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The concept of matter collineation has been introduced. The conditions under which a
space-time may admit such collineation have been given. The electromagnetic and the pure
radiation �elds have also been considered.

I. Introduction

In the general theory of relativity the curvature ten-

sor describing the gravitational �eld consists of two

parts viz, the matter part and the free gravitational

part. The interaction between these two parts is de-

scribed through Bianchi identities. For a given distribu-

tion of matter, the construction of gravitational poten-

tials satisfying Einstein's �eld equations is the principal

aim of all investigations in gravitation physics, and this

has been often achieved by imposing symmetries on the

geometry compatible with the dynamics of the chosen

distribution of matter. The geometrical symmetries of

the space-time are expressible through the vanishing of

the Lie derivative of certain tensors with respect to a

vector. This vector may be time-like, space-like or null.

In a series of papers[1�6] Katzin, Levinle, Davis and

their collaborators have identi�ed 16 symmetries for the

gravitational �eld with their interrelationships and have

obtained the corresponding weak conservation laws as

the integrals of the geodesic equations and also shown

that in the absence of free gravitational �eld, a non-

Einstein space with a non-zero scalar curvature does

not admit a proper curvature collineation (CC) because

it degenerates to motion (M ). In these conformally

at spaces the CC and the special conformal motion

(S Conf M) are equivalent. For type N gravitational

�elds, it has been shown by Collinson[7] that these �elds

admit CC which are not conformal motion. Collinson

and French[8] have shown that the conformal motion

admitted by Petrov type N space-time with twist-free

geodesic rays is not homothetic. The only type N �elds

that admit conformal motion are pp-waves[9] and an ex-

ample of a pp-wave admitting a particular homothetic

Killing vector is given by McIntosh[10]. Type N vac-

uum spaces which admit an expanding and/or twist-

ing congruences and a homothetic motion are investi-

gated by Halford[11]. Tariq and Tupper[12], McIntosh

and Halford[13] and Hall[14], among many others, have

considered the symmetries of the null electromagnetic

and gravitational �elds.

In an attempt to study the geometric and physical

properties of the electromagnetic �elds, Ahsan[15] and

Ahsan and Husain[16] have investigated di�erent types

of collineations and, along with many other interesting

results, it is seen that for a null electromagnetic �eld a

motion does not imply Maxwell collineation (MC) and

conversely. Considering the important role played by

Nijenhuis tensor in the study of electromagnetic �elds

(c.f. [16]), the concept of torsion collineation (TC) in

terms of the Lie derivative of the Nijenhuis tensor has

been introduced by Ahsan[17] and the conditions are
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given under which a null electromagnetic �eld may ad-

mit TC along the propagation and polarization vectors

of the electromagnetic �eld.

Radhakrishna and his collaborators[18;19] have tran-

scribed the known geometric symmetries of the space-

time in the language of spin-coe�cient formalism[20]

and have obtained interesting relationships between

null electromagnetic and null gravitational �elds. Re-

cently, using the Newman-Penrose formalism[20], it is

shown that[21] a null electromagnetic �eld always ad-

mit Maxwell Collineation (MC) and existence of a Ricci

collineation (RC) and M are possible only under certain

geometric conditions on the spin- coe�cients.

Di�erent types of matter distributions compatible

with geometrical symmetries have been the subject of

interest of several investigators for quite some time and

in this respect, Oliver and Davis[22], for the space-times

�lled with perfect uid, have studied the time-like sym-

metries with special reference to conformal motion and

family of contracted Ricci collineations (FCRC). The

perfect uid space-times including electromagnetic �eld

which admit symmetry mapping belonging to FCRC

have been studied by Norris et al.[23]. The role of met-

ric symmetries in the study of uid space-times, with

the main emphasis on conformal collineation, has been

explored by Duggal[24] alongwith the applications to

astrophysics.

The quest for �nding the di�erent types of symme-

tries of the space-time under di�erent assumptions is

ON with results of elegance - and the list of workers

in this particular �eld of interest is very long, we have

mentioned here only a few.

Motivated by the role of symmetries in general the-

ory of relativity, in this paper, we have de�ned yet

another symmetry of the space-time. This is de�ned

in terms of the vanishing of the Lie derivative of the

`Space-matter tensor'. In the next section, the space-

matter tensor and its properties are given. The concept

of matter collineation (MTC) has been introduced and

the necessary and su�cient conditions are obtained un-

der which a space-time including electromagnetic �elds

may admit a MTC.

II. Matter Collineation

In 1969, Petrov[25] introduced the so called space-

matter tensor which satis�es all the algebraic proper-

ties of the Rieman curvature tensor and is more general

than the Weyl conformal curvature tensor. The alge-

braic properties, the classi�cation and the spinor equiv-

alent of the space-matter tensor have been studied by

Ahsan in a series of papers [26], [27], [28].

Let the Einstein �eld equations be

Rab �
1

2
Rgab = �Tab (1)

where � is a constant and Tab is the energy-momentum

tensor. On contraction (1) yields

�T = �R : (2)

De�ne a fourth order tensor Aabcd [25] as

c

Aabcd =
�

2
(gac � Tbd + gbdTac � gadTbc � gbcTad) (3)

which has the following properties:

Aabcd = �Abacd = �Aabdc = +Acdab; Aabcd +Aacdb + Aadbc = 0 : (4)

Contraction of (3) over b and d yields

Aac = �Tac +
�

2
Tgac = �Tac �

R

2
gac : (5)
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The space-matter tensor Pabcd is de�ned as [25]

Pabcd = RabcdAabcd + �(gacgbd � gadgbc) : (6)

where � is a constant (a scalar). The �rst part of this tensor represents the curvature of the space and the second

part the distribution and motion of the matter. This tensor has the following properties:

(i) Pabcd = �Pbacd = �Pabdc = Pcdab ; Pabcd + Pacdb + Padbc = 0 :

(ii) Pac = Rac � �Tac +
R
2 gac + 3�gac = (R + 3�)gac :

(iii) If the distribution and motion of the matter, i.e., Tab and the space-matter tensor Pabcd are given, then Rabcd,

the curvature of the space is determined to within the scalar �.

(iv) If Tab = 0 and � = 0; then Pabcd is the curvature of the empty space-time.

(v) If gab; the metric tensor, �, the scalar and Pabcd are known, then Tab can be determined uniquely.

It is known that [29] the Riemann curvature tensor may be decomposed as

Rabcd = Cabcd + Eabcd +Gabcd (7)

where Cabcd is the Weyl tensor, Eabcd is the Einstein tensor de�ned by

Eabcd = �
1

2
(gacSbd + gbdSac � gadSbc � gbcSad) (8)

where

Sab = Rab �
1

4
Rgab (9)

being the traceless Ricci tensor, and Gabcd is de�ned by

Gabcd = �
R

12
(gacgbd � gadgbc) : (10)

Using the above equations, it has been shown by Ahsan[27] that the space-matter tensor Pabcd may be decomposed

as

Pabcd = Cabcd + (gadRbc + gbcRad � gacRbd � gbdRac) +

�
2

3
R+ �

�
(gacgbd � gadgbc); (11)

which can also be written as

P h
bcd = Ch

bcd + (�hdRbc � �hcRbd + gbcR
h
d + gbdR

h
c ) +

�
2

3
R+ �

�
(�hc gbd � �hd gbc): (12)

d

We now have

De�nition 1. A matter collineation (MTC) is de�ned

to be a point transformation xi ! xi+ �idt leaving the

form of the space-matter tensor P h
bcd given by equation

(12) invariant, that is

L�P
h
bcd = 0 (13)

where L� denotes the Lie derivatives along the vector

�.

Since every motion in a Vn is a W Conf C [1], we

thus have from equation (12) and (13)

Theorem 1. A Vn admits MTC if it admits M, RC and

� = 0:

Now consider a Vn for which Rij = 0 = � and de-

note this space as V 0
n . Equations (12) and (13) thus

yield

Theorem 2. In a V 0
n every motion is a MTC.
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The energy momentum tensor Tab of an electromag-

netic �eld is de�ned by

Tab = FakF
k
b �

1

4
gabFijF

ij (14)

From (14), equations (3), (7) and (6) yield, after

a lengthy calculation, the following representation of

space-matter tensor in case of a non-null electromag-

netic �eld

c

Pabcd = Cabcd � gacFbkF
k
d � gbdFapF

p
c + gadFbtF

t
c + gbcFaxF

x
d +

�
� +

1

2
FijF

ij

�
(gacgbd � gadgbc) (15)

from which we have

P h
bcd = Ch

bcd � �hc FbkF
k
d � gbdF

h
p F

p
c + �hdFbtF

t
c + gbcF

h
xF

x
d +

�
� +

1

2
FijF

ij

�
(�hc gbd � �hd gbc) : (16)

It is known [30], for non-null electromagnetic �elds, that L�gij = 0 =) LFij = 0; thus taking the Lie derivative of

equation (16), we have

Theorem 3. A non-null electromagnetic �eld admits MTC if and only if it admits motion and � = 0:

The energy-momentum tensor for a null electromagnetic �eld is given by

Tab = FacF
c
b (17)

where Fac = satc� tasc and sasa = sat
a = 0; tata = 1; vectors s and t are the propagation and polarization vectors,

respectively.

Consider now equation (17) and use the same technique as was used earlier in obtaining equation (16), we have

P h
bcd = Ch

bcd + 2(�hdFbkF
k
c � �hcFbtF

t
d + gbcF

h
p F

p
d � gbdF

h
f F

f
c ) (18)

which is the representation of space-matter tensor for a null electromagnetic �eld.

Following[15], it is easy to prove the following:

Theorem 4. A null electromagnetic �eld admits MTC along the vector � (propagation/polarization) if � is Killing

and expansion-free.

As we are working with the null electromagnetic �eld, it is therefore natural to expect that the Lichnerowicz

conditions for total radiation[16] are satis�ed and we have

Tab = �2kakb (19)

where ka is the tangent vector. We now have

De�nition 2. A null electromagnetic �eld admits a total radiation collineation (TRC) if L�Tab = 0; where Tab is

de�ned by equation (19).

Taking the Lie derivative of equation (19) with respect to kc, we have

LkTab = �2[ka(k
ckb;c + kck

c
;d) + kb(k

dka;d + kdk
d
;a)] : (20)

d
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Also, since a null electromagnetic �eld with equa-

tion (19) is often known to be a pure radiation �eld, we

therefore from equation (20), have the following

Theorem 5. Pure radiation �elds admit TRC if and

only if the tangent vector ka de�nes a null geodesic.
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