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Basing on the results obtained from linear hydrodynamic analysis was performed a study of
e�ect of inner surface charge on the mechanical stability of a erythrocyte membrane model.
Numerical values of the parameters related this cell was used to obtain the critical stability
curves. According these results, the mechanical stability of membrane decreases with the
inner surface charge modulus increase.

I. Introduction

There are suggestions that mathematical method of

hydrodynamic stability analysis can be applied in the

study of the role of some agents which modify mem-

brane bending in biological membranes[1�5].

In recent publication[6], we have demonstrated that

the linear hydrodynamic analysis in normal modes can

be used to investigate the stability criteria for biological

membranes. This method shows to be an e�cient way

of evaluating how changes in physico-chemical param-

eters can inuence stability, and for determining which

values of these parameters give the membrane the great-

est resistance to perturbation, because its permits to

investigate the initial phase of the wavy development

process.

Many functions of the cell membrane are involved

in wavy membrane pro�le and vesicle development. An

example of this is the materials transport from the

Golgi apparatus to other parts of the cell, as shown by

electron microscopy. This transport is made by small

vesicles which pinch from the crests of a wavy pro�le

on the rim of the Golgi discs[7;8]. This is a spontaneous

process but the formation of this kind of perturbation

on membranes can also be observed during external ex-

citation, such as a temperature increase.

It has been shown that a wavy disturbance occurs

along the cell rim in human red blood cell (erythro-

cyte) that have been heated to temperatures near 48�C

[9]. These changes culminate with fragmentation on

heating to temperatures around 50�C [10,11,12]. At

temperature of 49�C the stabilising inuence of the

skeleton protein spectrin is suddenly lost through its

denaturation[1]. Spectrin is a membrane cytoplasmatic-

face extrinsic protein which, at physiology conditions,

has stabilising e�ect on the membrane. Human red

blood cells develop vesicles when heated to tempera-

tures close to the thermal transition for spectrin. There

are evidences that the changes in cell outer surface

charge, ionic strength of suspending medium[13] and dif-

fusion potential[14], inuence the interfacial stability of
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heated erythrocytes.

The membrane spontaneous deformations induced

by thermal otation are inuenced by the �eld strength

within the membrane. Like most cellular membranes,

the erythrocyte membrane is constituted of a bilayer

of phospholipids, cholesterol and proteins[15]. Within

bilayer, the hydrophilic groups of phospholipids are

oriented at the surface of bilayer and hydrophobic

groups (hydrocarbon chains) at its interior. Pro-

teins are partially or totally embedded within one or

both monolayers, or through the bilayer with por-

tions exposed at both surfaces. Such proteins are am-

phiphilic and held in the bilayer through hydropho-

bic interactions[16;17]. So the membrane presents a

distribution of surface charges and one of the best-

established features of red blood cell membrane is the

distribution asymmetry of phospholipids between the

two lipid monolayers[18]. Most the phosphatidylserine

and phosphatidylethanolamine are founded in the inner

monolayer, while phosphatidylcholine and sphingomye-

line are preferentially located in the outer monolayer[19].

This generates a electric asymmetry across membrane,

since about 28% of total membrane lipids are phos-

phatidylserine which carries, at physiological pH, one

negative elementary charge per molecule, while phos-

phatidylcholine as well as sphingomyeline do not carry

any one charge[20]. The charge on outer membrane

side is due to the glicoprotein layer associated to outer

surface[20�22]:

In present study, we investigate the e�ects of inner

surface charge on the erythrocyte membrane stability

by use of the dispersion equation from linear hydrody-

namic analysis, which was developed by us in foregoing

study[6]. According to this methods, the development

of surface waves on the rim of the cell is free of stabil-

ising e�ect of the membrane skeleton spectrin. From

this point of view was considered the stability of the

membrane without the cytoskeleton e�ect.

In that paper[6] , we performed a study about the in-

uence of the outer surface charge and ionic strength on

this stability and the knowledge of the role of inner sur-

face charge becomes important for a better statement

about the e�ect of electrical parameters on the mem-

brane stability. It is important to mention that the

inner surface charge density cannot be measured. Es-

timates of this charge proceeds from calculations based

on theoretical models, and realistic values are not quite

clear at present.

II. Reference state

The conformation of biological membranes permits

that they can be considered as a thin planar, viscoelas-

tic liquid �lm; the thickness h of the �lm is de�ned as

the thickness of the lipid bilayer, since this thickness

(h < 100A) is several orders of magnitude smaller than

the cell diameter (8�m) so the planar con�guration is

a good approximation. The membrane is charged and

acts as an electric double layer immersed in the adja-

cent uids[8].

The membrane adopted model was the same used

in previous paper[23], in which the membrane was mod-

elled by a dielectric uid �lm of thickness h, mass den-

sity � and dielectric constant �f (Fig.1).

The electric potential equation was obtained by

solving the Poisson-Boltzmann equation[23]. In refer-

ence state, within external aqueous phases, for a sym-

metric univalent electrolyte we have

�0i = 2 ln

�
1 + �i
1� �i

�
+ �00i; (1)

�i = thg

�
�

4
�soi

�
exp[ki(�z + h=2)]

�
(+)for i = 1
(�)for i = 2

;

(2)

�soi = �0si � �0oi; (3)

where �0i is the potential along z-axis, � =

Ze=KBT;KB is Boltzmann constant, Ze is molar

charge, ki is related to the Debye length, �0si the sur-

face potential on Si(i = 1; 2); S1 and S2 denote the two

surfaces of the membrane, �0oi is the bulk potential in

phase i. The reference state (superscript o) is assumed

to be stationary.
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Figure 1. The membrane is represented by dielectric uid
�lm limited by two plane parallel in�nite surfaces that sep-
arate two aqueous phases of di�erent electrolyte concentra-
tions and dielectric constant �i(i = 1; 2). The membrane
extends from z = �h=2 to z = h=2. Phase 1 corresponds to
the extracellular environment and phase 2 to cytoplasm. On
both surfaces, the charges are distributed homogeneously.
At both phase 1 and phase 2, the electrochemical poten-
tials, u01 and u02 respectively, of each solute ion  were
considered constant. The charge density into the bilayer-�l
(�f ) is taken to be zero (�(+) = �(�) = 0):

III. Perturbed state

The state of convective motion of Newtonian and

incompressible uids is described by the Navier-Stokes

equation

�
d

dt
~v = �r�

$

p +�r2~v + ~Fext (4)

together with the incompressibility condition rv = 0;

being � the total mass density, ~v is the baricentric ve-

locity vector,
$

p is the pressure tensor, � is the bulk vis-

cosity, r is the di�erential operator @
@x
~i + @

@y
~j + @

@z
~k;

and Fext is the body force vector involving here only

electric e�ects:

~Fext = Z�~E + [(�� 1)=4�]~Egrad~E; (5)

where Z� is the volume charge density, and ~E is the

electric �eld[23]. The density and the viscosity are con-

sidered constant and uniform in each phase. The bari-

centric velocity is the sum of the product mass times

velocity for all components of the solution in the con-

sidered volume element. Here, we do not take into ac-

count van der Waals and repulsive forces, which have

been considered by some authors[3;24;25;26], since we are

interested mostly in the electric e�ects.

The evolution of a small perturbation on the surface

generates motion in the uid. Each perturbed quantity

�Q is expressed in Fourier components as [8]

�Q = �Q(z) exp[iKxx+ ikyy + !t]; (6)

where K = (K2
x + K2

y )
1=2 is the wavenumber and

! = !R + i!I is the complex frequency of the per-

turbation.

The solution of the Navier-Stokes equation (eq.4)

gives the amplitude of the velocity �eld components[8].

The integration constants of the general solution in bulk

phases were calculated using the following boundary

conditions: continuity of velocities and their derivates;

continuity of electrical potential and discontinuity of

the electrical displacement; mechanical force balance

and balance of surface charge[6]:

The mechanical force balance was decomposed into

normal and tangential momentum balance, which are

represented respectively by equations 7 and 8 [6],

c

K2�0m�z +�s[(�=K
2)(D2 �K2)Dvz � [(!�=K2) + 2�]Dvz]��s[(�=4�)(DE0

z��s + E0
z�Ez)] = 0; (7)

K2��m �K2�0sDvz +�s[�(D
2 +K2)vz]�K2�s[(�=4�)E

0
z��s] = 0; (8)

d

where �s denotes the �nite di�erence jump through the

surface, �0m is the mechanical surface tension taken at

the reference state and ��m denotes the perturbation of

the mechanical surface tension. D is the operator @=@z
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and D2 is @2=@z2, �0s is the sum of the shear and dila-

tional surface viscosities, ��s is perturbation of surface

potential, �Ez is perturbation of electric �eld and �z is

the interface deformation.

The balance of surface charge was based on cal-

culations of an additional relation which describes

the perturbation of the surface charge density for de-

formed surface[27], taking into account the adsorption-

desorption equilibrium for the inorganic ions, and that

the membrane components (for example, phospho-

lipids) were completely adsorbed to the surface[6].

The integration constants of general solution in

aqueous phases were �xed via the boundary condi-

tions. We decomposed the general solution for the z-

component of the velocity �eld and its derivative at

the �lm surfaces into a symmetric and antisymmet-

ric components, vAs(z); vBs(z); DvAs(z) and DvBs(z):

This procedure gives us [6] a set of four linear algebraic

equations (two for each interface due to the balance of

normal and tangential momenta) for four independent

variables. The sum and di�erence of these equations

lead to a 4 x 4 matrix, whose elements are given by

sum and di�erence between the coe�cients. Thus, the

secular determinant, leading to the dispersion relation,

has the general form[6],

(9)

where Tr(+) and Tr(-) correspond respectively to

the sum and di�erence between S1 and S2-transverse

modes, and Lo(+) and (Lo(-) are the sum and dif-

ference between S1 and S2-longitudinal modes, respec-

tively (the matrix elements are presented in foregoing

paper[6]). The existence of nontrivial solution of this

set of equations requires that the secular determinant

vanishes.

The bending vibration mode (BE) in eq. 9 corre-

sponds to superposition of vAs and DvAs �elds, the

squeezing vibration mode (SQ) represents a superposi-

tion of vBs and DvBs and CO de�nes coupling terms.

Due to an important electric asymmetry between the

two interfaces, CO6=0 [8].

The dispersion relation obtained was an equation

of eighth order in !. Two limiting regimes could be

considered[24]: (1) Fast Regime (! � DsK
2) - for

which the wave motion would be fast enough that

the surface di�usion becomes negligible; and (2) Slow

Regime (w � DsK
2) - for which the motion would be

su�ciently slow compared to the surface di�usion. In

this regime the time is large enough to permit an ionic

redistribution on the interface.

The stability criteria associated to a model were es-

tablished solving the dispersion equation !(K) from the

secular determinant and analysing their roots. How-

ever the calculation of such roots becomes very complex

because of the membrane asymmetry, hence simpli�ca-

tions were made based on some experimental data from

literature.

First, we chose the slow regime condition. This pro-

cedure leaded to the disappearance of many terms of

!(K) [6], since the slow regime requires that !(K) �

DsK
2. It is considered a good approximation for de-

scribing the surface dynamics of lipid �lms, because

the surface di�usion coe�cient of the lipids is relatively

high,Ds
�= 1; 5�10�12 m2.s�1 [2]. Although, the di�u-

sion coe�cients for the erythrocyte membrane are not

available, we choose the slow regime since the wavenum-

ber is typically 106 m�1 in the example[12], since the

wavelengths cannot exceed the cell perimeter and the

erythrocyte diameter is about 8�m [6].

Second, based on results from use of the REDUCE

mathematical software, the dispersion equation for ! <

10 s�1 could be written as a equation of �rst order in !.

From REDUCE we obtained the analytical solution of

the secular determinant. This enable us to investigate

the order of magnitude of each !-coe�cient. In fact, we

found that the !-coe�cients decreased signi�cantly as

the !-exponent increased. So it was reasonable to take

such approach, since we were interested in wavenumbers

of about 106m�1 and time coe�cients of about 3s�1.
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According to experimental results from literature[8;13]

the average times for disturbance development on the

membrane of erythrocyte (from the �rst appearance of

a wave form to the �nal gragmented shape) are up to

about 0.3 s . The derived value for the time coe�cient

!R is thus about 3 s�1.

So we had only one real root, ! = !R. In this

case, for !R positive, the system was unstable and the

perturbation would grow (eq.8). On the other hand,

for !R negative, the system is stable. Among the

possible wavenumbers there was a marginal or critical

one, Kc, for which !R = 0: It was associated with a

marginal wavelength �c = 2�=Kc. We obtained that

small wavenumbers were unstable. In unstable region,

it was possible to calculate a dominant wavenumber

corresponding to a maximum of the !(K) function, for

which d!=dK = 0. It is associated with a dominant

wavelength �M . The corresponding !M was the fastest

rate of growth of the perturbation, i.e., this dominant

wavelength was the most probable wavelength. The

inverse !�1
M corresponded to the characteristic time of

instability �M [8].

IV. Results and conclusions

Table 1 shows the values of several parame-

ters, which are related to the erythrocyte membrane,

adopted here.

The results presented in Fig. 2(a) show that the de-

crease of inner surface charge density modulus (jQS2j),

or decrease ofQS2=Q
0
S1 ratio, leads to increase of stabil-

ity region within critical stability curve ! = 0;QS2=Q
0
S1

versus normalised critical wavenumber hKc. This curve

de�nes the limit between stable and unstable mode re-

gions. From these results we can conclude that the in-

crease of surface potential di�erence modulus produce

membrane instability.

How it can be seen in Fig. 2(b), when jQS2j de-

creases, !M and KM also decrease. It is observed

that the variations in !M -values are well pronounced,

into studied interval, when compared to Kc and KM -

variations.

Figure 2. (a) Marginal stability curve !R = 0; ratio
QS2=Q

0
S1(Q

0
S1 is reference value of the inner surface charge

density - table 1) versus normalized marginal wavenumber
hKc: (b) Rate of growth ! versus normalized wavenumber
hK. For: QS2=Q

0
S1 = 6:4 (2), 5.0 (�), 3.3 (x) and 2.0

(�):�0m = 1:3 mN/m (h=10nm).

Figure 3. Number of wave per cell as function of the inner
surface charge density.
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Figure 4. Characteristic time (�M) as function of the inner
surface charge density.

Dividing the cell perimeter by �M , we obtained an

estimate for the number of waves per cell (n). This cor-

responds to average number of waves that could orig-

inate synchronously and spontaneously along the cell

rim by development of small perturbations. The varia-

tion of n as function of QS2 is shown in Fig. 3. It can

be observed that n decreases about 60% when QS2=Q
0
S1

falls from 6.4 to 2.0. On the other hand, the character-

istic time, �M , increases with jQS2j reduction (Fig.4),

and it tends to very large values for QS2=Q
0
S1 < 3:

These results show that the increase of the inner

surface charge modulus, which is associated to the in-

crease in absolute value of the surface potential di�er-

ence, reduces the membrane resistance to deformations.

In fact, the increase of the �M that arises from decrease

in jQS2j implies on a larger time to develop instability;

the membrane becomes more stable.

According to Coakley and Deeley[12], at constant
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ionic strength, reduction of outer surface charge leads to

marked increase in the membrane stability. The same

occurs for reduction of ionic strength. These results

were demonstrated by experiences with heated human

erythrocyte. However, in previous study[6], we showed

that the increase in erythrocyte membrane stability

that follows the ionic strength reduction, according to

linear analysis, is specially due to subsequent alter-

ations in transmembrane potential, and beyond doubt

the contributions of the inner electric modi�cations are

very important to stability changes, in particular, the

decrease in the negative inner surface charge tends to

destabilise the membrane, when outer surface charge is

kept �xed.

This work was supported by Conselho Nacional de

Desenvolvimento Cient���co e Tecnol�ogico - CNPq.
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