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A calculation of the electron-LA phonon scattering contribution for an electron gas under
the action of strong magnetic �eld is performed using memory function formalism. We take
into account, through vertex corrections in the di�usive pole approximation, the combined
e�ect due to the presence of impurities in the material, which renormalize the polarization
function. The renormalized electron-phonon interaction is discussed and we calculate, in the
low temperature regime, the dependence of the phonon channel resistivity in terms of the
strength of magnetic �eld.

The resistance in solids appears as a result of elas-

tic and inelastic scatterings by sources like, impurities

and phonons. The Mathiessen's rule, concerning the

sum of resistances of each mechanism separately, works

very well at low temperature and applies equally well in

the presence of an external magnetic �eld. In this work

we investigate the combined e�ect of impurities on the

electron-LA phonon interaction in the di�usive pole ap-

proximation for a two dimensional electron gas system

under the action of a strong magnetic �eld. The correc-

tion to the magneto resistivity in the phonon channel,

due to the presence of impurities in the material, is

calculated using a memory function formalism[1]. Our

results are based on the calculation of ladder diagrams.

They are responsible for the appearance of a di�usive

pole giving a non-zero contribution to the memory func-

tion (MF). We start with a two-dimensional electron

gas (2DEG), under the action of a strong uniform mag-

netic �eld, ~B = Bẑ, perpendicular to the motion plane

and a vector potential ~A(~r) = (0; Bx; 0): The energy

levels of the 2DEG are quantized into discrete Lan-

dau levels, characterized by a state jn; ky > and energy

�n = ~!c(n + 1=2), where n is the Landau level index,

ky is the wave vector in the y direction and !c = eB=m;

stands for the bare cyclotron frequency.

In our derivations the frequency-dependent MF,

M (!) is expressed in terms of the retarded force-force

correlation function, �R(!)[1],

M (!) = �
1

n �m!
[�R(!) � �R(0)] (1)

where the force-force correlation function for electron-

phonon systems is written in the Matsubara �nite tem-

perature representation in terms of the phonon propa-

gator and the density-density correlation function[2]
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c

�yy(� ) = �
X
~q

q2y

2(q)hT�A~q(� )A~q(0)ihTr�(~q; � )�(�~q; 0)i ; (2)

d

where 
(q) is the electron phonon coupling, A~q =

a~q + a+
�~q is written in terns of the phonon destruc-

tion and creation operators. The density operator for

a 2DEG under the action of a magnetic �eld is given

by[3]

�(~q)
X

n;n0;ky

Jnn(�qx; ky; ky + Qy)C
+
n;ky+qy

Cn0;ky ; (3)

with

Jn;n0(�qx; ky; k
0

y) =

Z
d2~r �n;ky (~r)e

i~q;~r n0;k0

y
(~r) (4)

where

 n;ky(~r) = e�ikyy�n(x+ l20ky) ; (5)

�n(x) is the n-th harmonic oscillator eigenfunction,

whereas l20 = ~=m!c is the magnetic radius length. The

retarded density-density correlation function for non-

interacting electronic system at the presence of disorder

is given by

c

�(~x; ~y; 
) =
1

2�i

Z
1

�1

def[n+ (�+ 
)� n + (�)]�RA(~x; ~y
0

; �+
; �)+

n+ (�)�RR(~x; ~y; �+ 
; �)� n+ (� +
)�AA(~x; ~y; �+
; �)]g ; (6)

with n+(�) denoting the usual Fermi function, whereas R and A mean retarded and advanced function, respectively.

Here �ij(~x; ~y; �+ 
; �) satis�es a Dyson equation:

�ij(~x; ~y
0

; �+
; �) = �ij0 (~x; ~y
0

; �+ 
; �) + niu
2

Z
d~r

0

; �ij0 (~x; ~r
0

; �+ 
; �)�ij(~r
0

~y; �+ 
; �) (7)

d

ni is the impurity density, u2 stands for the mean-

square impurity potential and �ij0 means the polariz-

ability without vertex corrections[4] . The contributions

�ij(~x; ~y; �+ 
; �), due to pure ladder diagrams, are re-

sponsible for a di�usive pole structure on the polariza-

tion function. After a straightforward calculation, we

obtain for the Fourier transform of the impurity aver-

aged polarization function in the limit of small ~q;
[4;5];

c

�(~q;
) = �



2�i
�RA0 (~q; �F + 
; �F ) +N (�F ) + O(
; q2) ; (8)

where N (�F ) means the density of states at the Fermi energy, with

�RA0 (~q; �+ 
; �) =
1

2�d20

X
n

�
GR
n (� +
)GA

n (�)� q2l20
�
(n+ 1=2)GR

n (�+
)GA
n (�)�

�
n+ 1

2

�
GR
n+1(�+ 
)GA

n (�)�

�
n+ 1

2

�
GR
n (�+ 
)GA

n+1(�)

��
: (9)

d
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The summations in the above equation are evaluated

by contour integrals, so that the �nal expression to

the renormalized polarization function exhibits clearly

a di�usive pole in the ladder diagram approximation:

�(~q;
) = N (�F )
DBq

2

�i
 +DBq2
; (10)

where the di�usion constant, DB is magnetic �eld de-

pendent, given by[5]

DB =
�F �=m

(1 + w2
c�

2)
: (11)

In our approach, according to Eqs. (2 and 10), we can

write the Fourier transform of the force-force correla-

tion function as

�yy(i!) = �
X
~q

q2y

2(q)

1

�

X
i


D0(i! � i
)�0(~q; i
) :

(12)

Here the symbol D0(i!) describes the bare phonon

propagator and 
 = 2m�=� stands for Bose frequen-

cies. The occurence of imaginary poles is eliminated

in the Matsubara summations, Eq. (10), according to

the properties of the Laplace transforrn of the spectral

functions. One has

�(z) =
1

�

Z
1

�1

dw0p(w0)

w0 � z
= z > 0 ; (13)

with

�(!0) � =�(!0) = N (�F )
DBq

2!0

!02 + (DBq2)2
: (14)

Now, the evaluation of the Matsubara summations

gives for the force-force correlation function

c

���(i!) =
X
~q

q2�

2(q)

1

�

Z
1

�1

d!0�(!0)

�
[n�(�!q)� n�(!0)]

(i! � !0 � !q)
� term (!q !�!q)

�
; (15)

where ��(!) means the Bose distribution function. So, perforrning an analytical continuation, we obtain the

imaginary part of the retarded correlation function:

=�R
��(!) =

X
~q

q2�

2(q) f�(! � !q)[n�(�!q)� n�(! � !q)]� term (!q !�!q)g ; (16)

In this way, we can derive a well-behaved frequency-dependent imaginary part of the MF, in the static limit, as

=M (0) = �
1

nem

d

d!
[=�R(!)]!=0 ; (17)

The cross e�ect on the correction of the dc phonon resistivity (��dc), for 2DEG, can be evaluated in the memory

function formalism, as[4]

��dc = �
2N (�F )DB�

dn2ee
2

2DX
~q


2(q)
q4!q

(!2q +D2
Bq

4)

e�!q

(e�!q � 1)2
; (18)

where � = (kBT )
�1 and !q = csq, with cs, denoting the velocity of the sound in the material. Finally, the negative

correction e�ect on the phonon channel resistivity, obtained in ours calculations, can be written as

��effdc =

���� ��dc
�N (EF )�2dDB=4�Nimi�2ee

2c8s�
5~4

���� =
Z
1

0

x5exdx

(ex � 1)2(1 +Ax2)
; (19)

d
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where we have assumed usual values for a two-

dimensional system, e.g., Si-MOSFET[6], and we have

taken x = ~�csq and A = D2
B=~

2�2c4s:

Figure 1. The behavior of ��
eff

dc in the low temperature
regime for some magnetic �eld intensities.

Figure 2. The log-plot for ��
eff

dc , in arbitrary units, as a
function of the temperature for B=5,7,10,20 Tesla.,

Figs. 1 and 2 show the behavior of this correction

e�ect on the resistivity as function of the temperature,

at low temperature regime, for several magnetic �eld

strengths. As one knows, by applying a magnetic �eld

the 
ux through the path creates di�erences in the elec-

tron phases which are much bigger than 2� and after

averaging on impurity con�guration gives rise to a de-

crease on the resistivity[7]. In the present case, the neg-

ative correction term on the resistivity is very muchlike

the negative magnetoresistance: before returning to the

starting point in the self-crossing path the electron has

its phase changed randomly through the scattering by

the LA phonons. As in the case of randomizing the

phase through the magnetic 
ux, this phonon scattering

mechanism is expected to decrease the resistivity, as ob-

tained in the above calculations. Furthermore, the cal-

culations presented throughout this paper reveals that

the correction ��effdc is signi�cant only to high magnetic

�eld regime.
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