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We study the linear and nonlinear properties of electromagnetic ion{cyclotron waves in
the magnetosphere and the solar wind. In particular, we study parametric decays of large
amplitude electromagnetic ion{cyclotron waves (EICW) due to a minor O+ and He+ ion
components in the magnetosphere. It is shown that the presence of O+ and He+ ions lead
to a number of new wave couplings which in turn lead to new instabilities. Some couplings
involve sound waves carried mainly by the O+ (He+) ions, and a sideband electromagnetic
ion{cyclotron wave which has a resonance at the O+ (He+) ion gyrofrequency. These are
decay instabilities which can lead to O+ and He+ heating through Landau damping and/or
resonance absorption. It is also shown that the decays to sound waves associated to the
minority heavy ion species have growth rates comparable, or even larger, than the decays to
the acoustic branch corresponding to the majority proton species. In a recent paper Hollweg
et al. [1993] studied the parametric decay of Alfv�en waves in high speed solar wind streams.
Following this analysis we consider the nonlinear decay of left hand polarized ion{cyclotron
waves. It is shown that in a solar wind type plasma composed of electrons, protons, and
alpha particles drifting relative to the protons, both branches of the dispersion relation of
the circularly polarized waves can be excited by observed thermal anisotropies [Gombero�
and Elgueta, 1991]. Guided by this analysis, the parametric decay of each branch of the
dispersion relation is discussed. It is shown that the presence of drifting alpha particles
introduces new wave couplings in the system which lead to new instabilities. Some of
these instabilities involve sound waves supported essentially by the alpha particles which,
due to Landau damping, can be very e�cient in the energization of alpha particles. Other
instabilities involve ordinary sound waves which can lead to proton heating. A modulational
instability which involves two electromagnetic daughters is also found. We have also found
that a strong pump can force decays of modes that do not satisfy the resonance conditions
when the pump intensity is vanishingly small. Finally, it is shown that both branches of
the dispersion relation - particularly the branch close to the Doppler shifted alpha particle
resonance - are highly unstable even for small intensities of the pump wave.

I. Introduction

In the present paper we shall review recent work on

linear and nonlinear stability of electromagnetic ion cy-

clotron waves (EICW) in the magnetosphere and in the

solar wind. Since space plasmas are multicomponent

plasmas, this is a study of EICW in multicomponent

plasmas.

EICW are often observed in various regions of the

magnetosphere with L values ranging from 3 to 15

[Erlandson et al., 1990; Anderson et al., 1992 a,b].

These waves have been thoroughly studied over the

years and it is by now well known that the presence

of minor heavy ions plays an important role on the

dispersive properties of the plasma [Cuperman et al.,

1975; Gendrin and Roux, 1980; Young et al., 1981;

Fraser, 1982; Gombero� and Cuperman, 1982; Gen-

drin 1983a,b; Gombero� and Elgueta, 1991; Gombero�,

1992].

From observations made on board the GEOS 1 and

2, and ATS 6 satellites, it is known that when large

amplitude EICW are detected, minor O+ and He+ are

heated up to suprathermal energies of about 100 eV

[Young et al., 1981; Mauk et al., 1981; Roux et al.,

1982; Fraser, 1982; Mauk, 1983].

This phenomenon, has been studied by a number of
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authors within the context of linear theory, and also us-

ing simulation techniques [Mauk, 1982, 1983; Berchem

et al., 1983; Berchem and Gendrin, 1985; Tanaka, 1985;

Omura et al., 1985]. From the linear theory of EICW it

follows that maximum growth rates occur at frequen-

cies far from the heavy ion gyrofrequency and, there-

fore, these waves cannot heat up the bulk of the heavy

ions [Gendrin et al., 1984; Berchem and Gendrin, 1985;

Omura et al., 1985; Gombero� and Vega, 1987]. There-

fore, although heating can occur within the linear the-

ory, it seems that linear theory alone is not su�cient to

account for the observations. However, observationally

it is clear that energization occurs when waves gener-

ated in one region propagate to another region along

gradients. This condition is probably required even

when taking into account nonlinear decays.

The nonlinear stability of electromagnetic ion cy-

clotron waves (EICW) has been extensively studied

over the years, particularly, the stability of whistlers

and Alfv�en waves [Galeev and Oraievskii, 1963; Lu-

tomirski and Sudan, 1966; Sagdeev and Galeev, 1969;

Hasegawa, 1972; Lashmore{Davies, 1973; Goldstein,

1978; Cohen and Dewar, 1974; Barnes and Hollweg,

1974].

Most of these studies have considered plasmas com-

posed of electrons and protons using either the one{

uid or the two{uid model [Lashmore{Davies, 1976;

Derby, 1978; Sakai and Sonnerup, 1983; Longtin and

Sonnerup, 1986; Hoshino and Goldstein, 1989; Vi~nas

and Goldstein, 1992 a,b; Umeki and Terazawa, 1992].

A kinetic approach has been developed by Lee and Kaw

[1972] and Kaw [1976]. Inhester [1990], using a drift{

kinetic treatment, has shown that thermal e�ects re-

duce the maximum growth rates obtained in a uid

theory emphasizing, thus, the need for a full kinetic

treatment of the problem.

In a recent paper [Gombero� et al., 1995a], the

parametric decays of EICW in a magnetospheric-like

plasma, composed of protons and He+ ions were in-

vestigated. It was shown that although both species

can be heated up by parametric instabilities, paramet-

ric decays involving sound waves carried mainly byHe+

show unstable wavenumber gaps more sensitive to the

growth of the pump wave intensity, suggesting a pref-

erential heating of the He+ ions.

We shall consider a magnetosphere-like plasma com-

posed of three ion{species. The plasma composition is

the following: a minor hot proton component of about

10% of the total proton number, thermal protons, ther-

malHe+ ions and a minor thermal O+ ion{component

with typical ratios of 100: 10: 1, respectively. Note that

in other magnetospheric scenarios, the O+ ion concen-

tration can take values as large as 10%, which can also

be studied with the present model. There may also be

energetic heavy ions coming from the ring current [see

e. g., Cornwall and Shultz, 1979] but, as we shall see,

they do not play a signi�cant role on the parametric

decays of EICW [Gombero� et al., 1994b].

We shall see that decay instabilities involving sound

waves carried mainly by the heavy ion{species, have

growth/damping rates comparable or even larger than

those associated to instabilities involving the sound

wave of the proton majority ions, indicating that they

are substantially heated by nonlinear decays of EICW.

Next, we study EICW in high speed solar wind

streams where alpha particles are drifting relative to

the main proton component [see Marsch, 1991, and

references therein]. It has been recently shown that

a relative drift between two ion species modi�es the

dispersion relation of circularly polarized EICW in two

important ways [Gombero� and Elgueta, 1991]. First,

the stop band which exists around the heavy species gy-

rofrequency when there is no drift [see, e.g., Gombero�

and Cuperman, 1982; Isenberg, 1984] disappears in the

presence of drifts. Second, the branch which, in the

absence of drifts, has a resonance at the proton gy-

rofrequency { to be called the alpha branch because it

is very close to the Doppler shifted frequency of the

drifting species { extends now beyond the proton gy-

rofrequency.

Another property of high speed solar wind streams,

is the fact that alpha particles are hotter than protons.

It seems that their thermal velocities are equal, namely,

T� = 4Tp. Moreover, at distances of 0.3 AU, the alpha

particle temperature is higher than the temperature in

the solar corona, indicating that the alpha particles -

and also other heavy ions - are heated up in their transit

from the sun to 0.3 AU [see Marsch, 1991].

Recently, Hollweg et al. [1993], using the new

dispersion relation of the circularly polarized EICW,

showed that the alpha{proton drift velocity introduces
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wave couplings which lead to several new parametric in-

stabilities. These couplings can provide a way of trans-

ferring energy from the pump wave to the protons and

to the alpha particles. This can occur through resonant

cyclotron interaction between the daughter waves and

the ions and/or by Landau damping of the sound waves,

provided that Landau damping or resonant absorption

do not suppress the instability altogether.

Here we review a recent paper [Gombero� et al.,

1994], which extends the work of Hollweg et al. [1993],

by studying the nonlinear stability of the alpha par-

ticle branch of the dispersion relation. This branch of

the dispersion relation can also be excited in high speed

solar wind streams [see Gombero� and Elgueta, 1991].

Moreover, since the alpha particle branch is very close

to the Doppler shifted alpha particle gyrofrequency, the

instabilities arising from this branch can be very e�-

cient in transferring energy to the alpha particles.

We show that the alpha particle branch leads to

wave couplings, which generate new decay and modu-

lational instabilities. Some of these instabilities involve

alpha sound waves { waves supported essentially by the

drifting alpha particles { which can be important in the

preferential heating of the alpha particles, as observed

in high speed solar wind streams [see Marsch, 1991,

and references therein]. We consider also the nonlinear

stability of the proton branch (the branch which has

the proton resonance) for frequencies much higher than

the Alfv�en range. This study is motivated by the re-

sults of the linear stability analysis, which shows that

the growth rate is important at higher frequencies. Let

us note that the scope of the paper is to explore the

�eld and provide a general overview of its potentiali-

ties. The detailed study of the physics of each coupling

lies beyond its boundaries, and it should be developed

in subsequent phases of the research.

The layout of the paper is as follows. In section

II the linear theory of the EICW in an electron-proton

plasmawith minor He+ and O+ ions is briey reviewed.

In section III the nonlinear dispersion relation for the

mode coupling in a characteristic magnetospheric sce-

nario is derived. In section IV the parametric decays

of the EICW are analyzed. In section V the linear sta-

bility of the circularly polarized waves in a solar wind

type plasma is discussed. In section VI the dispersion

relation of Hollweg et al. (1993) is briey reviewed. In

section VII the nonlinear stability of the alpha particle

branch of the dispersion relation is studied. In sec-

tion VIII the nonlinear stability of the proton branch

is studied for frequencies of the pump wave close to the

proton resonance. In section IX we return to the alpha

branch to illustrate a number of cases of interest. The

results are summarized and discussed in section X.

II. Linear theory of EICW

The dispersion relation of EICW propagating par-

allel to the external magnetic �eld in a homogeneous

plasma, is given by [see, e.g., Gombero� 1992]:

c

y20 =
X
l

f
zl
Ml

�lwAl � zl�lwx0 �
zl�lw

Mly0�
1=2
kl

Z(
Mlx0 � 1

Mly0�
1=2
kl

)�

[Al(1 �Mlx0) �Mlx0]g+
X
l

zl�lcMlx
2
0

1�Mlx0
: (1)

d

where y0 = kvA=
p, vA = B0=(4�mpnp)
1=2 is the

Alfv�en velocity, x0 = !=
p, Al = (T?=Tk � 1)l,

�kl = 8�mpnlhKTkl=mlB
2
0 , �lh = nlh=np, �lc = nlc=np,

zl is the ion charge, Z is the plasma dispersion func-

tion [Fried and Conte, 1961], Ml = ml=zlmp, 
p is

the proton gyrofrequency, Tjparallel , T?, are the paral-

lel and perpendicular temperature, l is the index of the

ion species, �cp, �hp, are the concentrations of cold and

hot protons, respectively and the sum over l is over all

plasma components.

Assuming the plasma to be composed of electrons,
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protons, He+, and O+ ions, from the real part of Eq.

(1) we obtain the cold plasma dispersion relation,

y20 =
x20

1� x0
+
4�He+x

2
0

1� 4x0
+
16�O+x

2
0

1 � 16x0
: (2)

The dispersion relation given by the last equation

is illustrated in Fig. (1) for �He+ = nHe=np = 0:12,

and �O+ = nO=np = 0:01. These values are typical of

the magnetospheric region to be examined in section

IV. The �rst quadrant corresponds to the left-hand po-

larized EICW propagating forward along the external

magnetic �eld in the proton rest frame. In this quad-

rant the dispersion relation has three branches. One

which has a resonance at the %O+ ion gyrofrequency

(to be called the O branch). Then there is another

branch which has a resonance at theHe+ gyrofrequency

(He branch). Finally, there is a branch that has a res-

onance at the proton gyrofrequency (proton branch).

The second quadrant in Fig. (1) corresponds to the

dispersion relation of right hand polarized waves mov-

ing backwards. The third quadrant, having ! < 0 and

k < 0, describes right hand polarized waves moving

forward, and the fourth quadrant corresponds to the

dispersion relation of left hand polarized waves moving

backwards [Gombero� et al., 1995b].

Figure 1. Linear dispersion relation, normalized wavenum-
ber, y = kvA=
p, vs. normalized frequency, x = !=
p, for
�He+ = 0:12, and �O+ = 0:01.

We shall assume a magnetospheric plasma model

consisting of ne = 12:3cm�3, npc = 10cm�3, nph =

1:1cm�3, nHe+ = 1:2cm�3, nO+ = 0:1cm�3,

KTpc=2 ' KTHe+=2 ' KTO+ = 5eV , KTph=2 =

17keV , B0 = 130nT , and Ap = 1. These values are

consistent with the geostationary region explored by

GEOS 1 and 2 [Young et al., 1981].

The growth rates can be calculated from the imag-

inary part of Eq. (1) assuming that the plasma is

composed of Maxwellian electrons, a hot proton com-

ponent described by a biMaxwellian distribution func-

tion with thermal anisotropy Ap [Gombero� and Neira,

1983; Kozyra et al. 1984; Gombero� 1992]. In some of

the above-mentioned references it is assumed that the

thermal components are cold. However, the cold com-

ponents are, of course, not completely cold, but have

thermal energies ranging from a few eV up to 10 eV

[D�ecr�eau et al., 1982; Chappell, 1983]. Thermal ef-

fects due to the `cold' components have been studied

by Gendrin et. al. [1984], Gombero� and Vega [1987],

and Gombero� [1992].

It is well known that the proton thermal anisotropy

of the minor hot proton component can render unsta-

ble the three branches of the dispersion relation, (see

Fig. 1), in agreement with observations performed on

board the GEOS 1 and 2 satellites [see Young et al.,

1981; Roux et al., 1982]. The branch with the reso-

nance at the O+ ion gyrofrequency is unstable in the

region 0 < ! < 
O+ . The branch having a resonance

at the He+ ion gyrofrequency is unstable in the region


O+ < !c1 < ! < 
He+ , and the branch with the res-

onance at the proton gyrofrequency is unstable in the

region !c2 < ! < !m < 
p. The frequencies !c1 and

!c2 are cuto� frequencies, which depend on the minor

ion concentration, and !m is the marginal frequency,

which for Ap = 1 occurs at !m = 
p=2 [Gombero� and

Neira, 1983; Kozyra et al., 1984; Gombero�, 1992].

Having established the fact that the three branches

of the dispersion relation, Eq. (2), can be active in the

magnetosphere, we shall study the nonlinear stability

of each branch in their corresponding excited regions.

To this end, in the next section we derive the nonlin-

ear dispersion relation of the left hand polarized EICW.

III. Nonlinear dispersion relation of the EICW

So far we have used kinetic theory to study the lin-

ear properties of the EICW. We shall now assume a

uid description of the plasma. By doing this, impor-

tant e�ects like Landau damping and resonance absorp-

tion are being left out. Clearly, a detailed study of the
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physics of each decay should include these e�ects [Lee

and Kaw, 1972; Inhester, 1990]. However, a uid model

is su�cient to provide a general survey of possible wave

couplings and instabilities, which is the purpose of the

present paper.

Thus, each plasma component is assumed to satisfy

the following uid equation of motion:

(
@

@t
+ u � r)~u =

ql
ml

f~E +
1

c
~u� ~Bg �

~rp

nlml
; (3)

where ~u is the bulk velocity, ql the electric charge, ml ,

the mass, ~E and ~B the electric and magnetic �eld, and

p the pressure.

It is well known that in a single ion{component

plasma, the EICW are exact solutions of Eqs. (3) [Fer-

raro, 1955]. A general proof of Ferraro's result for a

multicomponent plasma, including drifts among the ion

species, can be found in Appendix 1. The magneto-

spheric plasma considered here corresponds to the case

when there is no drift between the ion species. Thus,

the circularly polarized EICW in the magnetosphere

described by Eq. (3) can have large amplitudes.

We now assume that the background plasma is com-

posed of electrons, cold protons (cp), hot protons (hp),

He+ ions, O+ ions and by a circularly polarized wave,

the pump, which satis�es the dispersion relation given

by Eq. (2).

Taking the external magnetic �eld to be along the

z{direction, B0z , we introduce the following pertur-

bations: �uz = Re[uk exp(ikz � i!t)], �Ez = Re[�

exp(ikz � i!t)], �n = Re[�n exp(ikz � i!t)], and �p =

Re[�p exp(ikz�i!t)]. The pressure is assumed to behave

adiabatically, �p=p0 = �n=n0, where  is the adia-

baticity coe�cient. Using the de�nitions u? = ux+iuy,

B? = Bx + iBy , and E? = Ex + iEy, the perpendicu-

lar perturbations are given by �u? = v+e
(ik+z�i!+t) +

v�e
(ik
�z�!�t) and similarly for �B? and �E?. The

problem is now solved using standard linear perturba-

tion theory.

Thus, from the mass conservation equation we ob-

tain:

�n = n0Ref
uk

!
eikz�i!tg; (4)

From the (x,y){component of Eq. (4) it follows:

(!c � !+)v+ = �
q!+b+
mck+

+
Bq!cuk

2mc(!c � !0)
; (5)

where

�u? = v+e
ik+z�i!+t + v�e

ik
�

z�i!
�

t; (6)

and similarly for (�B?; �j?) in terms of (b�; j�). The

other quantities are B?0 = B exp(ik0z � i!0t) with B

real, !� = !0 � !, k� = k0 � k, where !0 and k0 are

the frequency and wavenumber of the pump wave. An

explicit derivation of Eq. (5) is given in section VI.

On the other hand, from the z{component of Eq.

(4) we obtain:

c

f1�
k2v2s
!2

guk =
q

m!
fi�+

B

c
[
v?0

B?0
(b+ � b��) + v�� � v+]g; (7)

where uk refers to the direction along the external magnetic �eld, v2s = p0=�0 is the sound speed of the ion species

considered, and � indicates the longitudinal electric �eld.

Assuming the electrons to be massless, from Eq. (5), its complex conjugate, and Eq. (7), one can solve for the

longitudinal component of the electric �eld, �. We obtain,

i� =
Bb��
B0zc

(
!��
k��

�
!0
k0

)�
Bb+
B0zc

(
!+
k+

�
!0
k0

) +
eKTek

2uke

jej!
: (8)

Assuming charge quasi-neutrality, from Eq.(4) it follows,

uke =
X
l

�lukl

1 + �He+ + �O+
; (9)

where



L. Gombero� 431

�l =
nl

ncp + nhp
; l = cp; hp;He;O; (10)

and the electrons can be eliminated altogether.

Thus, for each plasma component, the parallel velocity is given by,

~Acp�ukcp = Bp + �e[�hp�ukhp + �He+ �ukHe+ + �O+ �uO+ ] (11)

~Ahp�ukhp = Bp + �e[�pc�ukpc + �He+�ukHe+ + �O+ �uO+ ]; (12)

~AHe+ �ukHe+ = BHe+ +
�e
4
[�cp�ukcp + �hp�ukhp + �O+ �uO+ ]; (13)

~AO+ �ukO+ = BO+ +
�e
16

[�cp�ukcp + �hp�ukhp + �He+ �uHe+ ]; (14)

where

�ul =
ul
vA

l = cp; hp;He+; O+; (15)

~Al = [1� (
�l

ml=mp
+

�l�e
ml=mp

)
y2

x2
] + �l; l = cp; hp;He+; O+: (16)

Bl =
1

B
(B�

l b
�
� � B+

l b+); l = p;He;O; (17)

��l =
B2

B2
0z

1

x

x20y� �(l) � x2�y0 0(l)

y0y� 0(l) �(l)
; l = p;He+; O+: (18)

�l =
4�(ncp + nhp)lKTl

B2
0z

(l = cp; hp;He+; O+); (19)

�e =
4�(ncp + nhp)eKTe
B2
0z(1 + �He+ + �O+)

; (20)

and

x� = x0 � x; (21)

y� = y0 � y; (22)

 0 = 1� x0; (23)

 � = 1� x�; (24)

 �(He+) = 1� 4x�; (25)

 �(O+) = 1� 16x�; (26)

 0(He+) = 1� 4x0; (27)

 0(O+) = 1� 16x0; (28)

On the other hand,

X
i

ji+ = je+ + jp+ + jHe+

+ + jO
+

+ ; (29)

which, due to Ampere's law, k+b+ = �4�
P
j+=c, leads to,

X
j+ =

q(ncp + nhp)

B0z
f
B

2
[

1

1� x0
(x0 +

x+
1� x+

�
y

y0

x20
x
)

�(�pcukpc + �phukph)
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+
4�He+

1� 4x0
(x0 �

y

y0

x20
x

+
x+

1� 4x+
)ukHe+

+
16�O+

1� 16x0
(x0 �

yx20
y0x

+
x+

1� 16x0
)ukO+ ]

�b+vA
x+
y+

[
x+

1� x+
+
4�He+x+
1� 4x+

+
16�O+x+
1� 16x+

]g: (30)

Proceeding in a similar way for
P
j��, one obtains two equations in terms of the parallel velocities, b��, and b+,

B[R+(�cpukcp + �hpukhp) + R+(He+)ukHe+ + R+(O+)ukO+ ] + vAL+b+ = 0; (31)

B[R�(�cpukcp + �hpukhp) + R�(He+)ukHe+ +R�(O+)ukO+ ] + vAL�b
�
� = 0; (32)

where

L� = y2� �
x2�
 �

�
4�He+x

2
�

 �(He+)
�
16�O+x

2
�

 �(O+)
(33)

R� = y�(x0 �
yx20
y0x

+
x�
 �

)
1

2 0
; (34)

R�(He+) = 4�He+y�(x0 �
yx20
y0x

+
x�

 �(He)
)

1

2 0(He+)
; (35)

R�(O+) = 16�O+y�(x0 �
yx20
y0x

+
x�

 �(O)
)

1

2 0(O+)
: (36)

Upon elimination of the parallel velocities using Eqs. (11-14) , one �nally obtains two equations in terms of b��
and b+ only. Setting the determinant of these equations equal to zero yields the nonlinear dispersion relation.

It is convenient to de�ne the following quantities,

Q = 1� �e
y2

x2

�
�cp
Acp

+
�hp
Ahp

+
�He+

4AHe+
+

�O+

16AO+

�
; (37)

P� = �ey
2

�
�cp
Apc

+
�hp
Ahp

) �R� +
�He+

�R�(He+)

4AHe+
+
�O+ �R�(O+)

16AO+

�
; (38)

and

T�� = ��p ( �R�Q+ P�)(
�pc
Apc

+
�ph
Aph

)+

��He+

( �R�(He+)Q+ �He+P�)

AHe+
+ ��O+

( �R�(O+)Q+ �O+P�)

AO+
; (39)

where

Al = 1� (
�l

ml=mp
)
y2

x2
+
B2

B2
0z

1

 0(l) +(l) �(l)
); l = cp; hp;He;O: (40)

and �R�l = xR�l with l=p, He, O.

The dispersion relation can now be written in the following form,

L+L�Q+ L+T
�
� � L�T

+
+ +

T�+ T
+
� � T+

+ T
�
�

Q
= 0: (41)

Except for the �rst term in Eq. (41), all other terms vanish for zero pump wave intensity, A = (B=B0z)2, where

B is the magnetic �eld of the pump wave, and B0z is the external magnetic �eld.

Hence, for zero pump wave intensity, the dispersion relation reduces to,

L+L�Q = 0; (42)
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From the last equation, it follows that, for zero pump wave intensity,

L� = y2� �
x2�

1� x�
�
4�He+x

2
�

1� 4x�
�

16�O+x
2
�

1� 16x�
= 0; (43)

and

Q = 0: (44)

d

Clearly, L� = 0 correspond to the circularly polar-

ized waves satisfying the same dispersion relation given

by Eq. (2), except that they are now referred to a

new origin given by (x0; y0) which are the frequency

and wavenumber of the pump wave. Note that when

L� = 0, �n, �p, Ez, and �uz have zero amplitude and

Eq. (43) is equivalent to Eq. (2), with x0 = y0 = 0.

Eq. (44) gives the sounds present in the system.

Since the electrons, cold protons, He+, and O+ ions

are much colder than the hot protons, �e, �cp, �He+ ,

�O+ � �hp, the solutions of Eq. (44) are given by:

x = �(�cp + �cp�e)
1=2y; (45)

x = �(�hp + �hp�e)
1=2y; (46)

x = �
1

2
(�He+ + �He+�e)

1=2y; (47)

x = �
1

4
(�O+ + �O+�e)

1=2y: (48)

Thus, there are eight electro{acoustic modes in the

system. The �rst two, given by Eq. (45), are ordinary

sound waves. The second two, given by Eq. (46), are

supported essentially by the hot protons, the other two,

given by Eq. (47), are supported mainly by the He+

ions, and the last two, given by Eq. (48) are carried

mainly by The O+ ions.

IV. Parametric decay of the EICW

IV.1 Oxygen Branch We shall begin by assuming

that the pump wave belongs to the branch of the dis-

persion relation which has a resonance at the O+ ion

gyrofrequency (see Fig. 1). We choose the frequency

of the pump wave to be x0 = 0:05 and the correspond-

ing wavenumber y0 = 0:0783. This frequency value is

in the region of ion cyclotron excitation of this branch

[Gombero� and Neira, 1983; Kozyra et al. 1984].

Figure 2. Solution of the dispersion relation, Eq. (48), for
zero pump wave intensity, A = 0. The position of the pump
is x0 = 0:05 and y0 = 0:0783, on the O+ branch. The
other plasma parameters are, �e = 1:1� 10�3, �ph = 11:36,
�pc = �He+ = �O+ = 3:3� 10�3, �cp = 0:9, �hp = 0:1, and
�He+ = 0:12, and �O+ = 0:01.

In Fig. (2) we have plotted the dispersion relation,

Eq. (41), for zero pump wave intensity. From left to

right, the lines correspond to the following solutions of

Eq. (42). The �hps sound which corresponds to the

negative solution given by Eq. (46). The �cps line,

which is the negative solution of Eq. (45). The �O

line, which is a solution of L� = 0, and corresponds

to the branch which has a resonance at the oxygen gy-

rofrequency in the fourth quadrant of Fig. (1). . The

�Hes line, which corresponds to the negative solution

given by Eq. (47). The �Os sound which is the nega-

tive solution given by Eq. (48). The +Os sound which

corresponds to the positive solution of Eq. (48). The

+Hes line, solution of Eq. (47). The +O line, corre-

sponding to the branch of the pump wave in the �rst

quadrant of Fig. (1), and it is a solution of L+ = 0.

The +cps solution of Eq. (45) The +r line which is a

solution of L� = 0, and corresponds to the branch of
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the dispersion relation in the third quadrant of Fig. (1).

The +hps sound which is the positive solution given by

Eq. (46). There are other lines which do not show up in

the �gure, corresponding to the He and proton branch

in the �rst quadrant of Fig. (1) and the corresponding

reections into the second quadrant of Fig. (2) coming

from the fourth quadrant of Fig. (1). Finally, there is

another line which is not shown in the �gure, which is

a solution of L+ and corresponds to right hand waves

propagating backward relative to the external magnetic

�eld in the second quadrant of Fig. (1). Since the dis-

persion relation, Eq.(41), is a sixteenth-order equation,

there must be sixteen lines in all, which is indeed the

case.

The crossings between the lines in Fig. (2), are

possible wave couplings with the pump wave when

this is turned on. From left to right, these crossings

are: (�O;�cps), (�O;�Os), (+Os;�O), (�O;+Hes),

(�O;+cps), (+O;�O), (�O;+O), (+Hes;+O), and

other crossings not shown in the �gure. There is also a

crossing between (+O;+r) at the origin. Not all these

crossings correspond to wave couplings. A necessary

condition is that they must satisfy the resonance con-

ditions n!0 = !1 + !2, n=1,2..., where !1 and !2 are

the frequency of the daughter waves.

The origin in Fig. (2), corresponds to the coordi-

nates of the pump wave (x0; y0) on the O+ branch of

the dispersion relation in Fig. (1). In Fig. (2) the solu-

tions of Eq. (42) are shown only in the �rst and second

quadrant in the (x, y) plane. The other two quadrants

can be obtained by rotating the plane through an angle

of 180o and, therefore, they contain no new informa-

tion. The search for parametric decays will be carried

through as in Hollweg et al. [1993], and Gombero� et

al. [1994a,b], using the method of Longtin and Son-

nerup [1986].

In Fig. (3) we have switched on the pump wave.

This is done by solving numerically Eq. (41) for A 6= 0.

For A = 10�4, a comparison between Fig. (2) and

(3a), shows that at the position of some of the crossings

there are now gaps. The gaps along the vertical direc-

tion correspond to instabilities. In fact, if a horizontal

line is drawn at the position of the gaps, this line will

cross only 14 lines, which means that two of the sixteen

real roots have become complex conjugate. This is the

case of the crossings between (�O;+Os), (�O;+Hes),

(�O;+cps), (�O;+O), and between (+r;+O) at the

origin. The gap between (�O;+Os) is a decay insta-

bility where the pump decays into a backward propa-

gation EICW, or sideband wave - solution of L� = 0 -

and a forward propagating sound daughter wave. The

gap between (�O;+Hes) and (�O;+cps) are also de-

cay instabilities. The next gap between (�O;+O) is

a decay, essentially electromagnetic, where the pump

wave decays into two sideband waves, one solution of

L� = 0, and the other solution of L+ = 0. The coupling

is due to space charge uctuations, that do not corre-

spond to a sound wave eigenmode interacting with the

EICW [Forslund et al., 1972]. The fourth gap between

(+O;+r) is an electromagnetic modulational instabil-

ity, where none of the lines involved extend to the origin

[Longtin and Sonnerup, 1986].

Figure 3. Solution of the dispersion relation, Eq. (48), for
(a) A = 10�4, and (b) A = 5� 10�3, showing the two elec-
tromagnetic instabilities (+O;�O) and (+O;+r), for the
same parameters of Fig. (2).
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We have calculated maximum growth/damping

rates of some of the crossings. The gaps (�O;+Os)

and (�O;+Hes) merge, i. e., they are not separated

by a range of y-values with zero growth rate,  = !i=
p.

Maximum growth rates, m, however, are separated in

each gap. For the gap between (�O;+Os), m = 1:23�

10�3, and occurs at y=0.1520, and x=2:3� 10�3. Sim-

ilarly, for (�O;+Hes), m = 4:82�10�4 at (y=0.1462,

x=4.26�10�3), and for (�O;+cps), m = 6:21� 10�4

at (y = 0:1375; x= 8:91� 10�3).

In Fig. (3b) the pump wave intensity has been

raised to 5 � 10�3, in order to show the formation of

the modulational instability. All of these instabilities

are new in the sense that they involve either the sounds

supported by the O+ ions, or/and the branch of the dis-

persion relation which has the resonance at the O+ ion

gyrofrequency. They can be very e�cient in heating up

the O+ ions by Landau damping of the sound waves

and/or by resonance absorption. All other crossings in

Fig. (2) are avoiding crossings, as it can be seen in Fig.

(3b).

IV.2 Helium Branch

We now study the parametric decay of the He

branch by taking the pump wave to be one of the waves

belonging to the He branch of the dispersion relation

given by Eq. (2). For the frequency of the pump wave

we choose the value of Fig. (2) of Gombero� et al.

[1994a] i.e., x0 = 0:17. The corresponding y-value is

y0 = 0:2747.

Proceeding like in the previous case, in Fig. (4a) we

have plotted the solutions of Eq. (41) for zero pump

wave intensity. The crossings are essentially the same

as those of Fig. (2) of Gombero� et al. [1995a] except

for those involving the Os.

In Fig. (4b), the pump wave intensity has been

raised to A = 10�3. We can see that there is a new

decay instability in which the pump wave decays into

a backward propagating left hand EICW, �He, and a

forward propagating sound wave, +Os. The other cou-

plings are similar to Figs. (3) and (4) of Gombero� et

al. [1994a], except for the modulational instability be-

tween (�He;+r) which is now between (�He;+He).

This is explicitly shown in Fig. (4c).

The maximumgrowth rate for the case of Fig. (4c),

occurs for the crossing between (�He;+Hes), with

m = 2:60 � 10�2 at (y = 0:5440; x = 2:25 � 10�2).

The electromagnetic instabilities, i. e., the (+He;�He)

have m ' 10�3.

Figure 4. Solution of the dispersion relation, Eq. (48),
for the pump wave on the He branch. The frequency and
wavenumber of the pump are x0 = 0:17 and y0 = 0:2747
for (a) A = 0, (b) A = 10�3, and (c) A = 10�2. The other
parameters are like in Fig. (2).
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IV.3 Proton Branch

We choose for the frequency of the pump wave the

value x0 = 0:4 like in Gombero� et al. [1995a]. The

corresponding y0 value is y0 = 0:3660. Fig. (5a) is the

dispersion relation given by Eq. (52) for zero pump

wave intensity. This situation is very similar to Fig.

(9a) of Gombero� et al. [1994a] except for the new

sounds, �Os. Due to the (+Os), there is a new decay

instability between (+Os;�p) as shown in Fig. (5b)

for A = 10�4, and in Fig. (5c) for A = 10�3. All

other crossings are similar to Figs. (9a) and (9b) of

Gombero� et al. [1995a].

In Figs. (5b) and (5c), maximum growth rates oc-

cur for the crossing between (�p;+Hes). They are

m = 1:11 � 10�2 at (y = 0:690; x = 1:96 � 10�2),

and m = 3:32 � 10�2 at (y = 74; x = 2:32 � 10�2),

respectively.

V. Linear analysis of EICW in the fast solar

wind

The dispersion relation of the left hand polarized

EICW in a plasma composed of electrons, protons and

alpha particles drifting relative to the protons is given

by [Gombero� and Elgueta, 1991]:
c

y2 = Ap � x�
1

y�
1=2
kp

Z(
x� 1

y�
1=2
kp

)[Ap(1� x)� x]� 2�(x� yU )

�
�

2y�
1=2
k�

Z(
2x� 2yU � 1

2y�
1=2
k�

)[A�(1� 2x+ 2yU )� 2x+ 2yU ]; (49)

d

where x = !=
p, y = kVA=
p, 
p = qB0=mpc,

U = V�=VA, with V� the alpha{proton drift veloc-

ity and VA the Alfv�en velocity, � = n�=np Al =

T?l=Tkl � 1 is the thermal anisotropy of species l,

�kl = 8�npmpKTkl=mlB
2
0 , and Z is the plasma dis-

persion function [Fried and Conte, 1961].

Figure 5. The dispersion relation, Eq. (48), for the pump
wave over the proton branch at x0 = 0:4, and y0 = 0:3660,
for (a) A = 0, (b) A = 10�4, and (c) A = 10�3. The other
parameters are like in Fig. (2).
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From the real part of Eq. (49), the cold plasma dis-

persion relation of the EICW is given by [Gombero�

and Elgueta, 1991]:

y2 =
x2

1� x
+

4�(x� yU )2

1� 2x+ 2yU
: (50)

In Fig. 6 the dispersion relation is shown for U = 0:5

in the proton rest frame. The �rst and fourth quad-

rant describe the forward and backward propagating

left hand polarized EICW, respectively. The third and

second quadrant describe right hand polarized EICW

propagating forward and backwards, respectively [Holl-

weg et al., 1993]. The straight line in the �rst quad-

rant which reappears in the third quadrant, is due

to the drifting alpha particles, and is almost sitting

on the Doppler shifted alpha particle gyrofrequency,

(x� yU ) ' 1=2.

The growth rate of the waves can be calculated from

the imaginary part of Eq. (49). Thus, using the large

argument expansion of the Z function, and assuming

! = !r + i!i, with !i � !r (to be justi�ed a posteri-

ori), we obtain (A� = 0):

c

 =
!i

p

=
(�)1=2

yF (x; y)
f(

1

�kp
)1=2[Ap(1 � x)� x)] exp(�

(1 � x)2

y2�kp
)

�(
1

�k�
)1=2�(x � yU ) exp(�

(2x � 2yU � 1)2

4y2�k�
)g; (51)

where

F (x; y) = y[
x(2� x)

(1� x)2
+
8�(x� yU )(1 � x+ yU )

(1 � 2x+ 2yU )2
];

d

and  is the growth/damping rate normalized to the

proton gyrofrequency.

Figure 6. Dispersion relation of the EICW, Eq. (50), for
U = 0:5.

The approximation we are using fails close to reso-

nance where higher order terms are increasingly impor-

tant. However, since we are interested in general growth

rate trends, the approximation should still hold.

The �rst term in the right hand side of Eq. (51) is

positive between zero and the marginal mode which is

given by xm = Ap=(Ap + 1). The second term in the

sum gives the damping of the EICW due to the alpha

particles.

One of the properties of high speed solar wind

streams is the large values of the thermal anisotropy

of the core of the proton distribution function. At he-

liocentric distances of 0.3 AU values of Ap = 2� 4 are

frequently observed (Marsch, 1991).

In Fig. 7 the behaviour of the growth rate is shown

for increasing values of the normalized drift velocity, U.

The �rst maximum, corresponding to the proton branch

of the dispersion relation (see Figure 1), increases as U

increases. On the other hand, the second maximum of

the growth rate, which corresponds to the alpha branch

of the dispersion relation, decreases as U increases un-

til it becomes negative for U > 0:3. This is simple
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to understand. In fact, as U increases, this branch of

the dispersion relation approaches more and more the

Doppler shifted alpha particle resonance and, therefore,

it becomes strongly damped due to resonance absorp-

tion.

Figure 7. Growth rates of the left hand polarized EICW for
Ap = 3, �kp;� = 0:1, and (a) U = 0:1, (b) U = 0:2.

In Fig. 8 we display the behaviour of the growth rate

for a larger value of the thermal anisotropy, Ap = 5. A

comparison between Figs. 7a and 8a shows that while

the maximum growth rate of both branches of the dis-

persion relation increases, the growth rate of the second

branch becomes larger than that of the �rst branch. As

U increases the second branch is completely stabilized,

like in the previous case, but now at larger values of the

drift velocity, U > 0:5. The maximum growth rate of

the proton branch increases as U increases, and since it

becomes of the order of the real part of the frequency,

violating the assumption that !i � !r, we have omit-

ted this branch in Figs. 7b and 7c.

Figure 8. Same as Fig. (7) for Ap = 5 and (a) U = 0:1, (b)
U = 0:3 and (c) U = 0:5.

Thus, it is clear that both branches of the dispersion

relation can be excited in the solar wind, although the

alpha particle branch is stabilized at lower values of the

alpha{proton drift velocity.

Hollweg et al. (1993), explored the parametric in-

stabilities of the proton branch of the dispersion rela-

tion for frequency values of the pump wave close to the

origin. However, according to our study of the linear

stability of the EICW, maximum growth rates for val-

ues of Ap = 2 � 4, occur at much larger values of the

frequency.

Thus, in the following sections we explore the para-

metric instabilities of both branches of the dispersion

relation, using for the pump wave frequency values dic-

tated by the linear stability analysis.

VI. The dispersion relation

The equation of motion of each plasma species is

(
@

@t
+ ~vl � r)~vl =

ql

ml
(~E +

~vl � ~B

c
)�

~rpl

mlnl
; (52)
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where ~vl is the bulk velocity of species l, ~E and ~B are

the electric and magnetic �eld, ql is the charge of species

l, ml the mass of species l, nl the particle number den-

sity for species l, pl is the pressure of each species, and

c is the speed of light.

Note that the dispersion relation given by Eq. (50)

was �rst derived by using �rst order perturbation the-

ory of Vlasov's equation [Gombero� and Elgueta, 1991].

However, it is an exact solution of the set of Eqs. (50)

in a cold plasma (see Appendix 1).

We now follow the procedure of Hollweg et al.

[1993], in order to study the parametric instabilities

of the EICW. Thus, applying �rst order perturbation

theory to the background plasma which consists now

of electrons, protons, alpha particles and the circularly

polarized waves, i.e.,

vk = V �
0 + �vk;

v? = V p
? + �v?;

where

V p
? = V?e

i(k0z�!0t);

Bp
? = Bei(k0z�!0t);

Ep
? = E?e

i(k0z�!0t);

are the velocity, magnetic �eld, and electric �eld due to

the pump wave.

For the perturbations we have,

�vk = Re[vke
i(kz�!t)];

�v? = v+e
i(k+z�!+t) + v�e

i(k
�

z�!
�

t);

�b? = b+e
(ik+z�!+t) + b�e

i(k
�

z�!
�

t);

�e? = �+e
i(k+z�!+t) + ��e

i(k
�

z�!
�

t);

�ek = Re[�ei(kz�!t)]:

Let us now calculate �v? from Eq. (52),

c

d�v?
dt

=
q

m
[�e? �

i

c
�v?B0z +

i

2c
(�v�kB + �vkB) �

i

c
V �
0 �b?];

which, upon using the previous equations, reduces to

@

@t
(v+e

ik+z�!+t) + v�e
i(k
�

z�!
�

t))+

1

2
(vke

i(kz�!t) + v�ke
�i(kz�!t))

@

@z
V p
?e

i(k0z�!0t) =

q

m
(�+e

i(k+z�!+t) + ��e
i(k
�

z�!
�

t))�

iq

mc
B0z(v+e

i(k+z�!+t) + v�e
i(k
�

z�!
�

t)) +

iq

mc
B(vke

i(kz�!t) + v�ke
�i(kz�!t))ei(k0z�!0t) �

iq

mc
V �
0 (b+e

i(k+z�!+t) + b�e
i(k
�

z�!
�

t));

Multiplying this equation by e�i(k+z�!+t), and averaging over time yields,

�i(!c � !0+)v+ +
i

2
k0V

p
?vk =

q

m
�+ �

iq

2mc
Bvk �

iq

mc
V �
0 b+:

The last equation can be written in the following form by using Faraday's law, r�+ = �(1=c)(@b+)=(@t),

�+ = �b+!+=k+c;

(!c � !0+)v+ = �
qb+
mc

!0+
k+

+
qB

2mc

vk

!c � !0+
:

where,

!0+ = !+ � k+V
�
0 :
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and the other quantities are de�ned in Appendix 2.

Following a similar procedure to the one used in section 3, the nonlinear dispersion relation can vbe calculated.

The result is [Hollweg et al., 1993],

L+L�D + L+R�Bcc + L+R��Bcc� + L�R+B+ + L�R�B�

+(BccB� � B�cc�B+)(R�R� �R��R+)=D = 0 (53)

where the various terms are de�ned in Appendix 2.

The position of the pump is characterized by the coordinates x0 and y0. For zero pump intensity Eq. (53)

reduces to L+L�D = 0. Therefore,

L� = (y�)
2 �

x2�
1� x�

�
4�(x� � Uy�)

2

1� 2(x� � Uy�)
= 0; (54)

or

D = 0; (55)

d

where x� = x0 � x and y� = y0 � y.

Eqs. (54) correspond to the dispersion relation of

the circularly polarized waves centered at (x0; y0). The

other equation, Eq. (55), corresponds to the sounds

present in the system which, for � � 1, are given by,

x = �(�e + �p)
1=2y; (56)

and

(x� yU ) = �(��)
1=2y=2; (57)

where �l = 4�npKTl=B2
0 (l = e; p; �).

Eq. (8) is the ordinary sound wave propagating for-

ward and backward relative to the protons. The second

equation, Eq. (57), describes the forward and backward

propagating alpha sound (in the alpha frame).

The solutions of Eqs. (54) with respect to the

new origin, which is now at (x0; y0), give the various

branches of the dispersion relation. The crossings be-

tween the solutions give the position of the possible

wave couplings in the system.

It is interesting to note that if the pump wave is

located at (x0; y0) on any of the two branches given

by the dispersion relation described by Eq. (50), the

solutions of Eqs. (54) and (55) are invariant under a

rotation through an angle of 180o. Thus, it is su�cient

to analyze the solutions in the �rst and second quad-

rants. Therefore, it is enough to analyze the problem

in these quadrants.

It is also important to point out that not all cross-

ings will produce instabilities: only intersections which

conserve energy can lead to parametric decays. Some-

times, even an energetically allowed crossing does not

lead to instability. The presence of instabilities is char-

acterized by the formation of gaps at the crossing points

when the pump is switched on. On the other hand,

there are cases denominated avoiding crossings, where

the lines separate without forming gaps. Clearly, the

latter do not lead to instability. The reason is simple to

understand. If an horizontal line is drawn at any value

of y, that line must cross as many lines as the order

of the dispersion equation. If there are less crossings,

it means that two or more roots have become complex

conjugate and, therefore, there is a region of instability.

VII. Nonlinear stability of the alpha branch

We begin by exploring the alpha branch of the dis-

persion relation shown in Fig. 6. We shall assume

that the alpha{proton drift velocity is equal to 0.5 VA,

Ap = 3, � = 0:04 and �kp = 0:1. These values are

consistent with high speed solar wind streams at 0.3

AU.

According to Fig. 8c, a typical value for the fre-

quency of the pump wave can be chosen as x0 = 0:73
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with a corresponding wave number y0 = 0:436501.

Taking for the interplanetary magnetic �eld, B0x =

45 � 10�5G, a typical value at 0.3 AU, the frequency

and wavelength associated to x0 and y0 are !0 = 3Hz

and �0 = 190km, respectively. Other parameters are

�e = 0:015, �p = 0:15, and �� = 0:2.

Figure 9. Dispersion relation, Eq. (53), for zero pump
wave intensity, A = 0. The position of the pump is
x0 = 0:73 and y0 = 0:436501. The other parameters are
�e = 0:015; �p = 0:15; �� = 0:2; U = 0:5; � = 0:04.

In Fig. 9 we show the dispersion relation, Eq. (53),

for zero intensity of the pump wave, A = (B=B0)2 = 0,

and for the position of the pump discussed in the pre-

vious paragraph. The straight lines are, from left to

right, the backward propagating proton sound �ps, the

backward propagating alpha sound ��s, the forward

propagating proton sound +ps, and the forward prop-

agating alpha sound +�s. The other lines are, from

left to right, a solution of L+ = 0 which corresponds

to the upper branch of the �rst quadrant of Fig. (6),

the branch which has a resonance at the proton gy-

rofrequency, and we shall denote it by +p. The next

curve is a solution of L� = 0 which corresponds to the

backward propagating EICW in the fourth quadrant

of Fig. (6), namely the branch which has a resonance

at the proton gyrofrequency �p. The next line is the

branch of the pump which is very close to the alpha

resonance, is forward propagating and we shall call it

+�. The next line is a solution of L� = 0 and corre-

sponds to the line which starts in the second quadrant

of Fig. (6), crosses the origin into the fourth quadrant

and goes to the alpha resonance in the third quadrant.

We call this line ��. The remaining line is a solution

of L� = 0 and corresponds to the upper branch in the

third quadrant of Fig. (6). We shall call it +r, be-

cause it is a right hand polarized EICW propagating

forward. Finally, not shown in the picture, far to the

left lies a solution of L+ = 0, a backward propagating

EICW corresponding to the segment above y0 in the

second quadrant of Fig. (6). We shall call it �r, be-

cause it is a right hand polarized EICW, propagating

backwards.

The �rst intersection from the left in Fig. 9 cor-

responds to a crossing between (+p;�ps). The sec-

ond crossing is between (+p;�p). The third one is

(��s;�p). The fourth crossing is (+ps;�p). There is a

�fth crossing at the origin (�p;+�). In the center to the

right of the �gure, there is a sixth crossing (��;+�s)

and �nally, there is a seventh crossing (+r;��).

Figure 10. Same as Fig. (9) but for A = 10�4.

In order to study possible instabilities we show in

Fig. 10 the same situation as in Fig. 9, but for

A = 10�4. We see that at the place where there was

a crossing between (+p;�ps) there is now a gap. This

gap is the well known decay instability discussed by

many authors. The second gap in the �gure (from the

left) is due to the second crossing in Fig. (9), the one

involving (+p;�p). This is a beat wave instability and

is essentially electromagnetic. It was �rst discussed by

Forslund et al. [1972], in an electron{proton plasma

[see also Wong and Goldstein, 1986], and by Hollweg et

al. [1993], in a three{component plasma. Notice that

although it involves only EICW, it is due to electro-

static perturbations. At the position where there was

a crossing between (��s;�p), there is now an avoiding

crossing.

Let us take this example to make a brief comment,

which can be extended to other cases. We note that
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the �p wave belongs to the L� branch, so that its fre-

quency is !0�!, while the ��s sound has a frequency

�!, since it propagate backwards. Clearly, a decay can-

not be expected at this crossing because the energy of

the quanta, ! 6= (!0 � !) + (�!), is not conserved.

The fourth crossing in Fig. 9, (+ps;�p, gives rise

to the third gap in Fig. 10. This is a decay instability

involving the ordinary sound and a backward propa-

gating left hand polarized EICW. The crossing at the

origin, (�p;+�), gives rise to the fourth gap in Fig. 10.

This instability is a new instability, which is mainly

electromagnetic. Since neither �p nor +� extend to

the origin, this corresponds to a modulational instabil-

ity [see Longtin and Sonnerup, 1986]. The next gap

corresponds to a new decay instability corresponding

to (+�s;��). Since this instability involves the +�

sound, it can be very e�cient in transferring energy

to the alpha particles via Landau damping. The last

crossing in Fig. 9, (+r;��), is an avoiding crossing.

Figs. 11a, 11b, 11c, are an enlarged view of the re-

gion close to the origin, showing the formation of the

modulational instability, for A = 0, A = 10�5, and

A = 10�4, respectively.

Figure 11. Enlarged view of the origin of Fig. (9) showing
the formation of the modulational instability for (a) A = 0,
(b) A = 10�5, and (c) A = 10�4.

We now study the e�ect of decreasing � values. To

this end, in Fig. 12 we show the dispersion relation,

Eq. (53), for the same position of the pump as in Fig.

9 with A = 0 and �e = �p = �� = 0:03125. The main

di�erence with Fig. 9 is that (+ps) has exchanged posi-

tion with ��s. As a result, the third crossing, between

the (�p;+ps), is now a decay, while the fourth cross-

ing between (�p;��s) is an avoiding crossing. When

the pump is turned on, Figure 8, the avoiding crossing

between the (�p;+�s) forces a separation between the

two curves, leading to a coupling between (��s;+�).

This crossing generates the gap shown by an arrow in

Fig. 13. This is a new modulational instability which

involves the pump wave at the alpha branch and a back-

ward propagating alpha sound. This instability can also

be very e�cient in transferring energy from the pump

to the alpha particles by means of Landau damping.

VIII. Nonlinear stability of the proton branch

We now investigate the parametric decay of the pro-

ton branch. We choose for the pump wave x0 = 0:74

and y0 = 1:4512. The corresponding frequency and

wavelength are !0 = 2:67Hz and �0 = 100km, re-

spectively. We have chosen this value because it is

close to the proton resonance, and according to Eq.

(51, for �kp = 0:1, the growth rate is still signi�cant,

 = 2:8� 10�3.

In Fig. 14 we illustrate this situation for A = 0,

�e = 0:015, �p = 0:15, and �� = 0:3, and Ap = 3.

We see that, starting from the left, there is a crossing
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between (�p;�ps). Then there are two crossings along

the +p line with the �p line. Along the +ps line there

are three crossings. One at the origin with +r (which is

a solution of L� = 0) and a second one at x = 0:4 and

y = 1:1 with +r. The third one is (+ps;��). There is

another crossing between +r and �� which, being both

solutions of L� = 0, is an avoiding crossing. Then there

are four crossings between the �� wave with the +ps,

+r, +�s, and +�. Finally, there are three new cross-

ings in the upper right part of the �gure, (+�;+�s),

the (+�;+r), and (+�s;+r).

Figure 12. Dispersion relation for zero pump intensity,
A = 0, with x0 = 0:73 and y0 = 0:436501 with � = 0:04
and U = 0:5 as in Fig. (9), but for �l = 0:03125; l = e; p; �.

Figure 13. Same as Fig. (12) for A = 10�4. The arrow
indicates the new modulational instability (see text).

Figure 14. Dispersion relation for zero pump intensity,
A = 0, for x0 = 0:74; y0 = 1:4512, on the proton branch.
The other parameters are �e = 0:015, �p = 0:15, �� = 0:2,
U = 0:5, � = 0:04, as in Fig. (9).

Figure 15. Same as Fig. (14) for A = 10�4.

Fig. 15 is the same as Fig. 14, but the intensity

of the pump wave has been increased to A = 10�4. A

comparison between the two �gures shows that at the

�rst crossing, in the left part of the �gure, there is no

coupling, as expected because it is energetically forbid-

den. Then the two crossings along the +p line give rise

to two instabilities which are mainly electromagnetic.

The crossing, (+r;+ps), gives rise to a gap correspond-

ing to a decay instability. There is another decay in-

stability between the (+ps;��). The three crossings in

the upper right corner are avoiding crossings. The re-

maining two crossings (��;+�s) and (��;+�) do not

show coupling e�ects.
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Figure 16. Enlarged view of the upper right part of Fig. (14)
for A = 10�4, showing that the crossings between (+r;+�s)
and (+r;+�) are avoiding crossings.

Fig. 16 is an enlarged view of the upper right part

of the last �gure, the region involving the crossings

(+�;+r) and (+�s;+r). It is clear that these cross-

ings are avoiding. In Fig. 17 we show that the crossing

(+�s;+�) is also avoiding.

Figure 17. Same as Fig. (14) for A = 10�4, showing that
(+�s;+�) is an avoiding crossing.

We now reduce the � values to �l = 0:03125 with

l = e; p; �. For A = 0 this situation is illustrated in

Fig. 18. In Fig. 19 the pump is A = 10�4. This

case is similar to the previous one, except that due to

the interchange between ��s and +ps there is now a

modulational instability betwen the +ps wave and the

+r wave at the origin. As before, there are two elec-

tromagnetic instabilities along the +p line. Finally, at

larger pump intensities,A � 1:2� 10�2, there is a new

decay instability (see Fig. 19b) due to the action of the

pump on the +ps and �� lines, which tend to coalesce.

This e�ect is a pump induced coupling because there is

no crossing for A = 0. To the best of our knowledge,

this e�ect has not been reported before. The modu-

lational instability (+ps;+r) and the decay instability

(+ps;��)are separated by a stable y interval, which

shrinks to zero for higher values of the pump.

Figure 18. Same as Fig. (14) (pump on the proton branch),
but for �l = 0:03125; l = e; p; �.

Figure 19. Same as Fig. (18), for (a) A = 10�4, (b)
A = 1:4 � 10�2, showing the pump induced coupling (see
text).
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IX. The alpha branch at a lower frequency

In this section we return to the alpha branch, but

this time the pump is placed at a lower position, namely

at x0 = 0:635 and y0 = 0:22879. We do this for three

reasons. First, we want to show that the situation

is not too di�erent to the one encountered when the

pump wave was at a higher frequency. Second, in order

to show that the system is unstable even without the

pump wave when the phase velocities of the +ps and

the ��s waves are close to each other. Third, to illus-

trate a case where the presence of a sound wave can

interfere with an electromagnetic instability.

Figure 20. Dispersion relation for zero pump intensity,
A = 0 (alpha branch) for x0 = 0:635; y0 = 0:22879. The
other parameters are �e = 0:015, �p = 0:15, �� = 0:2,
U = 0:5, � = 0:04, as in Fig. (9).

Fig. 20, where A = 0, is the equivalent of Fig. 12

for the new position of the pump. One can see that the

nature of the crossings is the same. When the pump

is turned on, they give rise to the same gaps shown in

Fig. 13.

We now set �e = �p = �� = 0:08. Fig. 21 shows

the solution of Eq. (53) for zero pump wave inten-

sity. We see that the +ps and the ��s are missing.

This is because U is in the range found by Hollweg et

al. (1993) where a linear beam{plasma instability oc-

curs due to the overlapping of the two sounds. One

interesting point, discussed by Hollweg et al. (1993),

is that this instability can be stabilized by the pump

wave. In fact, Fig. 22, which is the equivalent of Fig.

21, but for A = 10�2, shows that the +ps and ��s

have reappeared, due to the action of the pump which

has separated the otherwise overlapping sounds. Thus,

waves belonging to the alpha branch can also stabilize

the linear beam{plasma instability.

Figure 21. Same as Fig. (20) but �l = 0:08; l = e; p; �. Note
that ��s and +ps have disappeared.

Figure 22. Same as Fig. (21) for A = 10�2 showing the
reappearance of ��s and +ps.

Finally, we take �e = �p = 0:08 and �� = 0:8. The

dispersion relation for A = 0 is shown in Fig. 23. We

see that the ��s passes through the crossing between

the �p and +p waves. This crossing gave rise to an

electromagnetic instability in all previous cases. Now,

however, due to the presence of the ��s, there is a de-

cay instability between the +p and the ��s which has

eliminated the (�p;+p) electromagnetic decay. This

situation is illustrated in Fig. 24 for a pump wave in-

tensity of A = 10�4. Comparing the gap widths of the

electromagnetic instability (+p;�p) of Fig. 10, and the

electrostatic instability (+p;��s) of Figure 24, for the

same pump wave intensity A = 10�4, we see that the
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electrostatic coupling is more sensitive to the growth of

A: It spreads over a wider range of y values. In fact,

it can be shown that already at A = 10�5 a signi�cant

electrostatic gap has developed.

Figure 23. Same as Fig. (20) (� branch) for �e;p = 0:08 and
�� = 0:8.

Figure 24. Same as Fig. (23) but for A = 10�4. Note
the elimination of the electromagnetic decay (�p;+p) (see
text).

X. Summary and conclusions

Parametric decays of large amplitude Alfv�en waves

have been thoroughly investigated over the last 20 years

[Galeev and Oraevskii, 1963; Lashmore-Davies, 1976;

Goldstein, 1978; Sakai and Sonnerup, 1986; Hoshino

and Goldstein, 1989; Vi~nas and Goldstein, 1991a,b].

However, all these studies have considered only one ion{

species. Recently, minor heavy ion species have been

considered by Hollweg et al. [1993] and by Gombero�

et al, [1994a,b,c], showing that heavy ion components

cannot be excluded from any realistic treatment of mul-

ticomponent plasmas.

Thus, we have studied here parametric instabili-

ties of large amplitude EICW in a magnetospheric-like

plasma composed of electrons, a minor component of

energetic protons, a background of thermal protons,

He+ and O+ ions. It is well known that the pres-

ence of minor heavy ions introduces new branches in

the linear dispersion relation of the EICW, which have

resonances at the heavy ion gyrofrequency [Gombero�

and Neira, 1983; Kozyra et al., 1984]. Observations on

board several satellites have con�rmed the predictions

of the linear theory [Young et al., 1981; Roux et al.,

1982].

After the appearance of the EICW, the O+ and

He+ ions are heated up to suprathermal energies of

about 100 Ev. There seems to be little doubt that the

EICW are responsible for this phenomenon. However,

it seems that linear theory alone is not able to explain

the heating of the bulk of the heavy ions [Gendrin et

al., 1984], and nonlinear theory is required. To this

end, nonlinear decays of EICW with only a minorHe+

ion{component has been investigated [Gombero� et al.,

1994]. It was conjectured that He+ ions could be pref-

erentially heated by parametric decays, due to Landau

damping and resonance absorption.

Here we have included a minor thermal component

of O+ andHe+ ions. The nonlinear dispersion relation,

Eq. (41) is now of order 16 and it reduces to the dis-

persion relation of Gombero� et al. [1995a] when �O+

in Eq. (41) is set equal to zero. There are 8 sounds in

the system carried mainly by the ion{components, two

by each species.

We have analyzed in details the parametric decays

of the O+ branch of the dispersion relation. There

are �ve new instabilities: three decay instabilities in-

volving (�O;+Os), (�O;+Hes), (�O;+cps), and two

essentially electromagnetic instabilities, one between

(�O;+O), and the other a modulational instability be-

tween (+O;+r). All of them can lead to O+ heating

either by Landau damping or resonance absorption.

We then study the inuence of the O+ on the He+

and proton branch of the dispersion relation. The gen-

eral picture is similar to the one discussed by Gombero�

et al. [1995a]. In the case of the He+ branch, a com-

parison between Fig.(7) of Gombero� et al. [1995a] and

our Fig. (4) shows that there is a new decay instability
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which involves (+Os, -He), and instead of the mod-

ulational instability, which in the absence of the O+

involves (+He;+r), there is now a new modulational

instability between (�He;+He). On the other hand,

the proton branch is very similar to the case when there

are no O+ ions (see Fig. 9 of Gombero� et al., 1995a)

except that now there is an additional decay instability

which involves (+Os;�p) (see our Fig. 5).

A numerical analysis of the growth/damping rates

of the unstable modes shows that they are comparable,

or even larger, for the sounds involving the heavy ions

[see Galv~ao et al., 1994]. Thus, unless kinetic e�ects

suppress the instabilities altogether, we expect the cold

heavy ion{species to be substantially heated by non-

linear decays of EICW. However, in order to make a

de�nite statement about this point, a full kinetic treat-

ment is required.

From Figs. (3), (4), and (5), it follows that the

pump wave is stable to parametric decays involving the

hot proton sounds for magnetospheric temperatures.

Indeed, they always lead to avoiding crossings, except

for a very small gap between (+hps;+r) in Fig. 10b

of Gombero� et al. [1994a]. Therefore, the role of the

hot species is to provide the free{energy source of the

EICW, namely, the thermal anisotropy, but they do not

intervene in the parametric decay of the waves. Conse-

quently, even though there are energetic heavy ion com-

ponents in the magnetosphere, they can be neglected in

the study of the parametric instabilities.

The observed O+ and He+ energization seems to

be favoured along the direction perpendicular to the

external magnetic �eld. This fact would imply that in-

stabilities involving left hand polarized daughter waves

belonging to the O+ and the He+ branch of the dis-

persion relation, should play an important role in the

energy transfer from the waves to the O+ and He+ ions

via resonance absorption.

Next, we have discussed the linear stability of the

left hand polarized EICW propagating in a three com-

ponent plasma composed of electrons, protons and a

minor component of drifting alpha particles.

For large values of the proton thermal anisotropies,

like those frequently observed in high speed solar wind

streams at 0.3 AU [Marsch, 1991], both branches of the

dispersion relation can be unstable with large values of

the growth rates. The maximumgrowth rate of the pro-

ton branch increases with increasing alpha-proton drift

velocity, while the maximum growth rate of the alpha

particle branch decreases. The reason lies in the fact

that, as U increases, the proton branch separates from

the Doppler shifted alpha particle gyrofrequency, while

the alpha branch becomes closer and closer to the alpha

particle resonance (compare our Fig. 6 with Figure 1

of Gombero� and Elgueta, 1991).

Having shown that both branches of the dispersion

relation can be excited in high speed solar wind streams,

we have studied the non linear decay of the waves. Our

study is based on the work of Hollweg et al. [1993],

but is aimed at a di�erent goal. First, we have ex-

plored the alpha particle branch of the dispersion rela-

tion. Second, we have studied the proton branch using

frequency values of the pump wave within the range of

large growth rates of these waves.

The alpha branch gives rise to a number of decay in-

stabilities. Some of them have been discussed before in

di�erent plasma con�gurations or di�erent branches of

the spectrum, but others are new. In particular, there

is a modulational instability which involves �p and +�

wave which is essentially electromagnetic. It deserves

a deeper analysis, but this is beyond the scope of this

paper. There is also a new decay instability which in-

volves an +�s and a �� wave. Since this instability

involves the alpha sound, it can be a new mechanism

for transferring energy to the alpha particles via Lan-

dau damping.

In the same branch, but for smaller �{values, there

is a new modulational instability between ��s and +�.

This instability can also be important in the energy

transfer to the alpha particles via Landau damping.

We then explored the proton branch by choosing

for the pump wave an !{value close to the maximum

growth rate of this branch. There are two electromag-

netic instabilities involving the +p and the �p waves.

Here, it is interesting to emphasize that we have found

that the lines +ps and ��, that do not cross for A = 0,

are forced to coalesce by increasing the pump strength,

giving rise to a new decay instability. Thus a strong

pump can induce the decay of modes that do not sat-

isfy the resonance conditions when the pump intensity

is zero.

Finally, we returned to the alpha branch, but we

chose for the pump a lower !{value. This was done

in order to show that the nonlinear instability of this

branch is not strongly dependent on the position of

the pump. We also use this example to show that the

system can be unstable to electrostatic perturbations

even in the absence of the pump wave, a situation al-

ready discussed by Hollweg et al. (1993) for the proton
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branch. In this case the linear instability is suppressed

by the action of the pump. This con�guration has also

been used to discuss a case where there is a crossing

between three waves. As a result an electromagnetic

instability is lost and replaced by an ordinary decay

instability.

A general result which applies to both branches of

the dispersion relation of the pumpwave is that for high

frequencies, like the values we have used here, the pump

wave is highly unstable to parametric decays. In fact,

very small values of the intensity of the pump are suf-

�cient to trigger parametric decays, a result to be con-

trasted with Hollweg et al. [1993], where much larger

values of A are required. This is even more so in the

case of the alpha branch.

The present paper is limited in several respects. We

have provided a preliminary identi�cation of the insta-

bilities, leaving out completely the study of the growth

rates and the problem of the pump strength threshold.

It is well known that usually the pump amplitude must

exceed a certain threshold for the development of the

parametric instability. The threshold depends on the

linear damping processes of the waves, generated by ki-

netic e�ects, Thus, in a next stage, a kinetic treatment

of the couplings is necessary. The formalism introduced

by Kaw (1976) for electromagnetic waves and multi-

ple ion species, seems to be a promising starting point.

The matrix elements for the coupling of the interacting

wave amplitudesmust be analyzed to obtain the growth

rates and the physical characteristics of the processes.

Eventually this examination may reveal the possibility

of explosive phenomena. These studies are needed to

obtain the higher level of physical description required

to consider the saturation of the linear kinetic instabil-

ities of the pump and the energy uxes, so that speci�c

applications to solar wind particle heating and acceler-

ation may be envisaged. These studies lie beyond the

limits of the present work which, as remarked in the in-

troduction, aims only to give an exploratory overview of

the parametric processes of the EICW linearly excited

resonant alpha and proton branches.
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Appendix 1

We show here that the EICW formed in a multi-

ple ion species plasma with drifts is a �nite amplitude

solution of the cold plasma model. The EICW are rep-

resented by ~E = (Ex; Ey; Ez) and ~B = (Bx; By; Bz).

All quantities are functions of z and t only. There is

a constant and uniform magnetic �eld ~B = (0; 0; B0).

The plasma species are indicated by the index l, in-

cluding electrons. The density, nl0, of each component

is a constant. Arbitrary drifts along z are allowed,

~vl0 = (0; 0; V l
0), but we assume that the inuence of the

magnetic �eld induced by the drift current is negligible.

Charge neutrality is assumed,
P
nl0q

l = 0. The wave

is associated with motions of the components described

by ~vl = (vlx; v
l
y; 0). We set ~U l = ~vl0+~v

l , and start from

the cold plasma equations:

(@t + ~ul � r)~ul =
ql

ml
(~E +

1

c
~vl � ~B):

Using the polarization representation, E = Ex +

iEy, B = Bx + iBy , and vl = vlx + ivly, we can write

(from cr� ~E = �@t ~B)

@tB = �ic@zE:

The equations of motion give

(@t + V l
0@z + i
l)vl =

ql

ml
(E +

V l
0

c
B);

(
l = qlB0=m
lc), and the fact that vl and B are paral-

lel. From

c~r� ~B = @t ~E + 4�~j;

it follows that

@tE +
X
l

4�qlnl0v
l = ic@zB:
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Collecting the previous results we may write

(@tt � c2@zz)E =
X
l

4�qlnl0@tv
l;

(@t + vl0@z + i
l)@tv
l =

ql

ml
(@t + V l

0@z)E;

where E, vl , are �nite amplitude quantities, since no

linearization procedure is involved. For a solution

with space{time dependence as exp(ikz � i!t), putting

�!l = ! � kV l
0 , we get

vl =
�!l

!

1

(�!l � 
l)

iql

ml
E;

and

[!2(1�
X
l

!2pl
!2

�!l

(�!l �
l)
) � c2k2]E = 0:

We obtain, therefore, the dispersion relation of the

EICW in a multiple species plasma with arbitrary

drifts. This is an extension of Ferraro's �nite ampli-

tude waves [Ferraro, 1955; Barnes and Hollweg, 1974].

Appendix 2

The various quantities which appear in the disper-

sion relation given by Eq. (14) are de�ned as follows:

c

L� = Y 2
� �X2

�= � � 4�X2
�= ��

R� = Y�(X0 �
Y X2

0

Y0X
+
X�

 �
)=2 0

R�� = (2�Y0� �
Y X2

0�

Y0X�
+
X��

 ��
)= 0�

D = �0e��r�X
2 + �0e��rX

2
� ����(XX�)

2

B+ = �2�0eB+�l�r��XX� + B+lX
2(�0e�r� ���X

2
�)

B+� = ��0eB+lr�XX�=2 +B+�X
2
�(�

0
er ��X2)

B�cc = �2�0eB�cc�l�r�XX�=2 + B�cclX
2(�0er� ���X

2
�)

B�cc� = ��0eB�cclr�XX�=2 +B�cc�lX
2
�(�

0
er ��X2)

B+(�)l = �
A (�)(Y+ +(�)X

2
0(�) � Y0 0(�)X+(�))

Y0Y+X(�)

B�cc(�)l =
A +(�)l(Y� �(�)X

2
0(�) � Y0 0(�)X

2
�(�))

Y0Y�X(�)

where

� = A + r(1� �pY
2=X2)

�� = A + r�(1�
��Y

2

4X2
�

)

A = (B=B0)
2

r(�) =  0(�) +(�) �(�)

 0 = 1�X0

 0� = 1� 2X0�

 � = 1�X�

 �� = 1� 2X��

X� = X0 �X
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Y� = Y0 � Y

X� = X � Y U

X0� = X0 � Y0U

X0� = X0 � Y0U

X�� = X� � Y�U

� = 4�npKT=B
2
0

�0e = �eY
2=(1 + 2�):

d
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