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Many bulk polymers are semiconductors having tunable electronic properties as a function
of composition. This variation in composition induces disorder. One of the main interests
in these materials is the fact that the disorder showing correlations leads to the appearance
of mobility edges in the density of states. In this work we explore this correlated disorder
e�ects to build a one-dimensional model for heterostructures where quantum size e�ects are
investigated when mobility edges are inherently included. Although heuristic, such a model
represents an important step in understanding quantum well structures based on amorphous
semiconductors or the recently proposed polymer based structures.

A number of disordered one dimensional (1D) sys-

tems, exhibiting nontrivial extended states, have re-

cently been investigated theoretically[1]. It has been

shown that the delocalization of states is a consequence

of correlations imposed on the disorder[2] . These results

are of paramount importance, since it has been believed

for a long time that 1D disordered systems show only lo-

calized states[3] . Besides that, these localization e�ects

are relevant for some models handling with the trans-

port properties of some polymers (polyanilines)[4]. The

prototype example of the situation where delocalization

of states in 1D disordered chains occur can be summa-

rized as follows. Considering a binary random alloy,

whenever the bond between one of the atomic species

is inhibited, one introduces a short range order that

leads to the formation of a band of delocalized states.

In other words, this e�ect occurs when, in a chain of A

and B type sites, only A-A and A-B nearest neighbors

bonds are allowed. Variations of this kind of corre-

lations have been discussed in the literature recently,

like the random dimer model. Here we are discussing

the electronic properties of a linear chain treated in the

tight-binding approximation, considering one s-like or-

bital per atomic site and nearest neighbor interactions

only.

An important subproduct of these systems is the

possibility to study localization versus quantum con-

�nement e�ects. One can build up a quantum well

with a �nite segment of a linear disordered chain with

this kind of correlation in the disorder. Since there are

energy ranges showing either localized and delocalized

states, one can directly monitor the spatial quantiza-

tion as a function of the localization of the bulk states

of the quantum well material. Although still a one-

dimensional model, this approach goes one step further

in investigating size quantization e�ects in disordered

heterostructures, since now mobility edges of the \bulk

chain" are inherently included.

The tools use in our work are the calculation of

transmission probabilities and localization lengths, as

well as the local density of states (LDOS). We begin

by \characterizing" �nite disordered linear chains with

correlated disorder connected to ordered semi-in�nite

contact chains. This is the ideal con�guration (�nite

segments connected to ordered contacts) to obtain in-

formations on the electronic structure via the transmis-

sion probability of the �nite chain segment considered.

The method to calculate the transmission probability of

this system, starting from a tigh-binding Hamiltonian

H =
X

n

�ijn >< nj+
X

n

Vn;n+1jn >< n + 1j ; (1)

is described elsewhere[5] . The parameters used are:

�A = 0:3 eV, �B = �0:3 eV, VAA= 0.8 eV, VAB=0.3
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eV and VBB= 0.5 eV. An important quantity to char-

acterize the delocalization is the localization length[6],

obtained from the transmission probability:

�(�) = �
2L

ln[T (�)]
(2)

where L is the length of the chain and T (�) the trans-

mission probability.

Figure 1. Transmission probabilities as a function of energy.
The chains are 80 atomic sites long. Solid line represents
the ordered chain. Doted lines denote chains with uncorre-
lated disorder. Dashed lines denote chains with correlated
disorder.

In the Fig. 1 we show the transmission probabilities

for chains with di�erent concentrations of B-type sites

(NB), which are compared with the ordered chain for

NB = 1/2. The chains are 80 atomic sites long. We

compare for NB = 1/2 the uncorrelated and correlated

disorder situations. From this �gure it is clear that the

correlation in disorder leads to the formation of delo-

calized states. The position in energy of the extended

states is independent of the concentration of B-type

sites. This result apparently indicates that the delocal-

ization is due to a short range order introduced by the

correlation.

From the same �gure we can see that disoredered

chains with correlation have a memory of at least two

bands of the ordered systems. On the other hand, the

uncorrelated case shows no delocalized states and has

no memory of the bands for the ordered situation. The

localization length reduces very fast when the correla-

tion disappears, and increases when the B-type sites

concentration reduces. In Fig. 2 we follow the local-

ization lengths of the electronic states as a function

of energy, and we can see clearly the delocalization of

states as function of the correlation for di�erent concen-

trations of B-type sites. Comparing Figs. 1 and 2 we

see that the transmission probabilities show a smooth

behavior when the localization length is of the order or

longer than the chains considered.

Figure 2. Localization length of wave functions as a function
of energy for the same disordered chains of Fig. 1.

Figure 3. Scheme of the bands structure of a double-barrier
quantum well for the ordered case. Barriers are 20 atomic
sites long and the well has 36 atomic sites.
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Figure 4. Top: Local density of states at a site in the well
of a double-barriers structure. The ordered quantum well
is 36 atomic sites long for the NB = 1/4 case. Center and
bottom: Transmission probabilities as a function of energy
for disordered quantum wells.

We proceed by using the NB = 1/2 and NB = 1/4

chains with correlated disorder to build a quantum well.

Fig. 3 shows the band structure pro�le used for the or-

dered case. The barriers are 20 atomic sites thick and

the well is 36 sites wide. We consider disorder only in

the quantum well. One should remind that the disor-

der modi�es the local density of states. In the top of

Fig. 4 we have the LDOS at a site in an ordered well of

NB = 1/4 type. The peaks can be identi�ed with the

size quantization levels. The two lower panels of Fig. 4

show the transmission probabilities for the barrier-QW-

barrier con�guration. One clearly observe resonances in

the transmission probabilities. This resonances are due

to the formation of quasi-bound states in the well due

to size quantization. This can be veri�ed by compar-

ing the position in energy of the resonances with the

position of these states in the LDOS (not show here).

It should be stressed that the resonances in trans-

mission probability are only built-up when the local-

ization lengths of the \bulk" states from the quantum

well are longer than the thickness of the double-barriers

structure considered. This point is made clear in Fig. 5,

where we show the corresponding results to Fig. 4 with-

out correlation in the disorder. We summarize our re-

sults by stabilishing that quantum size e�ects in dis-

ordered systems are possible. The necessary condition

is that the localization lengths of the well material at

energies where the quantum well levels should exist are

longer than the device (double- barriers structure) con-

sidered.

Figure 5. Transmission probabilities as a function of energy
for quantum wells with uncorrelated disorder for di�erent
b-type sites concentration.
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