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We show that a transition to chaos is expected in an asymmetric double barrier structure
with a magnetic �eld parallel to the current. The transition occurs via successive bifurcations
as the magnetic �eld is increased. The origin of this chaotic behavior is the electron-electron
interaction in the space between the barriers near resonance.

Since the �rst observation of resonant tunneling

through semiconductor based double barrier struc-

tures by Chang, Esaki and Tsu, these devices have

been found to exhibit a variety of interesting physi-

cal properties[1] . Besides a peak due to simple res-

onant transmission, structures arising from phonon[2]

and plasmon -assisted[3] resonant tunneling, as well as

from Landau level matching[4;5], has been observed.

Moreover, an intrinsic dynamical bistability and hys-

teresis in the negative di�erential resistance region has

been reported[4;6;7]. These latter e�ects arise from

the Coulomb repulsion experienced by incoming elec-

trons from the charge buildup in the space between the

barriers[6]. Numerical simulations show the system to

oscillate as states of unstable electron charge buildup

and ejection are reached[8] . In this work we include a

magnetic �eld parallel to the current and explore the

unstable region as the �eld is increased. We show that,

while the phenomenon of hysteresis persists, the sys-

tem bifurcates into bistability, and is capable of further

bifurcations leading to true chaos.

We consider the transport properties of a double

barrier heterostructure in the presence of a longitudi-

nal magnetic �eld. A tight-binding model is used for

the electron Hamiltonian. The response of the sys-

tem is studied introducing a fully selfconsistent scheme

to treat the electron-electron interaction in the steady

state when the bias is applied. Inclusion of a longitu-

dinal magnetic �eld B (in the growth direction, hence-

forth called the z direction) is simple if a parabolic en-

ergy dispersion parallel to the interfaces is assumed.

The �eld quantizes the motion of the electrons in the

xy plane, giving rise to Landau levels with energies

�n = (n + 1=2)~!c, where n = 0; 1; 2; ::: is the Landau

�Actual address: Universidad de Santiago de Chile, Departamento de F��sica, Casilla 307, Santiago, Chile.
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index and !c = eB=m�c is the cyclotron frequency.

Assuming that the longitudinal degree of freedom is

decoupled from the transverse motion the hamiltonian

takes the form,

H =
X
in�
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yn
i� c

n
i� + t

X
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cyni� c
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j�
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yn
k�c

n
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where the operator cyi creates an electron at site i in a

Landau level n; t is the hopping matrix element between

nearest neighbors < ij >, �i the band contour and ex-

ternal bias, and U ij
kl the electron-electron coupling ma-

trix. For simplicity we have restricted the Coulomb

interaction to the intrasite contribution and we ignored

the spin degree of freedom. A Zeeman splitting of the

Landau levels can easily be included in our model, yet

we shall ignore them here. As in the Hubbard model we

have assumed the Coulomb repulsion of the electrons to

be represented by its dominant term, the intra-atomic

interaction. Although there is no essential di�culty in

incorporating the inter-atomic contributions, the nu-

merical calculation is more involved, without introduc-

ing qualitative di�erences in the physical description of

the system.[9]

The eigenstates may be expanded in an orthonormal

basis of states localized at site i corresponding to Lan-

dau level n of the noninteracting single electron system

ji; n >;

j � >=
X
l

an�i ji; n > (2)

Here

an�i =< i; nj � >=< 0jcni j 
� > (3)

with j0 > representing the vacuum. Applying the

Hamiltonian (1) on the wave function (2) the eigen-

values equation results to be

��a
n�
i = (�i + �n + U

X
n�

jan�i j2)an�i

= t(an�i�1 + an�i+1 � 2an�i ) (4)

where the sum over � covers all occupied electron states

of the system. We have used a mean �eld approxi-

mation (Hartree) to treat the electron-electron interac-

tion, the energy �� is measured from the bottom of the

band. This is a nonlinear di�erence equation for the co-

e�cients an�i ; its nonlinear character arising from the

thirth term in the right hand side.

Equation (4) has the usual form for a tight bind-

ing band, except for the presence of external �elds and

the nonlinear interaction in the diagonal term. In order

to study its solutions we assume a plane wave incident

from the left, which is partly reected and partly trans-

mitted by the device. The waveform at the far right is a

single plane wave and the iteration of Eq. (4) may thus

be conveniently done from right to left. For a given

transmitted amplitude the associated reected and in-

cident amplitudes may be determined by matching the

iterated function to the proper plane waves at the far

left. We assume the sample has a total of N sites.

Because of the presence of the nonlinear term in Eq.

(4) it is convenient to de�ne a second time-like iteration

in the following way. Initially Eq. (4) is solved ignor-

ing the nonlinear term and for energies up to the Fermi

energy. The coe�cients thus obtained correspond to a

solution for non interacting electrons. They are used

to construct the nonlinear term for the next solution

(second time-iterate) of Eq. (4). The procedure is con-

tinued, always using for the nonlinear term solutions of

the previous time-iteration. This procedure de�nes the

spatio-pseudo-temporal map,

��a
n�
i;�+1 = (�i + �n + U

X
n�

jan�i j2)an�i;�+1

= t(an�i�1;�+1 + an�i+1;�+1 � 2an�i;�+1) ; (5)

that is linear in space (i) and nonlinear in time (� ).

Maps nonlinear in space and time have been studied in

other contexts. In particular, the coupled map model

for open ow has been found to exhibit spatial chaos

with temporal periodicity[10]. As we shall see, in our

case chaos develops in the time iterates, only. Note

however that the time variable here is �ctitious since

Eq. (4) describes the stationary solutions and we are

not solving the time dependent problem explicitely. In
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Figure 1. Current-voltage characteristics for a) B = 0T, b) B = 2T, c) B = 6T, d) B = 13T and e) B = 17T. Dashed lines
are for decreasing bias. Sample parameters for this and following �gures are described in the text.

fact our procedure is what is usually referred to as a self-

consistent loop. From the coe�cients obtained solving

Eq. (4) we compute the current using the expression[11]

J =
e

~(�lm)2

X
n

Z knf

0

k0zjT j
2dkz ; (6)

where lm = (~c=eB)1=2 is the magnetic length, jT j =

jaN j the transmission coe�cient of the normalized

eigenstate at energy �, �f the Fermi energy, kz(k
0
z) is

de magnitude of the electron wave vector in the emit-

ter (collector), knf =
p
2m�=~2(�f � �n) and the sum

is over magnetic energies �n � �f :

For de�niteness we apply our model in what follows

to an asymmetric GaAs/AlGaAs double barrier struc-

ture, with emitter and collector barrier thicknesses of

1.12nm (2 sites) and 3.36nm, (6 sites) respectively, and

a well thickness of 11.2nm (20 sites). For this geometry

the �rst resonance at zero bias occurs at 30 meV. The

conduction band o�set is set at 300 meV. The bu�er

layers are uniformly doped up to 3nm from either bar-

rier, and so as to give a neutralizing free carrier concen-

tration of 2� 1017cm�3 at the contacts. In equilibrium

and at B = 0T, the Fermi level lies 19.2meV above the

asymptotic conduction band edge, so the zero bias reso-

nance lies above the Fermi sea. The external potential

is taken to drop linearly between the left edge of the

�rst barrier and 112 sites down to the right. The pa-

rameter values in Eq. (4) are set at t = 2.16eV and U =
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10meV, appropriate for GaAs[12]. The sample has N =

400 points and the normalization of the wave functions

is chosen so that charge from the electrons �lling up

to the Fermi energy exactly cancels the positive charge

at the contacts. In our procedure the map is linear in

space, so that normalization involves simple multiplica-

tion of all coe�cients at a given energy by a constant.

Since the electron density has rather long range oscil-

lations we made sure the sample was long enough to

make �nite size e�ects small. We solved Eq. (4) us-

ing the procedure described above, for an energy mesh

appropriate to compute the integral in Eq. (7). Good

convergence was found for a mesh of 100 points.

Fig. 1 shows the current-voltage (I-V) characteris-

tics for several values of the magnetic �eld. At zero �eld

hysteresis is obtained as the voltage is increased (Fig.

1(a), solid line), and later decreased (dashed line). In

either case the time iteration was found to converge to

a stable �xed point. The width W of the hysteresis loop

is enhanced by our choice of an asymmetric structure,

with a collector barrier that is wider than the emitter

barrier, as expected[13;14]. Calling r = wL=wR the ra-

tio between our left and right barriers we increased wR

keeping all other parameters �xed and found W to rise

smoothly from zero at r = 0.9, and saturate to W =

0.077V at r = 0.55.

When the magnetic �eld is turned on, oscillations

in the I-V curve appear as the bias is increased, as seen

previously in other samples both in experimental[5] as

well as theoretical[15] work. They are illustrated in Fig

1(b) for B = 2T. These oscillations may be associated

with Landau levels in the 2D space between the bar-

riers entering the Fermi sea and opening new channels

for conduction. A completely novel feature starts to

develop at B = 4.8T, however, where two period-two

�xed-points are encountered in the time iteration at cer-

tain voltages. This bubble-like feature is illustrated in

Fig. 1(c) for B = 6T. Note that these new solutions are

not reached as the voltage is decreased (dashed line).

This suggests that the bistable regime and the hystere-

sis e�ect correspond to two di�erent attractors of the

nonlinear map. At 6T there are two Landau levels oc-

cupied so a single shoulder appears in this �gure. As

the magnetic �eld is raised still further the area of the

bistable bubble decreases and �nally disappears. A new

bubble sets in however at B = 6.5T and 0.18V. At larger

�elds it undergoes further bifurcations, as seen for B =

13T in Fig. 1(d), and �nally full chaos appears as shown

for B = 17T in Fig. 1(e).

A better display of the transition to chaos is ob-

tained in an I-B diagram, as shown in Fig. 2(a) for a

�xed bias of 0.27V. At lowmagnetic �eld the current os-

cillates with the �eld, a feature that has been observed

experimentally and arises from the oscillations in the

Fermi energy[4]. A thin bifurcation loop appears at 5T,

corresponding to the loop seen in Fig. 1(c), which has

moved to lower bias with increasing B. At higher �elds

the current undergoes a bifurcation cascade leading to

a chaotic region, which eventually unfolds back to solu-

tions of �nite periodicity. The last 500 points of a 1000

iteration run are shown. The Lyapunov exponents as-

sociated with this �gure are shown in Fig. 2(b). They

were obtained using the method of Wolf et al [16].

Figure 2. I-B diagram (a) and Lyapunov exponent (b) for
a �xed bias of 0.27V.

Fig. 3 shows the dimensionless charge density S =P
� ja

�
i j

2 across the sample in the chaotic region for

0.27V and 17T. Included in the �gure are time itera-

tions form � = 200 to � = 400. Note that only points

to the left of the barriers are signi�cantly a�ected by

the chaotic behavior of the system. The solution with

little charge between the barriers, shown in more de-

tail in the inset of the �gure, was obtained decreasing

the voltage from above, and gives the hysteresis e�ect.
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As noted above, it is not accessible when the voltage

increases, suggesting that hysteresis and multi-stability

or chaos are separate phenomena.[8]

Figure 3. Dimensionless charge density S in the chaotic
region for 0.27V and 17T. Right inset shows detail of the
�gure. Left inset shows the potential pro�le in eV.

Figure 4. Iteration map for the current at 0.27V and 18T.

The current is a global property of the spatial map

we are considering, in the sense that it is invariant in

space and involves a convolution of solutions at all rel-

evant energies. In our procedure for solving Eq. (4) it

de�nes a sequence IB;V + � + 1 = f(IB;V� ) which sets

up a two-parameter one-dimensional map in the prob-

lem. The shape of the map may be obtained from the

time series in the chaotic region at �xed bias and mag-

netic �eld. An example is shown in Fig. 4, at 0.27V

and 18T. A map with the same shape characterizing

the Belousov- Zhabotinskii reaction has been shown to

describe a strange attractor[17]. We note however that

the shape is not universal in all chaotic regions of pa-

rameter space.

Fig. 5 is a phase diagram in the two parameter

space V-B showing the various structures we have de-

scribed. The thick lines delimit the region of hysteresis.

In the dotted regions bifurcations of various orders ap-

pear, while the brick design marks regions where chaos

is present. The horizontal dashed line at 0.27V guides

the eye in identifying the structure exhibited in Fig.

2, while the vertical line at B = 17T may be used to

follow the complex structure found in Fig. 1(e). It is

clear from the �gure that there are wide regions of ex-

perimentally accesible values of the bias and magnetic

�eld where chaos is present, which opens the interesting

possibility of an experimental study of the transition to

chaos in a mesoscopic device.

Figure 5. Phase diagram in parameter space. The thick
lines delimit the region of hysteresis. Dotted areas are where
one or more bifurcations are present while the brick design
marks chaotic regions. The vertical (horizontal) dashed line
corresponds to Fig. (1e) (Fig. (2a)).

In summary, we have shown that an asymmetric

double barrier near resonance is capable of undergoing

a transition to chaos through the route of bifurcations.

We characterize the associated nonlinear map by the

current, and use as control parameters the bias and

the magnetic �eld, all easily measurable quantities. It

is hoped that this work will motivate an experimental

search of the predicted transition.
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