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A technique of regarding the line elemement of space-time appropriate to each field variable
as an operator acting on this variable allows a simple derivation of the free field relativistic
wave equations, the geometrical nature of which is the line element. An illustrative example
is the derivation of Finstein’s linear equation for weak gravitational fields and the exact
equation in the absence of matter. We may say that the fields contribute to the line-element
and thus modify the space-time metric. The geometrical equation for spin 1/2 field allows
the proof of the Feynman-Wheeler rule that negative energy fermions propagate backward
in time in contrast to the choice of the propagation of positive energy fermions forward in

time.

I. Introduction

Sometime ago I tried to characterize Dirac’s equa-
tion as a spinor geodesic in space-time. The idea was

to postulate a variational principle of the form:

5/Bd2:o (1)

A

where

d¥ = yode®yP(z) , (2)

¢(x) is a Dirac spinor and the form

Yadz® (3)

1s the well-known matrix which linearizes de line ele-

ment:

ds® = n,, detde” (4)

where 7, is the flat space-time metric and v, are Dirac

matrices which obey the anti-commutation rule:

1
5{%, Y5} = 1ap (5a)

The idea is not correct since equation (1) leads to

the condition

Ja(v8Y¢) — s (va®h) = 0 (5)

which led me to write 7,1 as the gradient of ¢, namely:

h
Yatb = 4i——0a% (6)
moe

from which one obtains Dirac’s equation:

thy® 0at — moep =0 (7)

The condition (6) is, however, too restrictive and is
not valid and therefore the deduction of equation (7) is

not correct.

II. Spin 1/2 field geometrical equation

The idea of the geometric nature of the relativistic
wave equations, however, pursued me and led me to a
few pedagogical, trivial, remarks about these equations.

First of all the linearisation of the line-element (4)

by means of the matrix (3), having (5) in mind, is valid

*Dedicated to Paulo Leal Ferreira, in the occasion of his 70th birthday.
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only as a condition on a spinor %, as an equation which

defines the spinor as a solution of the equation:

Yadx® ) = dsIt (8)

where [ is the unit matrix and ds is a number.
We shall develop the idea that the line element -
linear or quadratic - is to be regarded as an operator
acting on the field representative. What follows is then

trivial, since the momentum of a classical particle is

dz .,
Pa = mocE (9)

Therefore we deduce from equation (8)

(vaP* —mpe)yy =0

and thus the quantum - mechanical equation (7), with
P, — ihd,,

(ihy“ 0o — moe)p =0 .

which is Dirac’s equation.
In a similar way it follows from equations (4) the

relationship

P = (moc)? (10)

and hence the Klein-Gordon equation for all functions

f(x) representative of the Poincaré group:

{D—I—(%)z}f(x)zo (11)

Besides the consideration of the line-element ds? or
the matrix (3), we must take into account the spin s
of the field, the number of independent components of
which is 2s + 1, for s integer and 2(2s + 1) for s half-

integer, and for massive particles.

ITI. Spin 1 field geometric equation

Massive spin s = 1 particles are described by a four-
vector ¢, of which only three components are indepen-
dent.

We therefore write for the geometric equation for ¢,

Napde®da? o = ds ¢ 12
B
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and impose the condition:

detnu¢” =0 (13)
The equation (13) means that there is no scalar field
built from ¢, in the neighbourhood of every point x of
the manifold where ¢* is defined:
de,¢*(x) =0 .

From equations (12) and (13) one obtains trivially:

da® daP
e —— F = B 14
N =g " =9 (14)
and Lt
x
—¢, =0 15
dS ¢N ( )

whence, in view of (9) and its transcription in quantum

mechanics:
{u+ (%)Z}M@FO (16)

Ouet(2) =0 (17)

IV. Proca’s Equation

Proca’s equation incorporates equations (16) and
(17) for massive spin 1 fields. Tt has the form:

w o (TN
8,G +(h)¢_o (18)
where
Guy = al/¢u - au¢u . (18)

It is this equation which allows, as is well known,
the construction of a lagrangean for spin 1 fields.

We take advantage of the fact that besides the line
element (12) there exists a possible term constructed
with the field, bilinear in dx* and which may enter
ds?¢*. Tt is dz,¢” dz*. So we postulate:

ds? ¢ = dx*na,(dz” ¢ — dxte”) (20)

Equation (20) is the geometrical transcription of
equations (18) and (19) in view of equation (9) and
the replacement of P, by the differential operator ¢Ad,,.

Contraction of equation (20) with dx, gives:
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de,¢* =0 if ds*#0

So equation (20) is equivalent to equations (14) and
(15).
In general we write ds’¢# as a linear combination

of the two possible terms

ds’¢" = dx®na, (adz” o + bdx* ")

and require the vanishing of dx,¢" :

ds*dz,¢" = de“dz®(a + b)dz,¢” = 0

whence a = —b = 1 if ds® £ 0, dx,¢* = 0. We see by
equation (20) that the field ¢* modifies the space-time

metric as it contributes to the line-element.

V. Photons

For photons it is well known that classically the line

element vanishes:

ds* =0 (21)

We postulate a four-vector field A% for which:

Napdr®dz® A* =0

and that there exists no scalar photon in the neigh-

bourhard of any point x:
de A% =0

These are the geometrical transcriptions of the dy-
namical equations (by means of a parameter in the

place of s):

OA# =0, ,A" =0

Equations (20) and (21) lead to the equation

g FM =0, FH = 9" AF — 914

but here the gauge 9, A* = 0 has to be postulated.

VI. Spin 3/2 fields

Spin 3/2 fields are described by a spinor-vector
¢#(x) where p = 0,1,2,3 is the vector index and
a =1,2,3 4, the spinor index. We postulate the equa-
tion (8) applied to ¥4 :

Yadx“PH = dsiyp#

¢* has 16 components, 8 of which describe spin 3/2 par-
ticles and two sets of four other components each are
spinors which describe two types of spin 1/2-particles.

The latter are obtained from %% in the following way:

Xa = (Tu¥")a
ba = duuty)

They must vanish, which leaves eight independent
components to describe a spin 3/2 field only. The geo-
metrical equations are thus (since we do not want any

spin 1/2 field in any neighbourhood of every point):

(P}/oz)abdxa'l/);f = dS(Sab’L/);f
('Yu)a“/’g =0
de, gt =0 (22)

which correspond to the Rarita-Schwinger type of equa-

tions

(ih’y(‘jb@u — mocéab)d)g =0
(PVu)a“/’l;f =0
Outly = 0 (23)

In the same way that for spin 1 fields we took into
account the existence of a line element bilinear in the
coordinate differentials constructed with the vector field
and different from the usual na@dx“dxﬁqb“, we may ap-
peal to new terms in dx and the gamma matrices and

the vector-spinor, to add to
Yaden™ Py,

namely: v#da"v,, v dat, and v#(yode® + ds)y” ¢y

We therefore postulate the following equation:
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{(va)ardz™ — dsbas s = (Yu)avd, — (3 )apdy +
+(Vu)acl (Vo) cade® + dséeal (v )an 3o = 0 (24)

and this geometrical equation will lead to the following

one: (Yadz® — ds)aptpy =0,
(71/)(11)1/);]/ = 0,
{(ihy® 00 — moc)nuy — iliy, 0, — iliy, 0y + dzupl =0,
Yulifiy® 0a + mocly, 1 =0 (25) For this, we differentiate equations (25) with respect

to #* and multiply by v* on the left, respectively.

where we have omitted the spinor indices. The geometrical equation which defines a free spin

Equation (24) is equivalent to the equations 3/2 field is therefore:
|
iaaﬁd&/}@ = {’yudx“naﬁ — %P — AP de™ + 'ya'yudl‘“'yﬁ}d)@ (26)
|
where which corresponds to the equation:

i
o’ = [y —+4"4°]

t mpc
2 emiring (04 350 v =0, 1)
This equation may be written in compact form:
1
5 a b e d

T = EGabcda'V T
) !
6“5‘“’757@ (dxu — 5 ds) Y, =0 (27a) In general there is a family of equations of the form:

{(ypda? —ds)nap — Avadrs — Bygdra + Ya[Cyuda” + Ddslyg} =0

The requirement that the equation be spinor-gauge-
invariant! namely under the transformation: (¢ is an

Vs — s+ 0p¢

arbitrary spinor)

in the limiting case ds = 0 (vanishing mass), gives:

1J. Leite Lopes, D. Spehler and N. Fleury, Lettere al Nuovo Cimento 35, N.2, 60 (1982).
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This requirement uniquely defines the form of the
equation (27a) and (27b) for spin 3/2 free particles. Tt
is the equation which describes the massless gravitino
in supergravity. The contribution of the spin 3/2 field
to the line element is given by equation (24) or (26) and
replaces the simpler line element (8) corresponding to

spin 1/2 fields.

VII. Spin two fields and Einstein’s equation for
the gravitational field

We follow our technique: consider the gravitational

i.e. the Riemann space line-element:

ds? = g, (z)dz"dz”

and apply it to Einstein’s field which is the metric ten-

sor ¢ itself. But besides the obvious term
ds?¢®P = gu,,dx“dx”gaﬁ

we must take into account other possible terms as we
did for spin 1 and for spin 3/2 ields. Namely, we have
the following terms to consider (the non-linearity of the
equation 1s assured by the fact that there occur prod-

ucts like g, g°° )

v

Juvdztde g%
gu,,da:“(dxag”ﬁ + dP g*");
gu,,dx“dxﬁg“”;
Gopdx’dz” g, ;
g“ﬁdajkdaﬂnwg“”;
dx“guydx”g“ﬁ;

dzt g, (de®g"? 4 dxP g*");
dxagu,,dx“g”ﬁ;
dxﬁgu,,dx“gm;
dxagu,,dxﬁg“”;

det gl dx? g
dxkgaﬁdxknwg“” .

We must have in mind that dz*/ds being propor-

tional classically to the momentum P*, %gw(r) is
not the same quantum mechanically as g,, (z) %. That
is why the terms above are not identical to some terms
previously written. And this is consistent with our idea
of taking our line-element as an operator defined on the
field variable. We are thinking on the fact that if co-
ordinates commmute: [¢%, z#] = 0 the same cannot be
said of the commutator between a position coordinate

and a displacement da* :

d
[%, dat] = 2%da? — (daet)2® = —S(xaP“ — Prz*)£0 .

mocC

In this sense we are distinguishing for instance g, dz#dz®g"? from (dxtg,,).(dz*g"?). If we take this for granted

we will have the following equation:

ds’g®? = Agu,,dx“dx"gaﬁ +
—|—Bgu,,dx“(dxag”ﬁ +dzP g +

—|—C’gu,,dxadxﬁg“” + Dgaﬁdxkdxknwg“” +

+Egqpde,de, g"" + Aldat gh de? ¢*P +

B/dx“gu,,(dxag”ﬁ +dz? g +

—|—C”[dxagu,,(dx“g”ﬁ + dzP g™ + da:ﬁg“”(dx“gm + dag"] +

+D'da? g deanug"”

We write:
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Guv = My + Py
hy 1s the effective gravitational potential; and consider the transition % to #MPM to m%ﬁih@“ to get the equation:
(T05) 0o o 4O 4 1y 04077) +
+ B 0" (0" h"? + 07 h) + by 0" (9°R”7 + 07 h*)] +
C(0%0°h + hy, 0%0° W +
D(n°P0h 4+ h*P0h) + E(n*?0,0,h" + h*P0,0,h"") +
A’@“hwﬁ”h“ﬁ +
+B' 9 hyy (9°R'P + 07 h*) +
+C [0 by 17 + 0y (9" B 4+ 0 h™ )] +
+D' (0 hPY(Oxh) = 0 (29)

where

h = nuyh‘“j

For a weak gravitational field we pose mg = 0 (or ds = 0) and retain only terms linear in h. We have:

AQh®® + B(0,0°h"? +0,0° h*) + CO*0° h + Dy*POh + En®F9,0,h" =0 (30)

Take the derivative with respect to #®:

(A+ B)Qd,h*? + (B + E)070,0,h*” + (C + D)Dd’ h = 0 (31)

from which we deduce:

A=-B,B=-E,C=-D

Thus if we take a scale with A/C' = 1 we shall have

1 1
O (haﬁ — 577“%) + (aaaﬁ — Enaﬁm) h 4 08,0, — 0,(0°h"? + 9P h*) = 0

This is the Finstein equation in its linearized form for a weak gravitational field.

Much more complex is the expression, in terms of the field ¢®?, of the exact Einstein’s equation:

1
Ra@ — §ga@R = —/CTW, .

We know that:

1 v 1 v
Rop = _iaﬁ(gul/aagu ) - §3>\[g>‘ Gvp + aﬁgva - al/gaﬁ)] +

1 v
+Zg>\u(aozgun + angozu - 3ugan)g” (3ﬁgy,\ + 3,\%//3 - &/g,\@) +

1 v
+Zg>\ (aaguﬁ + aﬁgya - &/gaﬁ)gCna)\gcn

and the scalar curvature is then R = ¢g"" R,,.

Thus the geometric form of Einstein’s equation in the absence of matter would be:
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1
ds?¢®P = —[dxa(gu,,dxﬁ

—da: {guv[dz” g,,@—i—dxﬁ v

guydl,ozguy)] 4

— dz"g*F1}

1

Zgu,,{(dxag")‘) + dz?g®” — dx”gak}gkn{dxﬁg”“ +dat g’ — da:”g“ﬁ}

1 oV voa v o

— g i(de®g ﬁ) +daP g — dz¥yg ﬁ}(gundl‘)‘g“”) (32)

4

if we associated the coordinate differential to the derivative. But this correlation through the momentum is ques-

tionable and so we should consider only the case of the weak gravitational field.

VIII. Proof of the rule that establishes that spin
1/2 fermions with negative energy propagate

backward in time

This rule gave rise to the Feynman-Wheeler inter-
pretation of anti-particles, as is well-known.

Dirac’s equation, we know

(iv* ROy — moc)y(z) =0 (33)

leads to homogeneous algebraic equations of the form:

( Jur — c(p1 — ip2)us — epaus =0
(E — moc®)us — ¢(p1 + ip2)us — cpsug = 0
(E —moc®)us — c(p1 — ip2)us — cpsus = 0
( ) (p1 )

+ ipa)u; — cpsuz = 0(34)
when one puts:
U(x) = u(f, E)el~METT) (35)

and uses the representation of Dirac matrices:

(o )= (5T) e

The condition for the existence of solutions of equations
(33)is that the determinant of their coefficients vanish

which gives.

(moc?)*)? =0

(") = ()" -

and so the roots:

P’ = xe(FP +miA)Y? = +E (37)

are double. There are thus two solutions with positive
energy and two other solutions with negative energy.
The Feynmann-Wheeler interpretation, namely nega-
tive energy electrons travel backward in time, follows

immediately from the geometrical equation

Yade® () = dsi(z) . (38)

If one chooses the representation (34) and (36) for
the gammas, the equation (8) will give the homogeneous

equations similar to equations (33):

(dx® — ds)y — (dxt — ide?) oy — dePips = 0
(dx® — ds)pg — (dx' — idze?)hs — dePipy =0
(dx® — ds)s — (dxt — idz?)py — dePypy =0
( Jiba = ( )

dz’ — ds)s — (da' — idx?)yy — daps = @37)

The determinant of the coefficients of these equa-
tions must vanish which gives:

((dz°)? — ds? — (dT)?)? = 0

and so the roots

dz® = +(ds? + (di)?)H/?

are double. The time intervals are either positive or
negative. It 1s natural to associate positive energy solu-
tions to time intervals which are always positive. Then
the negative energy solutions will have negative time in-
tervals - they represent negative energy fermions run-
ning always backward in time (the usual interpretation
was elaborated by analogy with the classical equation

of motion of the electron).



