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We have calculated the electronic structure of one-dimensional electron gas solving self-
consistently the Schr�odinger and Poisson equation. The Schr�odinger equation is solved using
the split-operator technique. The method we use to calculate the structure of subband is
based on the solution of the time-dependent Schr�odinger equation using the split-operator
technique. We investigated the electronic properties of the quantum wires as a function of
gate voltage, from which we determine the threshold between the 2D and 1D transitions.

One-dimensional electron gas systems (lDEG) have

attracted considerable interest, following the advances

in high-resolution lithography, which have made it pos-

sible to fabricate semiconductor structures that con-

�ne the motion of free carriers in two directions. This

con�nement gives rise to new and interesting quantum

properties, because in this regime, the dimensions of the

structure become comparable with the electron wave-

lengths, and the charge transport is dominated by the

fundamental quantum properties of the electron. These

structures are important for device applications, be-

cause the one-dimensional carrier con�nement reduces

scattering that results in higher mobility. A variety

of techniques has been employed to induced the lat-

eral con�nement potentials that form one and zero-

dimensional electron system out of the two-dimensional

electron gas (2DEG).

As a variation of the ordinary single-gate

modulation-doped �eld e�ect transistor, a lateral-

surface superlattice (LSSL) is realized by using grid

gates. In this system the degree of con�nement can

be controlled by changing the gate voltage (Vg). As

su�ciently high gate bias, when the gated regions are

completely depleted, the ungated regions can retain

electrons and the system behaves as an array of iso-

lated quantum wires. When the gate voltage has in-

termediate values such that the gated regions are not

completely depleted the system is a quantum wire su-

perlattice with states extending over several periods of

the structure.

The complexity of the physics inherent in such het-

erostructure devices, however, makes the development

of theoretical models extremely di�cult. Such calcu-

lations are generally based on self-consistent solutions

of the Poisson equation and Schr�odinger equation[1�5],

which are di�cult to set up and often require extensive

computing facilities. In spite of this, some notable ad-

vances have been made on the modelling of quantum

point contacts, etched quantum wires and a range of

quantum dot problems.
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Figure 1: Schematic cross section of the superlattices of
quantum wires. The n+ - Al1�xGaxAs is 300 �A thick, the
Al1�xGaxAs spacer is 50 �A thick, and the gates are sepa-
rated by 400 �A and the gate size is 860 �A thick.

The system studied here is composed by a two-

dimensional electron gas con�ned at the interface of

an Al1�xGaxAs/GaAs heterostructure, on top of which

there is a periodic structure of gates. When a negative

voltage is applied to the gates, the regions at the in-

terface beneath them are depleted and quantum wires

are formed. In the structure considered we take into ac-

count a residual distribution of ionized acceptor impuri-

ties uniformly distributed over the system, and ionized

donor impurities uniformly distributed over a spacer

layer of about 300 �A. A schematic cross section of this

system is shown in Fig. 1.

We use the e�ective-mass approximation to calcu-

late the subband structure. The non-parabolicity ef-

fects are neglected and in this way we describe the mo-

tion of electrons along a wire by a free electron state

with an e�ective mass m�. In order to obtain the sub-

band structure we have solved self-consistently the 2D

Schr�odinger equation
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and the Poisson equation,

r2VH(x; y) = �4�e2

�
[�(x; y)� Nd(x; y) + Na(x; y)] ; (2)
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where Vextt(x; y) is the potential due the conduction

band-o�set which depends on the Al concentration, VH

is the Hartree potential due to the electrostatic interac-

tion of electrons with themselves and impurity charges,

� is the dielectric constant, �(x; y) is the electronic den-

sity and Nd and Na are respectively the donor and ac-

ceptor densities. The electronic density is given by
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X
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Nij�i(x; y)j2 ; (3)

where Ni is the number of electrons per unit of length

in the ith subband
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and �i is it energy, T is the temperature and �F is the

Fermi energy. F
�1=2(�i) is the Fermi-Dirac function,

where we are using an analytical approximation for the

Fermi-Dirac integral, proposed by Humet et al.[6].

The method we have used to calculate the electronic

structure of the 2D system is based on the solution

of the time-dependent Schr�odinger equation using the

split-operator technique[1;7]. Since the system is peri-

odic along the x direction, the Poisson equation can be

solved easily by performing a Fourier Transform of the

charge density �(x; y) and of the potential VH(x; y), in

the x direction. Doing so, we can write the Poisson

equation in dimensionless units as follows

@2v(kx; y)

@y2
� k2xv(kx; y) = 8��(kx; y) ; (5)

where
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VH (x; y) = F [v(kx; y)] = 1

2�

X
kx

e�ikxxv(kx; y) ; (6)

�(x; y) = F [�(kx; y)] = 1

2�

X
kx

e�ikxx�(kx; y) ; (7)

Equation (5) is solved by the �nite di�erences method

in a nommiform mesh, where it can
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with the use of a simple tridiagonal solver in the y direc-

tion to calculate v(kx; y): The inverse Fourier transform

of v(kx; y) then gives the �nal result VH (x; y):

The self-consistent solution of Eqs. (1), (2), (3) and

(4), gives the charge density pro�le, the subband energy

levels, the Fermi energy, and the e�ective potential. In

Fig. 2 we show the e�ective potential obtained for a

gate voltage of 300 mV.

Figure 2: E�ective potential Vef (x; y) for a gate voltage of
300 mV.

Figure 3: The wave function (j	i(x; y)j2) for a gate voltage
of 300 mV, in the bottom of the subband, i.e., kx = 0.

Figure 4: The wave function (j	i(x; y)j
2) for a gate voltage

of 600 mV, in the bottom of the subband, i.e., kx = 0.

The 1DEG system, as well as the 2DEG system we

study depends on several parameters such as: the size of

wires and the gates; the residual density of ionized ac-

ceptor impurities (NA); the size of the undoped layer of

Al1�xGaxAs (spacer); etc. The results presented here

have the following set of parameters: size of wires: 400

�A, size of gates: 860 �A, the temperature set as zero

and NA = 5:0� 1015 cm�3, and the size of the spacer

layer is 50 �A. For this system, we observe that the tran-

sition from a 2D behavior to an 1D behavior occurs for

gate voltages ranging from 600 to 800 mV. At at low

voltages the wave functions of the occupied states are

extended over all the system. Increasing the voltage,

the ground state assumes an 1D character while the
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excited states remain extended. The 1D-2D transition

occurs at the voltage when all occupied states became

localized along the direction perpendicular to the gates.

This is illustraded in Figs. 3 and 4 where we show the

wave functions for the �rst four subbands at kx = 0 (

i.e. the bottom of the subband). For the applied gate

voltage of 600 mV we observer that only the �rst sub-

band becomes localized, while at 300 mV it was also an

extended state.

Figure 5: The dispersion relation for two di�erents gate
voltages. The Fermi energy is set as zero, therefore the only
occupied subbands are those having negative energies.

In the Fig. 5, the dispersion relation for the four

�rst subbands shown in Figs. 3 and 4 are presented.

This relation dispersion is important when calculating

the optical and transport properties of the system.

In conclusion, we have presented a fully self-

consistent Poisson-Schr�odinger solver that handles both

stationary and quasibound states. With this powerful

solver, we have calculated the electronic band structure

of a quantum-wire superlattices formed by a split gate

structure, for any value of gate voltages. The transi-

tion from 2D system to 1D system has been observed

for the ground state. The carrier dispersion relation

was derived, and in a future work we intend to use it

to calculate the conductance in the linear-response ap-

proximation.
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