the
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Megavolt range. Note that the electrons are accelerated

toward the gun while the ions in the z axis direction,

according to the observed relativistic electrons[33] and

Mev ion beams. Thus, in addition to the heating that

may be achieved through the intensi�cation of the Bz

component, a fast disruption of the plasma column at

the necking may explain the origin of the high energy

particles. This estimate is based on the intensi�cation

of B� and the collapse speed. In Ref. 9 the lifetime of

the hot spots is estimated in the ns range.

Figure 16. Collapse of the plasma column in the PF.

IX. Comments on the Stability of the Dissipa-

tive Layers

A question that may arise is whether the dissipa-

tive structures that we are studying are stable. We

have shown that the overall picture that emerges from

the analysis of the time evolution of the current lay-

ers is quite di�erent from that of an equilibrium, or

a steady state current sheath, with antiparallel mag-

netic �eld lines. The balanced magnetic 
ux injection

of magnetic �elds with opposite sign is the exception,

rather than the rule. We have often used a magnetic

�eld with constant signature as the basic element for a

strongly dissipative layer. We have seen also that the

evolution of the magnetic �elds takes place on the fast

hydrodynamic scale, and that the odd solutions fade,

when there is no injection for these components, or they

are dominated by the even magnetic �eld when generic

magnetic 
ux injection occurs. In three dimensional

stagnation point 
ows, the fast extinction of magnetic

�elds is a common case. Therefore, we should distin-

guish between speci�c steady state (or equilibrium) cur-

rent sheath con�gurations, where the concepts of recon-

nection or tearing modes have been intensively studied,

and the more general class of time dependent current

layers that we have considered. When a strong even

magnetic �lament develops, like the Gaussian solutions

we have encountered, the system tends to be MHD sta-

ble, and the tearing concept, of course, does not apply.

On the other hand, if there also exists an important B�

component, like in the case of the plasma focus model,

then we have a pinch magnetic �eld con�guration mod-

i�ed by the presence of the 
ow. The radial converging


ow we have analyzed is Section VIII, aims to model

an instability: the `necking' or secondary pinching ob-

served in the plasma column of the device.

In the special case of a driven current sheath with

an odd magnetic �eld pro�le, tearing and reconnec-

tion of magnetic lines may be envisaged. To begin

with the tearing instability: a theory of the tearing

modes for a current layer with a zero order stagna-

tion point 
ow does not exist yet for the Bx com-

ponent, i.e., for the �eld ampli�ed by line stretching

(Section IV). This is due to the theoretical di�culties

of the intrinsically two dimensional perturbation prob-

lem (for a partial attempt in the WKB approximation,

see [8]). For the steady state Bz component of Sec-

tion IV (that is only advected by the 
ow, see Fig. 2),

the problem of the tearing modes can be reduced to

one dimension by Fourier analysis[38] (like in the classi-

cal treatment of resistive instabilities in an equilibrium

current sheath,[14]). The results of the stability anal-

ysis are shown in Figs. 17a,b. The perturbations are

of the form exp(�t + ikzz), and the growth rate � and

wavelength kz are expressed in nondimensional form

p = �=a, k = kz
p
�m=a, respectively.

In Fig. 17a, p is shown as a function of k, for a

magnetic Prandtl number Pm = �=�m = 10�5, with

the Lundquist number, S = VA=
p
a�m (where the scale

length h =
p
�m=a), as a varying parameter. The sta-

bilization e�ect of the convection rate a on the tearing
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instability of a driven current sheath can be noted: as

a increases, S diminishes (the scale length of the cur-

rent layer decreases) until p becomes negative for all k

values (for S
<� 10).

Figure 17a. Growth rates for the tearing mode (constant
viscosity).

Figure 17b. E�ect of viscosity on the tearing mode (S=50).

In Fig. 17b we can see the in
uence of viscosity

in moderating the growth rate of the tearing modes.

Here S = 50 is �xed and the viscosity changes so

that the magnetic Prandtl number varies in the interval

10�5 � Pm � 1. The stabilizing in
uence of viscosity is

well known. In [22] it is shown that the growth rate for

tearing modes of an equilibrium current sheath is not a

function of S and Pm separately, but rather a function

of S=P
1=2
m = Ha, the Hartmann number. The scaling

is p = �h2=�m / H
1=3
a (h is the current layer width)

which indicates a stabilizing in
uence with increasing

viscosity. It is also noted in [22] that the growth rate

scales with the temperature as � / T�5=3. The viscos-

ity in
uence, then, may be important in solar physics

current layers, where the temperature increases by a

factor 102 from the chromosphere to the corona.

We cannot apply the stability results for Bz to the

Bx component. However, there are indications that the

current layer for Bx may be even more stable than that

associated with Bz. There are theoretical reasons and

numerical computations pointing in that direction. The

perturbative equations for tearing modes of a B0
x con-

�guration driven by an irrotational 
ow �0 = axy are

given in [22]. Denoting with B1y(x; y; t) the y compo-

nent of the perturbative magnetic �eld (i.e., the recon-

nection component, normal to the zero order B0
x �eld)

and with �1 = �1(x; y; t) the perturbation of the stream

function, it is found that

c

@

@t

Z
B2
1y

8�
dS = ��m

Z
jgradB1yj2dS �

Z
B0
x

4�
B1y

@2�1
@x2

dS � a

Z
dS; (153)

d
where dS = dxdy. The �rst two rhs terms are typical

of the tearing mode energy balance for an equilibrium

current sheath. The �rst produces the decay of B2
1y

by Joule dissipation, the second is the possible cause of

growth of the tearing instability. The third one is due

to the zero order 
ow. Clearly it represents a stabiliz-

ing term (absent in the case of the Bz component) due

to the (negative) stretching term B1y@v
0
y=@y. In other

words, while the 
ow ampli�es Bx components it re-

duces By components (unstretching), acting, therefore,

against the tearing instability.

Qualitatively this argument applies also to a recon-
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nection component By. When the � = axy 
ow advects

a By component from afar, By decreases along the tra-

jectory. The e�ect opposes the permanence of a recon-

nected con�guration. In fact, the numerical simulations

performed by several authors[2;27;60] show precisely this

e�ect. Starting from a reconnected �eld pattern, as

time proceeds, the current layer tends to consolidate

while the reconnection component fades. In Figs. 18a,b

MHD numerical solutions (L. Bender, 1993) with Rm =

U0h=�m = 100 and MA = U0
p
4��=B2

0 = 1 show the

consolidation of the current sheet from tv0=h = 0:5 to

tv0=h = 1:5. Biskamp[2;3] argues against the Petsheck

reconnection model, in view of the fact that in the nu-

merical solutions the current sheet length tends to grow

and to approach a Sweet-Parker scaling. Tearing is-

lands appear only for large aspect ratios. In [27], which

presents a compressible MHD numerical simulation, the

current sheet also tends to consolidate. The authors

speak of intermittent (or \bursty") reconnection that

occurs for long current sheaths. Ref. [60] also shows the

consolidation of the current sheath against reconnection

in simulations with uniform resistivity. Reconnection is

induced \ad-hoc" in [60] by assuming anomalously large

resistivity values in the neighborhood of the origin (non

uniform resistivity).

Finally, let us show the relationship and di�erences

of the build-up scaling corresponding to the models of

the present paper, and the Sweet-Parker[54;37] scaling.

The Sweet-Parker concept is usually presented for re-

connection processes, although as a limit case it con-

tains also the dissipation of magnetic 
ux in a non re-

connected current layer (annihilation of magnetic �eld).

The basic idea is shown in Fig. 19a where the in
ow car-

ries a magnetic �eld Bi, with velocity vi towards the

current sheath (of thickness �� and length L). Recon-

nection is assumed to be the driver of the motion, with

a reconnected magnetic �eld Bo in the out
ow. The

continuity equation gives vi=v0 � ��=L (v0: out
ow ve-

locity). The pressure at the in
ow is nearly equal to

the out
ow pressure. Thus, Bernouilli's equation

pi +
B2
i

8�
+

1

2
�v2i = pc = p0 +

B2
0

8�
+

1

2
�v20

(pc is the pressure at the stagnation point, where B = 0,

v = 0) gives v20 � B2
i =(4��) = V 2

Ai (since (B0=Bi)
2 � 1

and (vi=v0)
2 � 1). In a steady state, the incoming

magnetic 
ux is balanced by dissipation in the current

sheath, so that vi � vD � �m=�
�. From these equa-

tions we get (��=L) = 1=
p
Si = vi=VAi = MAi, where

Si = LVAi=�m, is the in
ow Lundquist number. The

in
ow Alfvenic Mach number measures the reconnec-

tion speed, i.e. the rate at which the incoming 
ux is

processed through the current layer.

Figure 18. Consolidation of the current sheet.

The scaling in the build-up models of Section IV

is di�erent from the Sweet-Parker scaling because of
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Figure 19(a). Sweet-Parker scaling. Fig. 19(b). Pile-up scaling.

the magnetic �eld intensi�cation at the current sheath,

and the presence of an external driver. In the build-up

model following the y and x axis through the center

(see Fig. 18b) we have vi � v0 at the same distance

from the stagnation point. We know, from Section III

, that �=L � 1=
p
Rm, taking h � L and Rm � viL=�m.

In addition, the �eld is intensi�ed at y � � to the value

BM � pRmBi. The incoming 
ux viBi is balanced by

dissipation at the rate viBi � (�mBM )=�. Therefore,

vi=VAi = MAi is not restricted to a particular value,

and may be arbitrarily large, depending on the avail-

able external force. Furthermore, since Rm = MAiSi,

then �=�� = 1=
p
MAi.

X. Thermal E�ects and Compressibility: an

Outline

X.1 Thermal enhancement of the current sheath

build-up

The MHD equations, including a temperature de-

pendence of the magnetic di�usivity �m(T ), thermal

conductivity �(T ), and kinematic viscosity �(T ), for a


ow with divv = 0 can be written as

c

@v

@t
+ ! � v = �grad (p

�
+
v2

2
) +

curlB�B

4��
+ div (2� gradv) ; (154)

@B

@t
� curl (v �B) = div (�m gradB) ; (155)

(
@

@t
+ v � grad )3nkT = div (�gradT ) +

�m
4�

(curlB)
2
; (156)

where n is the (constant) number density (� = nm, k: Boltzmann's constant). In Eq. (156) we ignore the additional

heat source 2��(gradv)2 generated by viscous dissipation, assuming that the Joule heating is the dominant e�ect.

In a plasma the growth of T reduces the magnetic di�usivity, and the e�ective value of Rm increases. Thus, an

enhancement of the dissipative e�ects at the current sheet is expected. Under certain conditions, the model may

be prone to a thermal runaway[16]. To this purpose the dependence of resistivity with temperature and magnetic

�eld, as they are predicted by plasma transport theory, are included. We have

�m = �mo(
T

T0
)�3=2
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for the magnetic di�usivity, and

� = �k0
T 5=2

1 + (
�k0
�?0

)( BB0

)2( TT0 )
3

for the thermal conductivity. It can be veri�ed that the MHD equations are exactly satis�ed by the following

velocity, magnetic �eld and temperature assumptions: a) Planar: vx = ax, vy = �ay, Bx = B(y; t), T = T (y; t)

(vz = By = Bz = 0); b) Cylindrical: vz = 2az, vr = �ar, Bz = B(r; t), T = T (r; t) (v� = Br = B� = 0). The

magnetic �eld evolution is coupled to the temperature equation as follows

@B

@t
=

1

�s
@

@�

�
�mo(

T

T0
)�3=2�s

@B

@�

�
+ a�

@B

@�
+ (s+ 1)aB; (157)

3n
@(kT )

@t
=

1

�s
@

@�

�
�k0

(T=T0)
5=2

1 + (�k0=�?0)(B=B0)2(T=T0)3
�s
@(kT )

@�

�

+3na�
@(kT )

@�
+
�mo

4�
(
T

T0
)�3=2(

@B

@�
)2; (158)

d
where s=0 corresponds to planar 
ow (� = y) and

s=1 to the cylindrical case (� = r). We use here the

classical T 3=2 dependence of the electrical conductiv-

ity, where T0 is the initial (uniform) plasma temper-

ature. The thermal conductivity is across the �eld

lines since @T=@x = 0 in this model (@T=@z = 0 for

s=1). The perpendicular conductivity �?0 used corre-

sponds to the values given by Braginskii in the strong

�eld limit[7]; �k0 is the isotropic conductivity (B = 0).

The term with (@B=@y)2 in the temperature equation

represents the Joule heating due to the magnetic �eld

dissipation and acts as a driver of T changes, so that

T = T0 is not a solution. The system is ruled now

by a pair of nonlinearly coupled equations of di�usion-

reaction type, including advection and ampli�cation ef-

fects. Equations (157) and (158) can be solved numeri-

cally using an implicit �nite di�erence scheme of second

order on a non uniform grid that concentrates points in

the dissipative layer. The discrete equations are solved

iteratively at each time step using nonlinear multigrid

method and a correction procedure which allows the use

of a relatively coarse convergence criterion for the iter-

ation process.[24] The calculations are carried out until

a steady state is reached or until the numerical grid can

no longer resolve the narrow current layer developed as

a consequence of the thermal runaway.

X.2 Non dimensional parameters and their in-


uence

The initial-value problem is solved in the interval

�h � y � h in which the magnetic �eld at t = 0 is as-

signed. If there is no injection of magnetic 
ux (which

could be carried in by the 
ow) h is the scale length

of the initial magnetic seed, that is ampli�ed by the

motion as time goes by. On the other hand, if there

is continuous injection of magnetic 
ux (transported

from distant plasma regions) the boundary value of the

magnetic 
ux rate will �x the h scale (equivalently: the

in
ow speed U = ah, and the magnetic �eld B0 at

y = h).

The non dimensional parameters that govern the

solutions are: the magnetic Reynolds number Rm =

ah2=�mo, the P�eclet number Pe = ah2=�0 (with �0 =

�k0=3n0, the isotropic thermal di�usivity), the ratio

of of the isotropic and perpendicular conductivities


 = (�k0=�?0), and � = (B0
2=8�)=(3n0kT0) equal

to the ratio of initial magnetic and thermal energies.

The thickness of the current sheet and the magnetic

�eld ampli�cation (by line stretching) depend on Rm.

Only for Rm � 1 large values of Joule heating can be

achieved. Thermal losses by di�usion in the outer wings

of the current layer (where B � 0) are related to Pe.

The temperature growth in the current sheet depends

on 
 (more precisely on Pe
). When this number is

small, thermal losses by di�usion are important and the
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current layer may not heat up signi�cantly. Finally, the

thermal blow up depends on the energy initially avail-

able for conversion into heat via the energy ratio �. If

� � 1, when Rm � 1, Pe � 1, the solutions easily

run away. Conversely, the threshold for a signi�cant

temperature growth is found at small values of these

parameters.

Other important factors that in
uence the thermal

evolution are the parity of the magnetic �elds (odd,

even) and the magnetic 
ux injection. In absence of 
ux

injection the runaway e�ect is more di�cult to produce,

since the system then relies only on the initial magnetic

seed.

X.3 Joule dissipation and blow-up

These features are illustrated with solution ex-

amples in Figs. 20{23, where the total Joule

heating (per unit area and unit time) D(t) =

(�mo=4�)
R h
�h

(T=T0)
�3=2(@B=@y)2dy in a planar (s =

0) current sheet (measured in units of aW0; W0 =

(1=8�)
R h
�h

B2
0dy the total initial magnetic energy per

unit area) is given as a function of at. In Figs. 20 to 22

the magnetic �eld is even, B(t = 0) = B0cos(�y=2h),

and there is no 
ux injection. The in
uence of � is

shown in Fig. 20 (Rm = 1000, Pe = 0:01, 
 = 100).

When � = 0 (reference case without thermal e�ects

(Eq. (157) with T = T0 = constant, studied in Sec-

tion IV), the �eld reaches a dissipative steady state (a

thin Gaussian pro�le) in which ampli�cation and dis-

sipation are balanced. The ongoing dissipation of this

remnant �eld feeds the temperature equation. Then,

we see that passing from � = 0:01 to � = 1 the runaway

develops over a short time scale. The in
uence of 


and Rm is shown in Fig. 21 (Rm = 1000, Pe = 0:01,

� = 0:1) and Fig. 22 (Pe = 0:01, 
 = 100, � = 0:1), re-

spectively. In all these examples we can see that large

values of the parameters lead to runaway solutions. In

Fig. 23, the in
uence of Rm is studied in the case of

an odd magnetic �eld B(t = 0) = B0sin(�y=2h) with

no 
ux injection. The solid lines correspond to � = 0:1

(Pe = 0:01, 
 = 100) and the dashed lines represent

constant temperature solutions with � = 0. In this ex-

ample the magnetic �eld is completly annihilated after

an ampli�cation stage. The thermal coupling enhances

the dissipation but no runaway occurs.

In Section VIII we have shown the relevance of 
ow

enhanced energy dissipation (at a stagnation point)

for plasmas in the physical conditions of the solar at-

mosphere and the Plasma Focus device (origin of hot

spots). Let us examine whether the energy dissipation

may not become more intense due to a thermal runaway

process.

As an example for solar applications we take physi-

cal parameters adequate for the transition region from

chromosphere to corona: T = 20 eV, n = 109 cm�3,

and assume B0 = 300 Gauss, h = 107 cm, U = 105

cm/s for the initial current sheet and in
ow speed. Very

large values of the non dimensional parameters charac-

terize this case: Rm = 1:1 � 107, Pe = 8:6 � 10�3,


 = 1:3 � 1013, and � = 3:7� 104. These large values

prevent a direct use of the numerical program because

of grid size problems. But, from experience gained from

smaller values and the physics of the model, there is no

doubt that a thermal runaway occurs. In such plasma

conditions we expect that even at moderate speeds a

stagnation 
ow leads to a large localized energy depo-

sition. If turbulent motions are induced in this plasma

regime, the random collisions of eddies will generate

here and there local squeezings (transient stagnations

points) and then a chaotic series of fast energy releases

(microbursts) may appear.

As in Section VIII consider a `necking' (secondary

pinching) of the plasma column (cylindrical geometry,

s=1) for the application of the stagnation 
ow model to

the Plasma Focus experiment. The following physical

conditions are assumed for this example: T = 2000 eV,

n = 1020 cm�3, B0 = 105 Gauss, h = 0:1 cm and

U = 107 cm s�1. We obtain Rm = 1:1 � 104, Pe =

8:3� 10�3, 
 = 150, and � = 4:2� 10�4. For these val-

ues the thermal runaway develops very quickly due to

the higher e�ciency for energy dissipation of a radially

convergent 
ow, as can be seen in Fig. 24.
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X.4 Heating and Compressibility limits

Using non dimensional variables, y ! y=h, B !

B=B0, T ! T=T0, t ! at, we can write for a planar


ow (keeping the same notation for simplicity)

c

@B

@t
=

1

Rm

@

@y

�
�̂m(T )

@B

@y

�
+ y

@B

@y
+B; (159)

@�T

@t
=

1

Pe

@

@y

�
�̂(T;B)

@�T

@y

�
+ y

@�T

@y
+

�

Rm
�̂m(T )

�
@B

@y

�2

: (160)

d
We have set �T = T � 1, so that �T ! 0, as jyj ! 1.

Here �̂m(T ) = �m=�m0, �̂(T;B) = �?(T;B)=�?0.

In the case of liquid metals a similar equation holds

but �, being isotropic, is function of the temperature

only, and � = (B2
0=4�)=�0CT0 contains the speci�c heat

C per unit mass of the material. The temperature de-

pendence of the transport coe�cients in liquid metals

is quite di�erent from that of plasmas. Often, in pre-

liminary studies it is ignored, assuming constant values

for �̂, �̂. In plasmas � � 1=�, so that the incompress-

ible approximation that we are using implies values of �

smaller than one. The source of Joule heat in Eq. (160)

seems to be weak for this case, particularly in compar-

ison with the advective cooling term y@�T=@y, which

brings cold material to the current sheath continuously

from afar. However, we must keep in mind that it is

for large Rm values that the Joule heating becomes im-

portant, and in fact (1=Rm)(@B=@y)
2 becomes a large

number in the chosen units.

We can discuss these matters with energy balances

derived from Eqs. (159){(160), by integration. Asum-

ing jy�T j ! 0 as jyj ! 1 we �nd from Eq. (160)

@

@t
�E = ��E + 4��D; (161)

and integrating Eq. (159) after multiplication by B=4�,

@

@t
W = �D +W: (162)

Here we have de�ned

c

�E �
Z 1

�1

�Tdy; W �
Z 1

�1

B2

8�
dy; D � 1

4�Rm

Z 1

�1

�̂m(T )

�
@B

@y

�2

dy:

d
When the plasma is limited in y, as in the case of

the plasma focus column, the integration range extends

only to the plasma-vacuum boundary. At this bound-

ary @�T=@y = 0, since heat conduction is null there.

At t = 0, �T = 0, and @�E=@t = 4��D > 0, so that

�E begins to grow. Ordinarily D � O(1) in the ini-

tial stage, so that the growth rate depends on �. As

soon as �E � O(1) the cooling term in Eq. (161)

becomes important. Combining Eqs.(161){(162), we

get @(�E + 4��W )=@t = 4��W � �E. Thus the to-

tal energy, internal and magnetic, grows only when

4��W > �E. A steady state is posible, in princi-

ple, when asymptotically D ! W , and simultaneously

4��W ! �E. We have shown (Sections III{IV) that

(in non dimensional units) the energy ampli�cation in

the planar case is W � pRm. Thus, assuming a steady

state case �E � 4��
p
Rm. We can see that the increase

in internal energy depends on the product �
p
Rm, and

may attain large values even if � << 1, provided that

4��
p
Rm >> 1.

The equations (161)-(162) can be derived also in

the case of the cylindrical 
ows; the only change is in
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the de�nitions of the integrals. For instance �E =R
�T2�rdr, and similarly for D and W . Therefore,

the conclusions can be extended also to the cylindri-

cal 
ow model, remembering that the ampli�cation is

larger,W � Rm, so that �E � 4��Rm if a steady state

has been achieved. On the other hand, if in the inten-

si�cation stage of the current sheath, when D � W ,

it happens that 4��Rm > �E, then a thermal run-

away occurs. The discussion suggests that 4��R
s=2
m > 1

(s = 1: planar 
ow; s = 2: cylindrical 
ow) is the

condition for the thermal enhancement e�ect and that

above this limit a thermal runaway may occur.

If the intensi�cation process takes place in a high

beta plasma region (for instance, a place with a small

magnetic �eld seed) �0 = 10 say, and Rm = 104,

� � 1=�0 we have 4��R
1=2
m � 120 and the thermal en-

hancement process would start. At the beginning the

incompressible model is within the validity limit. As

the �eld is ampli�ed the change of the plasma beta is

�=�0 � T=B2 and roughly �=�0 � �E=W � 4�� �
1. Therefore, the evolution may take place most of

the time within the validity limit of the incompress-

ible model. The increase in the magnetic �eld is ac-

companied by a temperature growth, that moderates

the descent of �. Conversely, in a region of low �,

� � 1=�0 >> 1, and if Rm is small, say Rm � O(1), the

ampli�cation e�ect is negligible, so that the magnetic

�eld changes will not a�ect the plasma density. How-

ever, the heating e�ect is very important, 4��W > �E,

and the plasma � will grow locally.

Of course, there are ranges of Rm and � values such

that the incompressible model breaks down during the

build-up, when changes �B2 in the magnetic pressure

produce signi�cant variations of density. Very little is

known about these regimes, and the important prob-

lem of the limits of the ampli�cation process and the

thermal e�ects is still open. The extension of the re-

search to compressible plasmas certainly requires a ma-

jor computational physics e�ort. In most cases the fast

extinction processes presented in previous sections are

not a�ected by these remarks. The �rst stage of the am-

pli�cation process is, in general, also within the limits

of the incompressible approximation, when the driven

motion is subsonic. But in low beta plasmas, or for

very large Rm values, or both, the incompressibility

condition cannot last very long. The limitation is that

(1=�)(d�=dt) must be a small number along the tra-

jectory of the plasma elements, and this is no longer

true when the pressure su�ers large changes due to the

magnetic �eld evolution. The theory presented here,

although suggestive that important magnetic and ther-

mal e�ects are to be expected, must be superseded by a

full scale compressible calculation. This is not yet avail-

able for the processes analyzed here, but research has

been started on compressibility e�ects in reconnection

problems.[40;55;42;13;46;27;26;60]

These comments do not apply to the case of con-

ducting liquids: extinction and ampli�cation of mag-

netic �elds always occur with divv � 0. Let us ex-

amine the case of a) liquid sodium in large systems for

breeding or fusion reactors, and b) the molten metals

of the earth's liquid core (see Table I). For large scale

industrial applications Rm may reach a few times 10 at

most, C � 4�106 erg/gK and at T0 = 373K, � � 0:04

assuming a �eld of 5000 Gauss.[29;31] Therefore ampli-

�cation and heating by the process envisaged here are

not signi�cant. The case of the Earth's core is di�er-

ent, since Rm values in the range from 103 to 105 seem

possible.[61;30] Thus, fast ampli�cation or extinction,

by line stretching, may happen. The inner poloidal

�eld is modest, in the 10 Gauss range at most, while

the (unobservable) toroidal component is estimated to

be a few times 103 Gauss. Taking � � 10 g cm�3,

C � 0:1 cal/g K and T � 5000 K, we get � � 10�6 for

the toroidal component. Therefore, although interest-

ing ampli�cation e�ects are possible, the heating e�ects

are insigni�cant. These comments do not imply that

in liquid metals thermal processes are not important.

In fact, boundary conditions (hot walls) or high fre-

quency electromagnetic �elds, or buoyancy forces (local

thermal expansion), may certainly produce important

e�ects.[30;31] We have not, however, considered these

topics here.

XI. Conclusions.

Convection and stretching of magnetic �eld lines by

plasma motions with a stagnation point can account

for a large ampli�cation, or a fast extintion rate, of
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magnetic �elds over the hydrodynamic time scale. The

analysis of the time evolution of current sheaths driven

by plasma motions shows that the con�gurations com-

monly considered as models for steady state reconnec-

tion or for tearing instability studies, are exceptional

cases rather than generic magnetic structures. Regard-

ing magnetic components lying in the plane of the mo-

tion, a two-dimensional stagnation 
ow tends to privi-

lege even solutions during the formation of the current

sheet: a) in a system without magnetic 
ux injection

because it is the only part that survives after a tran-

sient, and b) in 
ux driven solutions because the even

part increases without bounds linearly with time while

the odd part tends to a steady state. In nature, unbal-

anced con�gurations of magnetic 
uxes are probably

the rule, and the cases with injected 
ux � � 0 excep-

tions, since the 
uxes that enter from both sides of a

squeezed plasma are ordinarily not tailored.

On the other hand, the magnetic component normal

to the plane of the motion is ordinarily extinguished,

except under special conditions of magnetic 
ux injec-

tion. The behaviour of current layers in three dimen-

sional stagnation 
ows is quite di�erent from that of

similar planar 
ow models. All magnetic �elds not sus-

tained by a permanent magnetic energy injection from

afar su�er a fast decay. Applications of the initial value

problem for the formation of current sheaths has been

given in several �elds: solar physics, space physics, and

plasma focus experiments.

The mechanism of 
ow enhanced dissipation may

be further intensi�ed by thermal efects for some plasma

conditions. Solar plasmas are very sensitive to this pro-

cess in view of the large values of Rm, Pe and �. Losses

due to radiation, or gradients along the current sheet,

not included in our calculations may become relevant

in particular systems. An important e�ect to be con-

sidered in the next step of the research is the density

variation (plasma depletion) that may occur during the

current sheet evolution, under conditions of large mag-

netic �eld ampli�cation.
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Appendices

Appendix 1. Orthogonal Curvilinear Coordi-

nates.

To the representation Eqs.(22){(23) we may add

another divergenceless �eld in the following way. Let

(�; �; 
) stand for an arbitrary curvilinear coordinate

set, X1 = �, X2 = �, X3 = 
, with ei = @x=@xi,ei =

gradxi, the covariant and contravariant vector bases re-

spectively (xdenotes here the position vector). We shall

write jdxj2gijdxidxj for the determinant of gij , follow-

ing standard notations. Then wei=
p
g, is a solenoidal

vector �eld, with �eld lines aligned with the coordinate

xi, provided that the function w(xk) does not depend

on xi. From now on, we shall specify the ignorable coor-

dinate with 
, we may write then, instead of Eqs. (22){

(23),

v = grad � � grad � +
1p
g
we
 ; (163)

where w = w(�; �), for a vector �eld with divv = 0,

and similarly for h. Note that the last term is of

the form wgrad� � grad�, which may be rewritten as

grad� � grad � 0(�; �), where � 0 =
R �

w(�; �0)d�0, so

that it is essentially a special case of Eq. (22).

The reduction of the MHD equations was obtained

in [20]. We give here the �nal formulas because of the

wide spectrum of problems that can be treated using

them. Using the basic representations that follows, the

interested reader can derive the results as an exercise.

When the coordinates are orthogonal the reduced

equations simplify considerably. The metric will be

written as ds2 = (l�d�)
2 +(l�d�)

2+(l
d
)
2, where l�,

l� , l
 are the Lam�e scale factors and
p
g = l�l�l
 . The 


coordinate must be ignorable in the metric factors also.

In the following expressions � = �(�; �),  =  (�; �),

and v
(�; �), h
(�; �), are the covariant components of

v and h. The operator D2 is the 
 covariant component
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of �(curl curl )
 , as in (curl curlv)
 = �D2v
 . Starting

from

a = gradA� e
 +
1

l2

 e
 ; (164)

h = grad � e
 +
1

l2

h
e
 ; (165)

v = grad � � e
 +
1

l2

v
e
 ; (166)

it is not di�cult to compute

c

J = gradh
 � e
 +
1

l2

D2 e
 ; (167)

h
 = �D2A; (168)

curl curlh = �gradD2 � e
 � 1

l2

h
e
 ; (169)

curl curlv = gradD2� � e
 � 1

l2

v
e
 ; (170)

curl curl! = �gradD2v
 � e
 �+
1

l2

D2D2�e
 ; (171)

From which one can obtain

J� h = �
�

1p
g
[ ; h
 ]e


 +
1

l2

D2 grad +

1

l2

h
gradh


�
; (172)

fh;Jg = grad

�
1p
g
[h
 ;  ]

�
� e
 � 1p

g

 
[
1

l2

D2 ;  ] + [

1

l2

;
h2

2
]

!
e
 ; (173)

and similar formulas for ! � v, fv; !g. Here we have introduced the bracket

[f; g] =
@(f; g)

@(�; �)
=
@f

@�

@g

@�
� @f

@�

@g

@�
;

as a shorthand notation for the Jacobian of the functions f; g with respect to the variables �; �. Thus we have all

the elements needed for the equations (14), (15), (19), and (20). Note that

grad � =
@�

@�
e� +

@�

@�
e� ;

and therefore

v� =
1p
g

@�

@�
; v� = � 1p

g

@�

@�
;

and a similar representation for h�, h� . The physical components are given by

v<i> = h(i)v
i =

1

h(i)
vi; for i = �; �; 
;

so that

v<�> =
1

l�l


@�

@�
; v<�> =

1

l�l


@�

@�
; v<
> =

v

l

;

h<�> =
1

l�l


@ 

@�
; h<�> =

1

l�l


@ 

@�
; h<
> =

h

l

:
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Appendix 2. The reduced MHD equations.

For the 
ow on the �; � plane and the motion normal to it we obtain for the stream function � and the covariant

v
 component the following equations

1

l2

D2

�
@�

@t
� � D2�

�
=

1p
g

 
[
1

l2

D2 ;  ] + [

1

l2

;
h2

2
]

!
(174)

� 1p
g

 
[
1

l2

D2�; �]� [

1

l2

;
v2

2
]

!
(175)

@v

@t

� �D2v
 =
1p
g
([h
 ;  ]� [v
 ; �]) ; (176)

with

D2 =
l

l�l�

�
@

@�

l�
l�l


@

@�
+

@

@�

l�
l�l


@

@�

�
: (177)

The operator D2, denoted also by �� in the literature on plasma equilibria, was introduced by Stokes for cylindrical

and spherical coordinates in his classical hydrodynamical works.[28]

For the magnetic �eld the equations reduce to�
@

@t
� �mD2

�
 =

1p
g
[�;  ]� 1

k

1p
g
[h
 ;  ]; (178)

1

l2


�
@

@t
� �mD2

�
h
 =

1p
g

�
[�;

h

l2

]� [ ;

v

l2

]

�

� 1

k

1p
g

�
[ ;

1

l2

D2 ] + [

1

2
h2
 ;

1

l2

]

�
: (179)

The projection of the momentum equation, Eq. (14), on the plane �, � is

grad

�
@

@t
� �D2

�
� � e
 = gradP +

1

l2


 
D2�grad � + grad

v2

2

!

� 1

l2


 
D2 grad + grad

h2

2

!
(180)

from which the pressure can be obtained as an exact diferential taking the scalar product with �x = d�e� + d�e� .

If we introduce the operator �� by

��
def
= (� � grad ) .e
 =

l�
l�l


d�
@

@�
� l�
l�l


d�
@

@�

Taking the scalar product with �x we get the exact di�erential

dPdP = ���
�
@

@t
� � D2

�
� +

1

l2


 
D2�d� + d

v2

2

!

� 1

l2


 
D2 d + d

h2

2

!
(181)

from which the pressure distribution, Eq. (7) may be computed.

d
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