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A technique of regarding the line elemement of space-time appropriate to each �eld variable
as an operator acting on this variable allows a simple derivation of the free �eld relativistic
wave equations, the geometrical nature of which is the line element. An illustrative example
is the derivation of Einstein's linear equation for weak gravitational �elds and the exact
equation in the absence of matter. We may say that the �elds contribute to the line-element
and thus modify the space-time metric. The geometrical equation for spin 1/2 �eld allows
the proof of the Feynman-Wheeler rule that negative energy fermions propagate backward
in time in contrast to the choice of the propagation of positive energy fermions forward in
time.

I. Introduction

Sometime ago I tried to characterize Dirac's equa-

tion as a spinor geodesic in space-time. The idea was

to postulate a variational principle of the form:

�

Z B

A

d� = 0 (1)

where

d� = �dx
� (x) ; (2)

 (x) is a Dirac spinor and the form

�dx
� (3)

is the well-known matrix which linearizes de line ele-

ment:

ds2 = ���dx
�dx� (4)

where ��� is the at space-time metric and � are Dirac

matrices which obey the anti-commutation rule:

1

2
f�; �g = ��� (5a)

The idea is not correct since equation (1) leads to

the condition

@�(� )� @�(� ) = 0 (5)

which led me to write � as the gradient of  , namely:

� = 4i
~

m0c
@� (6)

from which one obtains Dirac's equation:

i~�@� �m0c = 0 (7)

The condition (6) is, however, too restrictive and is

not valid and therefore the deduction of equation (7) is

not correct.

II. Spin 1/2 �eld geometrical equation

The idea of the geometric nature of the relativistic

wave equations, however, pursued me and led me to a

few pedagogical, trivial, remarks about these equations.

First of all the linearisation of the line-element (4)

by means of the matrix (3), having (5) in mind, is valid

�Dedicated to Paulo Leal Ferreira, in the occasion of his 70th birthday.
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only as a condition on a spinor  , as an equation which

de�nes the spinor as a solution of the equation:

�dx
� = dsI (8)

where I is the unit matrix and ds is a number.

We shall develop the idea that the line element -

linear or quadratic - is to be regarded as an operator

acting on the �eld representative. What follows is then

trivial, since the momentum of a classical particle is

P� = m0c
dx�
ds

(9)

Therefore we deduce from equation (8)

(�P
� �m0c) = 0

and thus the quantum - mechanical equation (7), with

P� ! i~@�;

(i~�@� �m0c) = 0 :

which is Dirac's equation.

In a similar way it follows from equations (4) the

relationship

P�
� = (m0c)

2 (10)

and hence the Klein-Gordon equation for all functions

f(x) representative of the Poincar�e group:

�
2+

�m0c

~

�2�
f(x) = 0 (11)

Besides the consideration of the line-element ds2 or

the matrix (3), we must take into account the spin s

of the �eld, the number of independent components of

which is 2s + 1, for s integer and 2(2s + 1) for s half-

integer, and for massive particles.

III. Spin 1 �eld geometric equation

Massive spin s = 1 particles are described by a four-

vector �� of which only three components are indepen-

dent.

We therefore write for the geometric equation for ��

���dx
�dx��� = ds2�� (12)

and impose the condition:

dx�����
� = 0 (13)

The equation (13) means that there is no scalar �eld

built from �� in the neighbourhood of every point x of

the manifold where �� is de�ned:

dx��
�(x) = 0 :

From equations (12) and (13) one obtains trivially:

���
dx�

ds

dx�

ds
�� = �� (14)

and
dx�

ds
�� = 0 (15)

whence, in view of (9) and its transcription in quantum

mechanics:

�
2+

�m0c

~

�2�
��(x) = 0 (16)

@��
�(x) = 0 (17)

IV. Proca's Equation

Proca's equation incorporates equations (16) and

(17) for massive spin 1 �elds. It has the form:

@�G
�� +

�m0c

~

�2
�� = 0 (18)

where

G�� = @��� � @��� : (18)

It is this equation which allows, as is well known,

the construction of a lagrangean for spin 1 �elds.

We take advantage of the fact that besides the line

element (12) there exists a possible term constructed

with the �eld, bilinear in dx� and which may enter

ds2��: It is dx���dx�. So we postulate:

ds2�� = dx����(dx
��� � dx���) (20)

Equation (20) is the geometrical transcription of

equations (18) and (19) in view of equation (9) and

the replacement of P� by the di�erential operator i~@�.

Contraction of equation (20) with dx� gives:
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dx��
� = 0 if ds2 6= 0

So equation (20) is equivalent to equations (14) and

(15).

In general we write ds2�� as a linear combination

of the two possible terms

ds2�� = dx����(adx
��� + bdx���)

and require the vanishing of dx��� :

ds2dx��
� = dx�dx�(a+ b)dx��

� = 0

whence a = �b = 1 if ds2 6= 0; dx��
� = 0: We see by

equation (20) that the �eld �� modi�es the space-time

metric as it contributes to the line-element.

V. Photons

For photons it is well known that classically the line

element vanishes:

ds2 = 0 (21)

We postulate a four-vector �eld A� for which:

���dx
�dx�A� = 0

and that there exists no scalar photon in the neigh-

bourhard of any point x:

dx�A
� = 0

These are the geometrical transcriptions of the dy-

namical equations (by means of a parameter in the

place of s):

2A� = 0; @�A
� = 0

Equations (20) and (21) lead to the equation

@�F
�� = 0; F�� = @�A� � @�A�

but here the gauge @�A� = 0 has to be postulated.

VI. Spin 3/2 �elds

Spin 3/2 �elds are described by a spinor-vector

 �a (x) where � = 0; 1; 2; 3 is the vector index and

a = 1; 2; 3; 4; the spinor index. We postulate the equa-

tion (8) applied to  �a :

�dx
� � = dsI �

 �a has 16 components, 8 of which describe spin 3/2 par-

ticles and two sets of four other components each are

spinors which describe two types of spin 1/2-particles.

The latter are obtained from  �a in the following way:

�a � (� 
�)a

�a � dx� 
�
a )

They must vanish, which leaves eight independent

components to describe a spin 3/2 �eld only. The geo-

metrical equations are thus (since we do not want any

spin 1/2 �eld in any neighbourhood of every point):

(�)abdx
� �b = ds�ab 

�
b

(�)ab 
�
b = 0

dx� 
�
a = 0 (22)

which correspond to the Rarita-Schwinger type of equa-

tions

(i~�ab@� �m0c�ab) 
�
� = 0

(�)ab 
�
b = 0

@� 
�
a = 0 (23)

In the same way that for spin 1 �elds we took into

account the existence of a line element bilinear in the

coordinate di�erentials constructed with the vector �eld

and di�erent from the usual ���dx
�dx���; we may ap-

peal to new terms in dx and the gamma matrices and

the vector-spinor, to add to

�dx
���� �

namely: �dx� � ; �dx� � and �(�dx� + ds)� �:

We therefore postulate the following equation:
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c

f(�)abdx
� � ds�ab)��� � (�)abdx� � (� )abdx� +

+(�)ac[(�)cddx
� + ds�cd](�)dbg 

�
b = 0 (24)

d

and this geometrical equation will lead to the following

one:

f(i~�@� �m0c)��� � i~�@� � i~�@� +

�[i~
�@� +m0c]�g 

� = 0 (25)

where we have omitted the spinor indices.

Equation (24) is equivalent to the equations

(�dx
� � ds)ab 

�
b = 0;

(�)ab 
�
b = 0;

dx� 
�
a = 0;

For this, we di�erentiate equations (25) with respect

to x� and multiply by � on the left, respectively.

The geometrical equation which de�nes a free spin

3/2 �eld is therefore:

c

i���ds � = f�dx
���� � �dx� � �dx� + ��dx

��g � (26)

d

where

��� =
i

2
[�� � ��]

This equation may be written in compact form:

�����5�

�
dx� �

1

2
�ds

�
 � = 0 (27a)

which corresponds to the equation:

�����5�

�
@� +

i

2

m0c

~
�

�
 � = 0 ; (27b)

5 =
1

4!
�abcd�

abcd

In general there is a family of equations of the form:

c

f(�dx
� � ds)��� � Aadx� � B�dx� + �[C�dx

� +Dds]�g = 0

d

The requirement that the equation be spinor-gauge-

invariant1 namely under the transformation: (� is an

arbitrary spinor)
 � !  � + @��

in the limiting case ds = 0 (vanishing mass), gives:

1J. Leite Lopes, D. Spehler and N. Fleury, Lettere al Nuovo Cimento 35, N.2, 60 (1982).
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A = B = C = D = 1

This requirement uniquely de�nes the form of the

equation (27a) and (27b) for spin 3/2 free particles. It

is the equation which describes the massless gravitino

in supergravity. The contribution of the spin 3/2 �eld

to the line element is given by equation (24) or (26) and

replaces the simpler line element (8) corresponding to

spin 1/2 �elds.

VII. Spin two �elds and Einstein's equation for

the gravitational �eld

We follow our technique: consider the gravitational

i.e. the Riemann space line-element:

ds2 = g��(x)dx
�dx�

and apply it to Einstein's �eld which is the metric ten-

sor g itself. But besides the obvious term

ds2g�� = g��dx
�dx�g��

we must take into account other possible terms as we

did for spin 1 and for spin 3/2 ields. Namely, we have

the following terms to consider (the non-linearity of the

equation is assured by the fact that there occur prod-

ucts like g��g�� :)

g��dx
�dx�g�� ;

g��dx
�(dx�g�� + dx�g��);

g��dx
�dx�g�� ;

g��dx
�dx�g�� ;

g��dx�dx
���g

�� ;

dx�g��dx
�g�� ;

dx�g��(dx
�g�� + dx�g��);

dx�g��dx
�g�� ;

dx�g��dx
�g��;

dx�g��dx
�g�� ;

dx�g��dx�g�� ;

dx�g��dx����g
�� :

We must have in mind that dx�=ds being propor-

tional classically to the momentum P�, dx�

ds g��(x) is

not the same quantummechanically as g��(x)
dx�

ds : That

is why the terms above are not identical to some terms

previously written. And this is consistent with our idea

of taking our line-element as an operator de�ned on the

�eld variable. We are thinking on the fact that if co-

ordinates commmute: [x�; x�] = 0 the same cannot be

said of the commutator between a position coordinate

and a displacement dx� :

c

[x�; dx�] = x�dx� � (dx�)x� =
ds

m0c
(x�P� � P�x�) 6= 0 :

In this sense we are distinguishing for instance g��dx�dx�g�� from (dx�g��):(dx�g��). If we take this for granted

we will have the following equation:

ds2g�� = Ag��dx
�dx�g�� +

+Bg��dx
�(dx�g�� + dx�g�� +

+Cg��dx
�dx�g�� +Dg��dx�dx

����g
�� +

+Eg��dx�dx�g
�� +A0dx�g��dx�g�� +

B0dx�g��(dx
�g�� + dx�g�� +

+C0[dx�g��(dx
�g�� + dx�g�� + dx�g��(dx�g�� + dx�g�� ] +

+D0dx�g��dx����g
�� (28)

We write:
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g�� = ��� + h��

h�� is the e�ective gravitational potential; and consider the transition dx�

ds to 1
m0c

P� to 1
m0c

i~@� to get the equation:

�m0c

~

�2
h�� + A(2h�� + h��@

�@�h��) +

+B[���@
�(@�h�� + @�h��) + h��@

�(@�h�� + @�h��)] +

C(@�@�h+ h��@
�@�h�� +

D(���2h+ h��2h) +E(���@�@�h
�� + h��@�@�h

��) +

A0@�h��@
�h�� +

+B0@�h��(@
�h�� + @�h��) +

+C 0[@�h��@
�h�� + @�h��(@

�h�� + @�h��)] +

+D0(@�h��)(@�h) = 0 (29)

where

h = ���h
��

For a weak gravitational �eld we pose m0 = 0 (or ds = 0) and retain only terms linear in h. We have:

A2h�� +B(@�@
�h�� + @�@

�h��) + C@�@�h+D���2h +E���@�@�h
�� = 0 (30)

Take the derivative with respect to x�:

(A+ B)2@�h
�� + (B +E)@�@�@�h

�� + (C +D)2@�h = 0 (31)

from which we deduce:

A = �B;B = �E;C = �D

Thus if we take a scale with A=C = 1 we shall have

2

�
h�� �

1

2
���h

�
+

�
@�@� �

1

2
���2

�
h+ ���@�@�h

�� � @�(@
�h�� + @�h��) = 0

This is the Einstein equation in its linearized form for a weak gravitational �eld.

Much more complex is the expression, in terms of the �eld g��, of the exact Einstein's equation:

R�� �
1

2
g��R = �kT�� :

We know that:

R�� = �
1

2
@�(g��@�g

��)�
1

2
@�[g

��g�� + @�g�� � @�g��)] +

+
1

4
g��(@�g�� + @�g�� � @�g��)g

�� (@�g�� + @�g�� � @�g��) +

+
1

4
g��(@�g�� + @�g�� � @�g��)g��@�g

��

and the scalar curvature is then R = g��R��:

Thus the geometric form of Einstein's equation in the absence of matter would be:
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ds2g�� =
1

4
[dx�(g��dx

�g��dx�g��)] +

1

2
dx�fg�� [dx

�g�� + dx�g�� � dx�g��]g

1

4
g��f(dx

�g��) + dx�g�� � dx�g��gg��fdx
�g�� + dx�g�� � dx�g��g

1

4
g��f(dx

�g��) + dx�g�� � dx�g��g(g��dx
�g��) (32)

if we associated the coordinate di�erential to the derivative. But this correlation through the momentum is ques-

tionable and so we should consider only the case of the weak gravitational �eld.

d

VIII. Proof of the rule that establishes that spin

1/2 fermions with negative energy propagate

backward in time

This rule gave rise to the Feynman-Wheeler inter-

pretation of anti-particles, as is well-known.

Dirac's equation, we know

(i�~@� �m0c) (x) = 0 (33)

leads to homogeneous algebraic equations of the form:

(E �m0c
2)u1 � c(p1 � ip2)u4 � cp3u3 = 0

(E �m0c
2)u2 � c(p1 + ip2)u3 � cp3u4 = 0

(E �m0c
2)u3 � c(p1 � ip2)u2 � cp3u1 = 0

(E �m0c
2)u4 � c(p1 + ip2)u1 � cp3u2 = 0(34)

when one puts:

 (x) = u(~p;E)e(�i=~)(Et�~p�~x) (35)

and uses the representation of Dirac matrices:

0 =

�
I 0
0 �I

�
; ~ =

�
0 ~�
�~� v

�
(36)

The condition for the existence of solutions of equations

(33)is that the determinant of their coe�cients vanish

which gives.

((p0)2 � c2(~p)2 � (m0c
2)2)2 = 0

and so the roots:

p0 = �c(~p2 +m2
0c

2)1=2 = �E (37)

are double. There are thus two solutions with positive

energy and two other solutions with negative energy.

The Feynmann-Wheeler interpretation, namely nega-

tive energy electrons travel backward in time, follows

immediately from the geometrical equation

�dx
� (x) = ds (x) : (38)

If one chooses the representation (34) and (36) for

the gammas, the equation (8) will give the homogeneous

equations similar to equations (33):

(dx0 � ds) 1 � (dx1 � idx2) 4 � dx3 3 = 0

(dx0 � ds) 2 � (dx1 � idx2) 3 � dx3 4 = 0

(dx0 � ds) 3 � (dx1 � idx2) 2 � dx3 1 = 0

(dx0 � ds) 4 � (dx1 � idx2) 1 � dx3 2 = 0(37)

The determinant of the coe�cients of these equa-

tions must vanish which gives:

((dx0)2 � ds2 � (d~x)2)2 = 0

and so the roots

dx0 = �(ds2 + (d~x)2)1=2

are double. The time intervals are either positive or

negative. It is natural to associate positive energy solu-

tions to time intervals which are always positive. Then

the negative energy solutions will have negative time in-

tervals - they represent negative energy fermions run-

ning always backward in time (the usual interpretation

was elaborated by analogy with the classical equation

of motion of the electron).


