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Within the past few years an exciting new class of materials has emerged which provides ca-
pabilities along a new dimension for the control and manipulation of light. These materials,
known as \photonic crystals", are viewed ideally as a composite of a periodic array of macro-
scopic dielectric scatterers in a homogeneous dielectric matrix. A photonic crystal a�ects
the properties of a photon in much the same way that a semiconductor a�ects the proper-
ties of an electron. Consequently, photons in photonic crystals can have band structures,
localized defect modes, surface modes, etc. This new ability to mold and guide light leads
naturally to many novel applications of these materials as optoelectronic components. An
introductory survey including recent exciting developments in the �eld of photonic crystals
is presented.

I. Introduction

The title of this paper was inspired by an article

that appeared in Nature magazine[1] a few years ago

by Sir John Maddox. It began \If only it were possi-

ble to make dielectric materials in which electromag-

netic waves cannot propagate at certain frequencies, all

kinds of almost-magical things would be possible." Iron-

ically, the article continued in a rather negative tone

about the feasibility of such prospects. Nevertheless,

during the past �ve years, there has emerged a new

class of materials called Photonic Band Gap Materi-

als or, more simply, Photonic Crystals that appear to

provide these almost-magical capabilities. The under-

lying concept behind these materials stems from early

notions by Yablonovitch[2] and John[3]. In a nutshell,

the basic idea is to design materials so that they can

e�ect the properties of photons in much the same way

that ordinary solids or crystals e�ect the properties of

electrons. Now, the properties of electrons are governed

by Schroedinger's equation
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and that of photons by Maxwell's equations, which

can be cast in a form that is very reminiscent of the

Schroedinger equation,
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Equations (1) and (2) are linear eigenvalue problems

whose solutions are determined entirely by the proper-

ties of the potential, V (r), or dielectric function, �(r),

respectively. Therefore, if one were to construct a crys-

tal consisting of a periodic array of macroscopic uniform

dielectric \atoms," then as in the case of electrons, the

photons could be described in terms of a band structure.

And if one can have a bandstructure one might be able

to have a complete photonic band gap. Defects in the

structure could then lead to localized photonic states in

the gap, whose shapes and properties would be dictated

by the nature of the defect. This ability to con�ne a

photon provides a new \dimension" in ones ability to

\mold" or control the properties of light. Therein lies

the exciting potential of photonic crystals.

II. The photonic band gap

One appealing aspect of Maxwell's equations, is

that, for all practical purposes, they can be solved ex-

actly. With linear materials there are no interactions

between photons so that one is left with a fairly stan-

dard single-particle problem. This means that theoret-

ical computations can be very helpful, and very useful,

working side-by-side with experimental e�orts.
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Figure 1. Bandstructures along (10) for the square lattice of
alumina rods in air. Comparison of experiment with theory
from Robertson et al. [4].

In Fig. 1 we illustrate a comparison between theory

and experiment for the dispersion relations of photons

in a square lattice of alumina rods (� = 8:9) along the

[10] direction by Robertson et al.[4]. For the measure-

ments, 7� 25 rods of diameter 0.74 mm were arranged

in a square array, as indicated in the insets, with a

lattice constant of 1.87 mm. Coherent microwave tran-

sient spectroscopy measurements were then performed

to measure the frequency and wavevector of the prop-

agating photon. Because of the presence of a mirror

symmetry plane, as shown in the insets, the photons

decouple into transverse magnetic (TM) and transverse

electric (TE) modes. The comparison between experi-

ment and theory is excellent for both the TM and TE

modes. We note also that for the TM modes there is

an indication of a large photonic band gap between the

�rst and second bands. To determine whether a com-

plete photonic band gap exists one needs to explore all

possible directions of propagation. In Fig 2 we show

the results of such an exercise for the high-symmetry

directions of the Brillouin zone. A complete band gap

does indeed exist between the �rst and the second TM

bands. There is, however, no corresponding band gap

for the TE modes. It should be possible to explain such

a signi�cant fact.

Figure 2. Photonic bandstructure for a square lattice of
dielectric (� = 8:9) rods in air with r = 0:2a:

If we examine the displacement �eld pattern associ-

ated with the lowest TM band we �nd that it is strongly

concentrated in the dielectric regions. This is in sharp

contrast to the �eld pattern associated with the second

TM band which has most of its energy in the air re-

gions. We can quantify these statements by calculating

the fraction, f , of electrical energy inside the dielectric

regions. For the modes at the X-point, for example,

we obtain f = 0:8 and f = 0:3 for bands 1 and 2, re-

spectively. The �rst band has most of its power in the

dielectric regions and has a low frequency; the second

has most of its power in the air region, and has a much

higher frequency.

The fractions f for the TE modes do not contrast as

strongly. At the X-point, for example, we �nd f = 0:2

and f = 0:1 for the �rst and second bands respectively.

In this case, both modes have signi�cant amplitude in

the air regions, raising their frequencies. They have no

other choice; the �eld lines must be continuous so they

are forced to penetrate the air regions. This is the ori-

gin of the small values of f and explains the absence

of a band gap for the TE modes. Note that the vector

nature of the photon �eld is central to this argument.

The scalar Dz �eld of the TM modes can be localized

within the rods, but the continuous �eld lines of the

TE modes are compelled to penetrate the air regions to

connect neighboring rods. As a result, consecutive TE

modes do not exhibit markedly di�erent f factors, and

band gaps do not appear.

Although we will not discuss it any further here, it

is interesting to note that one �nds exactly the opposite

behavior for TE and TM modes in the case of a crys-
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tal with a connected dielectric lattice. The interested

reader is referred to Meade et al.[5] for an in-depth dis-

cussion of this and other aspects of the nature of the

photonic band gap. We shall only state the general

rule of thumb: TM band gaps are favored in a lattice

of isolated high-� regions, and TE gaps are favored in a

connected lattice.

Figure 3. Photonic bandstructure for a triangular lattice of
air cylinders (r = 0:48a) in dielectric (� = 13):

One can use this rule of thumb to design a photonic

crystal that has a gap for both TE and TM modes.

The answer is a sort of compromise: we can imagine

crystals with high-� regions that are both practically

isolated and linked by narrow veins. An example of

such a system is the triangular lattice of air columns[6]

shown in Fig. 3. A complete photonic band gap clearly

exists for both TE and TM polarizations.

Figure 4. Photonic bandstructure for a honeycomb lattice
of dielectric rods in air.

It is also possible to �nd photonic crystal structures

which are not connected, yet exhibit a complete pho-

tonic band gap in the higher lying bands. This can

occur when there is more than one \dielectric-atom"

per lattice constant. An example is the honeycomb lat-

tice of dielectric rods[7] shown in Fig. 4. These types

of crystals have the advantage that the larger value of

the mid-gap frequency results in a larger value of the

minimum feature size. This can be a very important

issue when one is concerned with fabrication.

We conclude this section with a rather general ob-

servation. It turns out to be quite typical that the

bands, above and below a band gap, can be distin-

guished by where the power lies - in the high-� regions,

or in the low-� (usually air) regions. For this reason it is

convenient to refer to the band above a photonic band

gap as the \air band" and the band below a gap as the

\dielectric band."

III. The waveguide

Once we have a photonic crystal with a gap we can

introduce a defect to attempt to trap or localize the

light. If we use a line defect, we can also guide light

from one location to another. The basic idea is to carve

a waveguide out of an otherwise-perfect photonic crys-

tal. Light that propagates in the waveguide with a fre-

quency within the band gap of the crystal is con�ned

to, and can be directed along, the waveguide. This is a

truly novel mechanism for the guiding of light. Tradi-

tionally, visible light is guided within dielectric waveg-

uides such as �ber-optic cables, which rely exclusively

on total internal reection. However, if a �ber-optic

takes a tight curve, the angle of incidence is too large

for total internal reection to occur, so light escapes

at the corners and is lost. Photonic crystals, on the

other hand, continue to con�ne light even around tight

corners.

To illustrate these ideas, we turn again to the square

lattice of dielectric rods as a simple example and con-

sider only the TM modes. In Fig. 5 we plot the pro-

jected bands along the direction of propagation for a

waveguide formed by removing one vertical row of rods,

as shown in the inset. The shaded regions correspond

to states that can propagate through the crystal. The

band of states within the gap region corresponds to

guided modes, which can travel freely within the nar-

row waveguide channel. The nature of a guided mode

near mid-gap is illustrated in Fig. 6.
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Figure 5. Projected bands for a waveguide in a square lat-
tice of dielectric rods. The waveguide is formed by removing
one row of rods as shown in the inset.

Figure 6. Displacement �eld of light propagating down a
waveguide carved out of a square lattice of dielectric rods.

Figure 7. Displacement �eld of light traveling around a
sharp bend in the square lattice of rods.

Once light is induced to travel along the waveguide

it really has no where else to go. An intriguing aspect

of photonic crystal waveguides is that they provide the

only means possible to guide visible light, tractably and

e�ciently, through narrow channels of air. Since the

frequency of the guided mode lies within the photonic

band gap, the mode is forbidden to escape into the crys-

tal. The primary source of loss can only be reection

back out the waveguide entrance. This suggests that we

may use a photonic crystal to guide light around tight

corners. This is shown in Fig. 7. Even though the

radius of curvature of the bend is less than the wave-

length of the light, nearly all the light that goes in one

end comes out the other!

Another example of a tight bend in a photonic crys-

tal waveguide is shown in Fig. 8. This is for TE modes

propagating around a 60� bend in a triangular lattice

of air columns in dielectric. Again, nearly all the light

that goes in one end comes out the other.

Figure 8. Magnetic �eld (bottom panel) of light propagating
through a waveguide (top panel) formed in the triangular
lattice of air cylinders.

IV. The cavity

We can also create imperfections that may trap light

at a point within the crystal. One class of imperfections

of this type involves changing the dielectric medium in

some local region of the crystal, deep within its bulk.

As a simple example, consider making a change to a

single \dielectric atom" by modifying its dielectric con-

stant, modifying its size, or simply removing it from the

crystal. The e�ect of creating a vacancy in the square

lattice of rods is illustrated in Fig. 9. A defect state

does indeed appear in the photonic band gap leading to

a strongly localized state as shown in the �gure. By re-

moving a rod from the lattice, we create a cavity which
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is e�ectively surrounded by reecting walls. It the cav-

ity has the proper size to support a mode in the band

gap, then light cannot escape, and we can pin the mode

to the defect.

Figure 9. Displacement �eld for a vacancy in the square
lattice of dielectric rods.

If the defect involves removal of dielectric (an \air

defect" as in the case of the vacancy) then the cav-

ity mode evolves from the dielectric band and can be

made to sweep across the gap by adjusting the amount

of dieletric removed. Similarly, if the defect involves

the addition of extra dielectric material (a \dielectric-

defect") then the cavity mode drops from the air band.

The results of this exercise are shown in Fig. 10. In

both cases, the defect state can be tuned to lie any-

where in the gap.

Figure 10. Localized states in the gap for a defect formed
by varying the radius of a single rod in the square lattice of
dielectric rods. No defect corresponds to r = 0:2a:

Figure 11. Displacement �elds associated with selected
defect states as indicated.

Apart from tuning the frequency, one also has some

control over the symmetry of the localized photonic

state. For example, in Fig. 11 we show the symme-

tries of the localized photon for three di�erent values

of the defect radius. For the case of r = 1:0a we �nd a

�eld pattern that is very reminiscent of the \whispering

gallery" mode observed in microdisk laser cavities. Fur-

ther information about air- and dielectric-defects can be

found in Refs. [8-10].

The exibility in tuning the properties of defects

makes photonic crystals a very attractive medium for

the design of novel types of �lters, couplers, laser mi-

crocavities, etc. [11, 12]. In the case of laser cavities,

photonic crystals provide a particularly unique capabil-

ity - the control of spontaneous emission. This is illus-

trated in Fig. 12. The rate of spontaneous emission of

a given initial state is proportional to the square of a

matrix element and the density of �nal states. In free

space, the \natural" rate of emission is proportional to

the free-photon density of states per unit volume, Df ,

which scales as

Df �
1

!
�
1

�3
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where ! is the frequency of the transition and � the

wavelength of light. If the system is a photonic crystal

with a photonic band gap around !, there are no al-

lowed modes to couple to and spontaneous emission is

severely inhibited. Conversely, if the photonic crystal

is designed to have a point-defect with a localized, or

more generally, a resonant state at !, then the emission

rate could be enhanced dramatically by the increase in

the density of �nal states. An estimate of this enhance-

ment can be obtained from the following simple argu-

ment. The density of states per unit volume for the

resonance, Dr , will scale as

Dr �
1

�!
�
1

V

Figure 12. Schematic representation showing the control of
spontaneous emission by a photonic crystal as discussed in
the text.

where �! is the frequency width of the resonance and

V is its e�ective spacial volume. The enhancement fac-

tor is then given roughly by

Dr

Df

�
!

�!
�
�3

V
=

Q

(V=�3)

where Q � �!=! is the quality factor of the cavity.

Thus high Q and small spacial volumes can lead to sig-

ni�cant enhancement of spontaneous emission. Since

the smallest volume V must be on the order of �3, the

largest enhancement will be on the order of Q.

Figure 13. The air-bridge microcavity.

One recent intriguing new design[13] of a laser mi-

crocavity involves a high Q, single-mode, bridge con�g-

uration as shown in Fig. 13. This design employs a 1D

photonic crystal to con�ne light in the direction along

the bridge and near its center, and total internal reec-

tion to con�ne light in the transverse directions. The

defect at the center of the bridge sustains only one cav-

ity mode whose �eld patterns are illustrated in Fig. 14.

The electric �eld (top panel) is polarized mostly in the

plane of the substrate while the magnetic �eld (bottom

panel) is mostly normal to the substrate. The elec-

tric �eld has a nodal point at the center of the cavity.

The �elds decay rapidly; the modal volume is smaller

than half of a cubic half-wavelength. To estimate the

Q of this cavity mode, we perform a time-dependent

analysis in two-dimensions. The defect structure con-

sidered is shown in Fig. 15. We now introduce a pulse

into the microcavity and compute the number of opti-

cal cycles required for the power to decay by a factor

of e�2� . A more detailed description of this procedure

can be found elsewhere[10] . This gives a Q of 1:3� 104

for this structure. Moreover, we can perform a similar

two-dimensional time- dependent analysis to estimate

the e�ects of random disorder at the dielectric-air in-

terfaces. Such disorder will typically arise during fab-

rication. The amount of disorder will of course depend
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on the minimum feature sizes and the fabrication tech-

nique. Interestingly, for a structure with surface disor-

der whose average size is as large as 5% of the width of

the waveguide, as shown in Fig. 16, the Q is still about

104!

Figure 14. Plots of the electric �eld (top panel) and mag-
netic �eld (bottom panel) in a plane slicing through the
middle of the guide for the air-bridge microcavity.

Figure 15. A model of the cross-section of the air-bridge in
2D.

From the �eld pattern in Fig. 16 we can see why this

cavity is rather robust with respect to random defects.

First of all, the wavelength of the mode is signi�cantly

larger than the characteristic size of the defects. Sec-

ondly, most of the energy of the mode is concentrated

in the middle of the cavity and away from the surface.

This makes the e�ect of the surface roughness much

less signi�cant for this structure than, say, microdiscs

in which the high-Q modes propagate along the bound-

ary of the discs.

Figure 16. A model of the cross-section of the air-bridge in
2D including the e�ects of disorder. The magnetic �eld of
the cavity mode is shown in the top panel.

Experimentalists have begun exploring the possi-

bilities of fabricating these microcavities with silicon-

based materials and with III-V semiconductor-based

materials. Very recently, Professor Kolodziejski's group

at MIT has successfully demonstrated the feasibility

of building suspended structures with micro-sized fea-

tures. Of course, submicronsized features will be neces-

sary in order to deal with photons at 1.5microns, which

is the canonical frequency of the optoelectronics indus-

try.

V. A 3D photonic crystal for submicron fabrica-

tion

In order to have complete control over light we need

to employ a 3D photonic crystal. Since Maxwell's equa-

tions scale with the size of the system, a photonic

crystal designed at one lengthscale will have the same

fractional gap as the crystal at any other lengthscale.

A given photonic crystal designed to operate at mi-

crowave frequencies will have feature sizes on the order

of mm's, and at 1.5 microns feature sizes on the submi-

cron lengthscale.

The �rst photonic crystal possessing a complete gap

was fabricated by Yablonovitch in 1991 for the mi-

crowave regime[14]. Since then, several other 3D pho-

tonic crystal designs have appeared that o�er complete

photonic band gaps[15�18]:

Of these, the Ho et al. structure[17] , is the small-

est three-dimensional photonic crystal with a complete

gap to be manufactured to date. �Ozbay et al.[19] have

used a clever technique of stacking thin micromachined
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(110) silicon wafers to fabricate these photonic crystals

for wavelengths approaching 600 microns.

Figure 17. 3D photonic crystal designed to be amenable
for submicron fabrication. Dark gray and light gray regions
may correspond to Si and SiO2 respectively. The long cylin-
drical columns are �lled with air.

The ultimate goal, of course, is to design and fab-

ricate photonic crystals for use at 1.5 microns. This is

certainly not a trivial task. A new class of photonic

crystals, designed speci�cally to be amenable for fab-

rication at submicron length scales, has recently been

introduced by Fan et al.[20]. One embodiment of this

type of photonic crystal is shown in Fig. 17. The crys-

tal is designed to be built in a layered fashion, using

two dielectric materials (e.g. Si and SiO2), with a se-

ries of holes etched at normal incidence throu?h the top

surface after growth is completed. In order to create a

crystal with a larger dielectric contrast, one of the two

dielectric materials can be chosen so that it can be re-

moved at the end by selective etching. The sequence

of "growth" steps illustrated in Fig. 18 can help the

reader visualize the basic elements that make up the

crystal structure.

One begins by depositing a layer of Si of thickness

d on a substrate of choice and by etching grooves into

the Si layers as shown in part (a). The grooves run

normal to the page and are separated by a distance a;

they have a depth d and a width w. The grooves are

then �lled with SiO2. The next step consists in grow-

ing another Si layer of height h on top of the previous

layer, as shown in part (b), and etching long grooves

of depth d and width w into this layer, as shown in

part (c). We note that these grooves actually extend

into the �rst layer and are translated by a distance a=2

with respect to the �rst layer. After �lling the grooves

with SiO2, another Si layer of height h is deposited on

the top surface and long parallel groves are etched. The

grooves are translated again by a distance a=2 with re-

spect to the previous layer, as shown in part (d). From

this point on, the structure repeats itself every two lay-

ers. Once this process is completed, an array of long

cylindrical holes is etched into the top surface of the

structure, at normal incidence. In general, the cross

section of the holes can be either circular or elliptical

with parameters r1 and r2, as shown in part (e).

Figure 18. Schematic growth sequence for the structure in
Fig. 17. (a) (d) are cross-sectional views, (e) is a plan view.

The design of this structure has many degrees of

freedom which can be used to optimize the size of the

gap. Using a dielectric constant of 12.096 for Si at 1.53

�m and 2.084 for silica, gives an optimized photonic

band gap of about 14%. A very signi�cant improve-

ment can be made by simply removing the oxide. The
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resulting photonic crystal structure is illustrated in Fig.

19. With optimized parameters w = 0:36a, d = 0:51a

and r= = r2 = 0:24a; one �nds a 23% gap as shown in

the bandstructure of Fig.20.

Figure 19. The photonic crystal of Fig. 17 with the SiO2

removed. The structure consists of a dielectric skeleton of
Si embedded in air.

Figure 20. The bandstructure for the photonic crystal of
Fig. 19. The shaded region identi�es a 23% complete pho-
tonic band gap.

Given a 3D photonic crystal with a complete gap as

in Fig. 20, one has the possibility of introducing a de-

fect in the structure which will create a localized state

in the gap. If this is a point-like defect then the pho-

ton mode will be completely localized about a point.

In Fig. 21 we show the power associated with an air-

defect created by removing a small amount of dielectric

from one of the vertical dielectric columns of the crys-

tal structure displayed in Fig. 19. The resulting defect

mode has a state near mid gap and is very well local-

ized in a torus-shape whose cross section is plotted in

Fig. 21. Of course, as discussed in Section IV, the size

of the imperfection can be varied to tune the properties

of the defect state.

Figure 21. Fig. 21. Power distribution for an air defect in
the photonic crystal of Fig. 19, in a ŷ � ẑ cross-section as
shown.
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