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The asymptotic series of an integral representation of the formZ
d�G (�) exp [iF (�)]

is discussed in the context of the semiclassical formalism for the elastic scattering amplitude
in which G(�) is not necessarily a slowly varying function. By using techniques of resum-
mation of late terms of asymptotic expansions, it is shown how the series associated to a
stationary point of the phase F (�) can be modi�ed, to deal with the situation in which the
function G (�) has a simple pole. The e�ect of the pole which physically may be interpreted
as a di�raction phenomenon appears in the asymptotic series as a Stokes discontinuity. It is
shown that the formalismobtained gives a very accurate description of two typical heavy-ion
elasic scattering data.

I. Introduction

In a quantum description of a collision process the

amplitude for elastic scattering is given by the partial

wave sum

f (�) =
1

2ik

1X
`=0

(2`+ 1) (S` � 1)P` (cos�) (1)

where ` is the angular momentum, k is the wave num-

ber, S` is the S-matrix and P` is the Legendre polyno-

mial. Under semiclassical conditions the contributions

to the sum come from partial waves with large angular

momenta, the sum may then be transformed into an in-

tegral and by using a convenient asymptotic expression

for the Legendre polynomials one can approximate (1)

as [3]

f (�) =
1

ik
p
2�isin�

I (�)

with

I(�) =

Z 1

1

2

d�G (�) exp [iF (�)] (2)

where � = ` + 1
2 is the semiclassical angular mo-

mentum and, after separating the scattering function

S(�) into its modulus and argument, the functions

G (�) = �
1

2 jS(�)j and F (�) = 2� (�) � �� have been

introduced. Usually jS(�)j = 1, however in nuclear

physics due to the presence of reactive processes we

can have an attenuation of the 
ux of the low partial

waves and as a consequence more generally jS(�)j � 1:

The scattering function can in principle be expressed in

terms of an underline complex potential but I am here

more interested in the direct approach in which its mod-

ulus and phase are appropriately parametrized. The

next and last step in the construction of the semiclassi-

cal formalism consists in evaluating the above integral

using the stationary phase method. As its integrand is
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a rapidly oscillating function of �, the contribution to

the integral will come from the region around a station-

ary point �s, de�ned as a point where the derivative of

the phase F 0 (�) = 2�0 (�)�� vanishes, namely a root of

the equation �(�s) = 2�0 (�) = �. Then by expanding

F (�) up to second order terms and taking out of the

integral the - in principle- slowly varying function G(�)

calculated at the point � = �s we obtain

I (�) '
r

2�

�iF2
�
1

2

s jS(�s)j exp i [F (�s)] ; (3)

which leads to the classical cross-section with an atten-

uation factor that takes care of the reduction of the 
ux

at the elastic channel.

However, if the physical process is characterized by

an strong absorption such that there is a suppression

of the low partial waves with jS(�)j varying from one

to zero in a relatively small region of width � around a

critical angular momentum �; this region will also con-

tribute to the integral. This contribution may be esti-

mated by expanding the phase up to �rst order around

�. After taking the slowly varying factor �
1

2 out of

the integral with � = � the resulting integral becomes

the Fourier transform of the modulus of the scattering

function and we �nd

I (�) ' i
A(�� � �)

�� � �
�

1

2 exp i [2� (�)� ��] ; (4)

where A(�� � �) is the transform of the derivative of

jS(�)j and �� = �(�) is the critical angle.

Finally if these two contributions come from regions

well separated in the domain of integration that is in

the case of scattering to an angle far from the critical

angle, we can suppose the elastic amplitude to be given

by the sum of these two contributions[9]. Considering

for example the usual parametrization

jS(�)j = 1

exp
�
���
�

�
+ 1

(5)

for which A (�� � �) = �(����)
sinh[�(����)]

we can write

c

I (�) '
r

�

�iF2
�
1

2

s jS(�s)j exp [iF (�s)]� i���
1

2 exp [iF (�) � �� j�� � �j] : (6)

d
This kind of scattering situation was interpreted as a

Fresnel di�raction phenomenon[6] and an explicit closed

expression for the scattering amplitude was derived by

Frahn and Gross[7]. In their derivation, it was assumed

that we are near to the sharp cut-o� case (� = 0) in

which all the angular momenta below the critical angu-

lar momentum� are suppressed. What I am interested

here is the similarity of the above expression with the

phenomenon of Stokes's discontinuities in which there

are a dominant and a subdominant exponential contri-

bution to an asymptotic series[2] . It is the purpose of

this paper to show that an asymptotic expression may

be obtained applying to the asymptotic series whose

�rst term is given by Eq. (3) the technique of Borel

summation of late terms of an asymptotic expansion as

developed by Dingle[5] in which Stokes's discontinuities

appear naturally. Actually, we have here a singularity

di�erent from those envisaged by Dingle who was con-

cerned with the case of others possible saddle-points.

His argument to discard poles of G(�) is that if this

function varies rapidly due to the presence of poles it,

or the singular part of it, should be included in the

phase (Dingle, p.143). Nevertheless for physical rea-

sons it is interesting to treat the e�ect of a pole which

is a di�ractive e�ect separately from that of a station-

ary phase that is a refractive one. Besides this, from a

practical point of view it is convenient to look for real

stationary points instead of complex ones. So we are

going to show that his method can be extended to treat

the case of poles and that it provides a useful descrip-
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tion of di�ractive e�ects in the semiclassical asymptotic

series.

II. Resumming the asymptotic series

Let us start deriving the complete asymptotic series

assuming that the phase has only one stationary phase

point. This means that as a function of the angular

momentum it can be mapped into a parabola and, if

we suppose its extremum to be a maximumwe can put

F (�) = F (�s) � t2 : (7)

Changing variables from � to t the integral becomes

I (�) = exp [iF (�s)]

Z 1

�1

dt
d� (t)

dt
G (t) exp

��it2� ;

(8)

where the lower limit of integration has been extended

to �1: By expanding d�
dt
G in a power series about the

stationary point t = 0

d�

dt
G =

1X
r=0

crt
r

we obtain the asymptotic series

I (�) = exp [iF (�s)]
1X
r=0

c2r

ir+
1

2

�

�
r +

1

2

�
; (9)

where � (x) is the gamma function. This series is more

conveniently written in the standard form

I (�) =

r
2�

�iF2
exp [iF (�s)]

1X
0

Q2r

ir
(10)

where the Qr have been tabulated (Dingle,p.119) up to

r = 8 as a function of the derivatives of the phase and of

the function G at the stationary point. As a reference

we have the �rst two terms we need

Q0 = G0

that leads immediately to (3) and

Q2 =
1

24F 3
2

�
G0

�
5F 2

3 � 3F2F4

� � 12G1F2F3 + 12G2F
2
2

�
;

where the subscripts denote the order of derivatives.

The above series is an asymptotic one, so one should

expect the Q2r to decrease initially up to a certain r = n

and then to increase in such way that the whole series

turns out to be divergent. In the case of strong absorp-

tion this divergence will be caused by nonanaliticity of

the modulus of the S-matrix. In fact, assuming for ex-

ample the usual parametrization, Eq. (5), there will

be an in�nite number of pairs of simple poles in the

complex plane, symmetric with respect to the real axis:

Dingle's assumption is that the information about the

singularity is carried by the late terms of the asymp-

totic series. In order to decode this information the

theorem of Darboux is used to express the coe�cients

of the power series expansion about t = 0 in terms of

the coe�cients of the expansion about the singularity.

Let ti with i = 1; 2; ::: be simple poles of the function

G [� (t)] in the complex t-plane, then about one of these

points we have the Taylor-MacLaurin expansion

d�

dt
G =

a�1

t� ti
+

1X
k=0

ak (t� ti)
k
; (11)

where the rhs can be arranged into a power series of

t. Equating the coe�cients of tn in the two expansions

we obtain the coe�cients we are looking for. In fact,

here it is enough to restrict the calculation only to the

contribution that comes from the �rst term, so we put

c2r ' � a�1

t2r+1i

:

Considering the �rst n terms of the asymptotic series

with n such that we are near the least term we re-

place then for r � n the coe�cients by their above

estimation. Using then the integral representation of

the gamma function we have

c

I (�) =

r
2�

�iF2
exp [iF (�s)]

n�1X
0

Q2r

ir
� a0 exp [iF (�s)]p

iFi

1X
r=n

Z 1

0
dss�

1

2 exp (�s)
�

s

iFi

�n

(12)
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where the quantityFi = t2i = F (�s)�F (�i) was introduced and iFi is the so called singulant in Dingle's terminology.

Interchanging now the order of the sum and the integration, we can write

I (�) = In(�) � a0 exp [iF (�s)]

(iFi)
n+ 1

2

�

�
n+

1

2

�
�n� 1

2

(�iFi) ; (13)

where In stands for the �rst n terms of the series and

�n�1

2

(�iFi) =
1

�
�
n+ 1

2

� Z 1

0

dttn�
1

2 exp (�t)
1� t

iFi

::: (14)

de�nes what Dingle calls the terminant of the series. To calculate it we use the absolutely convergent expansion

(Dingle, p.416)

�s (x) =
x

s

�
1� x

s� 1
+

x2

(s� 1) (s� 2)
� � � �

�
� �xs+1 exp (x)

� (s + 1) sin�s
(15)

from which we can derive

�n�1

2

(�iFi) = �n� 1

2

(�iFi) � 2� (iFi)
n+ 1

2 exp (�iFi)

�
�
n+ 1

2

� ; (16)

where

�n�1

2

(�iFi) = � iFi

s

"
1 +

iFi

s � 1
+

(iFi)
2

(s � 1) (s � 2)
� � � �

#
+

� (iFi)
n+ 1

2 exp (�iFi)

�
�
n+ 1

2

�
tan�s

: (17)

d
In (16) a factor of two has been introduced to give

the correct boundary condition of the di�racted wave.

The � (+) sign correspond to a pole in the upper

(lower) part of the complex �-plane Thus we see that

if we assume the parametrization Eq. (5) for which

a0 = �
p
�i we �nd asymptotically a result which coin-

cides for � � � with the di�racted waves as they are

given by Eq. (6).

III. Applications

We apply now the formalism to two examples ex-

tracted from Frahn's book on di�ractive e�ects in

heavy-ion reactions[8]. For simplicity we will consider

two cases in which the real part of the phase shift is

purely coulombian and the absorption is parametrized

as in Eq.5. The scattering is then completely deter-

mined by four parameters: the wave number, the Som-

merfeld parameter � , related to the strength of the elec-

trostatic potential, the angular momentum � and the

di�usivity �. The coulomb phase shift may be written

asymptotically, that is, for � � 1 and �� 1 as

2i�c = (�+ i�) ln (�+ i�)� (� � i�) ln (� � i�)

from which we derive the de
ection function � (�) =

2 arctan
�
�
�

�
and the correspondent stationary point

�s = � cot
�
�
2

�
. All the other quantities are easily cal-

culated, thus we have

F2 = � 2�

�2 + �2s
;

F3 =
�s

�
F 2
2 ;

F4 =
1

�
F 2
2 +

2�s
�

F2F3 ;

and for the absorption factor

jS(�s)j0 = 1

�
jS(�s)j [1� jS(�s)j] ;

jS(�s)j00 = 1

�
jS(�s)j0 [1� 2 jS(�s)j] :
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Higher order derivatives are easily derived in terms of

the precedent ones. Besides that we have

G0 = �
1

2

s jS(�s)j

G1 =
1

2�
1

2

s

jS(�s)j+ �
1

2

s jS(�s)j0

and

G2 = � 1

4�
3

2

s

jS(�s)j+ 1

�
1

2

s

jS(�s)j+ �
1

2

s jS(�s)j00 :

Let's pass now to the applications.

III.1 16O+28Si at 35.0 Mev

For this system � = 26:21; � = 1:0 and � = 9:51:

Let us start showing in Fig. 1 the �rst three terms of

the semiclassical series as a function of the scattering

angle �. It can be seen that in the region around the

critical angle �� = 39:9� Q2 and Q4 become very large

and the �rst term Q0 is the least term of the series. So,

in the numerical calculation n = 2 until � = 37�, n = 1

from this angle up to � = �� and for � > ��, n = 2.

In Fig. 2 it can be seen how the nearest pair of sin-

gulants iF�1 , with � denoting the upper (lower) pole,

behave in the complex plane. The one associated to

the pole located at �+ = �+ i�� moves clockwise and

crosses the Stokes's line de�ned by the points such that

Im
�
iF+

1

�
= 0 for � = 37� while the other comes from

the lower to upper part of the complex plane crossing

the positive real axis for � = 44�: Finally in Fig. 3 it is

plotted the ratio of the cross-section to the Rutherford

cross-section and for comparison the result of an exact

calculation of the partial wave sum. It can be seen that

the method gives an excellent representation of the ex-

act amplitude. It is important to remark that in order

to obtain the nice �t seen in the �gure it was necessary

to sum the contributions of all upper(lower) poles, i.e.,

��i = � � (2i+ 1)��; i = 0; 1; 2:::; and it was found

numerically that the best point to switch from upper

to lower poles is when the singulant iF+
1 crosses the

Stokes's line, i.e., at � = 37�.

Figure 1. The �rst three terms of the semiclassical asymp-
totic series, Eq. 10 as a function of the angle for the system
16
O +28

Si.

Figure 2. The behaviour of singulants associated to the
nearest pair of poles in the complex plane for system
16
O +28

Si:

Figure 3. The ratio of the cross-section to the Rutherford
cross-section for 16

O+28
Si. The solid line is the asymptotic

calculation and the dotted line the exact partial wave sum.



616 M. P. Pato

III.2 16O+60Ni at 48.5 Mev

For this system � = 31:75 � = 1:34 and � = 18:0:

Again, we start showing the �rst three terms of the

semiclassical series as a function of the scattering angle

�, in Fig. 4. It can be seen that in the region around

the critical angle �� = 59:13� Q2 and Q4 become very

large. So, in the numerical calculation, n = 2 up to

� = 51� and n = 1 up to � = 52:7� and n = 0 for larger

angles. In Fig. 5 it is shown how the pair of nearest

singulants iFi behave in the complex plane. Again we

have the same behaviour of the previous system with

the one associated to the pole �+ = � + i�� moving

clockwise and crossing the Stokes's line for � = 44�

while the other moving in the opposite sense crosses for

� = 54�: Finally, in Fig. 6 it is plotted the ratio of the

cross-section to the Rutherford cross-section together

with the exact calculation of the partial wave sum. It

can be seen that the method gives an excellent repre-

sentation of the exact amplitude. Again it was found

that the best �t was obtained switching from upper to

lower poles at the Stokes's line associated to the �rst

upper pole.

Figure 4. The same as in Fig. 1 for system 16
O +60

Ni:

Figure 5. The same as in Fig. 2 for system 16
O +60

Ni:

Figure 6. The same as in Fig. 3 for system 16
O +60

Ni:

IV. Concluding remarks

A resurgence formula for the asymptotic series rep-

resentation of the semiclassical elastic scattering am-

plitude was obtained using Dingle's method of Borel

summation of late terms of asymptotic expansions. In

order to do this, it was necessary to extend his method

to treat the case in which the form of the late terms is

determined by the presence of poles in the integrand.

The formalism has proved to give a very accurate re-

sult in two typical heavy-ion collision cases in which the

cross-section is dominated by di�ractive e�ects. The

advantage of this treatment over the previous formal-

ism for this kind of scattering situation[7] is that while

that was constructed for the speci�c case of strong ab-

sorption, here we have a representation which works in

principle uniformly for any situation (any value of the

di�usivity �). What varies from one collision case to

the other is only the number of terms to be consid-

ered in the asymptotic series and this is �xed by the
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least term in the expansion. The formalism has how-

ever a limitation since it was derived assuming that we

have only one stationary phase point, i.e., a monotonic

de
ection function. This leaves out the very impor-

tant case of rainbow scattering in which more than one

semiclassical trajectory contribute to the cross-section

at a given angle[10]. It would be very important if the

method developed here could be extended to include

the case of the uniform semiclasical expansion for the

rainbow scattering[1].
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