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We have investigated the inuence of an uniform electric �eld, applied in the growth di-
rection, and an uniform magnetic �eld, perpendicular to this direction, on the resonant
tunneling of electrons in a system formed by two asymmetric quantum wells separated by a
thin barrier. The semiconductor heterostructure is considered in the e�ective mass approxi-
mation and one band model. The method we have used to calculated the electronic structure
is based on the solution of the time-dependent Schr�odinger equation using the split-operator
technique. The tunneling dynamics in the resonance condition is studied using the time
evolution of a wave-packet from which we determine the tunneling time. A comparison with
recent experimental data is presented.

I. Introduction

Tunneling of carriers in semiconductor heterostruc-

tures has been extensively studied both theoretically

and experimentally, because of the importance of its

fundamental quantum mechanics aspect and its tech-

nological interest in applications as fast tunneling

devices[1] . In the last few years, asymmetric double

quantumwells structures (ADQWS's) have been widely

used to investigate tunneling through a barrier, since in

those systems the tunneling processes can be studied by

optical means[2�5]. Due to the di�erent size quantiza-

tion of the two wells, selective excitation in one well

is made possible and optical recombination, after tun-

neling, can be detected. Furthermore, the coupling be-

tween the wells can be modi�ed by application of an

electric �eld in the growth direction and/or a magnetic

�eld either parallel or perpendicular to it. In the reso-

nance condition the states become delocalized over the

two wells. A coherent excitation of the two levels arising

from the coupling, can lead to an optical observation of

charge oscillations of the photocreated wave packet[2].

Heberle et al.[5] have shown, using time-resolved pho-

toluminescence (PL) spectroscopy, that the decay time

reaches a minimumat certain values of applied external

electric and magnetic �elds, and that this minimum is

directly related with the resonant tunneling transfer of

electrons between adjacent wells.

Following recent experimental results[5] we have in-

vestigated theoretically the inuence of uniform electric

�eld applied in the growth direction and magnetic �eld

applied perpendicular to it on the resonant tunneling of

electrons in a system formed by an AlxGa1�xAs/GaAs

ADQWS. The wide and the thin wells have a thickness

of 100�A and 50 �A respectively. The AlxGa1�xAs barrier

is 60�A thick and has an Al concentration of x = 0:35.

The resonant and nonresonant magnetotunneling times

have been measured[5] using time-resolved picosecond

photoluminescence spectroscopy. During the measure-

ments electrons and holes are photoexcited and the sig-

nal of the ground state of the thin well is monitored. For

the values of electric �elds used only electron states are
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almost in resonance while the hole states are far from it.

Therefore only electronic states are involved in the tun-

neling process. Due to that, the dispersion relations of

this structure have been calculated for di�erent values

of electric and magnetic �elds using the e�ective mass

approximation and the one band model. We thus ne-

glect any e�ect related to valence band mixing and non-

parabolicity. The good agreement obtained between

theoretical and experimental results shows that these

e�ects are not important to treat the resonant tunnel-

ing of electrons. The tunneling dynamics in the reso-

nance condition is studied through the time evolution

of a wave-packet using the time dependent Schr�odinger

equation from which we determine the tunneling time.

The Schr�odinger equation of the system, for the

wave function �nkx(z), of an electron in the nth sub-

band under an electric �eld applied in the growth di-

rection (z direction) and a perpendicular magnetic �eld

(y direction) can be expressed as
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where "nkx = "n(kx; ky = 0) is the energy of the nth

subband, E is the applied electric �eld, m�(z) is the

electron e�ective mass that varies along the di�erent

heterostructure layers and Vc(z) is the pro�le of the

conduction band due to the band gap discontinuity.

The cyclotron frequency is given by !c = eB=m�(z)c

and z0 = �~ckx=eB = �l2ckx is the position of the cy-

clotron orbit center. To solve this equation we use the

split operator technique[6;7]. This method is based on

the solution of the time-dependent Schr�odinger equa-

tion, which for numerical purposes is written as
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where V (z) is the total potential energy and p is the mo-

mentum operator. The error introduced in this expres-

sion is due to the noncommutativity of the kinetic en-

ergy and potential energy operators and since in equa-

tion (2) each operator is unitary, the norm is strictly

conserved. The time evolution of an wave function

 n(z; t) is obtained �rst by multiplying the initial wave

function  n(z; 0) by exp(�iV (z)�t=2~). To perform

the second operation we use the following approxima-

tion
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The operator on the right-hand side is unitary and as a

consequence the norm will be preserved. The error in-

troduced by the expansion in equation (3) is of the same

order as in equation (2). In order to solve equation (3)

the derivatives are performed as �nite di�erences such

that the solution is reduced to the inversion of a tridiag-

onal matrix. The result is then multiplied by the third

operator exp(�iV (z)�t=2~) to obtain the wave func-

tion at time t +�t. By using this propagation scheme

in the imaginary time domain (� = it) we are able to

calculate the eigenstates �nkx(z) and eigenvalues "nkx
of the equation (1). We choose the initial wave func-

tion  n(z; 0) as being the eigenstates of the harmonic

oscillator. It is important to stress that, in the imagi-

nary time propagation the wave functions must be or-

thonormalized at each time step. This method is very

stable, almost independent on the initial wave functions

 n(z; 0) and the energy convergence is very fast.

Figure 1. Schematic diagram of the dispersion relation
"n(kx) for the �rst two electronic subbands of a ADQWS
with a magnetic �eld applied in the y-direction. The inter-
section of the subbands allows resonant transfer of electrons
from the narrow quantum well to the wide one. (a) reso-
nant magnetic �eld; (b) situation where resonant transfer
of electrons is not possible, since the resonant state is not
occupied.

The main e�ect of the electric �eld is to vary the

energy separation of the con�ned states of the adjacent

wells, without any changes in the in-plane wave vectors.

Therefore, in the resonance condition an electron can

tunnel from one well to the another with any in-plane

canonical momentum. On the other hand, a magnetic

�eld applied perpendicularly to the growth direction

shifts the dispersion relation of the states localized in

the wide quantum well against that of the states local-

ized in the thin one. The intersection of these subbands

ful�lls conservation of energy and transverse canonical

momentum for resonant tunneling, and therefore, al-

lows resonant transfer of electrons from the thin quan-

tum well to the wide one with a well determined kx.

However, after optical excitation the electrons relax to

the bottom of the subbands and resonant transfer is

only possible if the applied magnetic �eld is such that

resonant states occurs in the subband edge of the nar-

row well, as shown in Fig. 1. In this case, electrons can

be injected resonantly at �nite in-plane wave vectors in

the target well. For a given value of the electric �eld,

i.e., for a given energy separation between the energy

levels of the quantum wells, we determine the magnetic

�eld necessary to reach the resonance condition.

Figure 2. Dispersion relations in the absence of electric �eld
and for a resonant magnetic �eld (k�1

0 = a
�

0 { e�ective Bohr
radius). The solid line was calculated using equation (1) for
a magnetic �eld of 15.6T and the dashed line was obtained
by �rst order perturbation theory with a magnetic �eld of
14.0T.

In the Fig. 2 we show the dispersion relation,

"n(kx), in the resonance condition obtained from the
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solution of the equation (1) in the absence of electric

�eld. Due to coupling between the wells we can observe

an anticrossing of the resonant states, which produces

a gap �" in the dispersion relation (solid line). The

dashed line was obtain treating the magnetic �eld as a

perturbation of the �rst order. In this case the energy

is given by

"n = "0n+
1

2m�
(~kx + eBhzin)

2+
e2B2

2m�

�
hz2in � hzi2n

�
:

(4)

where "0n is the nth subband energy of the unperturbed

problem. The second term represents the original

parabolic kx dispersion shifted by an amount eBhzin,

where hzin is the expectation value of z and the last

one is the diamagnetic shift. The condition for reso-

nant transfer of the �rst two levels (n = 1 and n = 2)

is therefore
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where �E = "02�"
0
1, which is determined by the applied

electric �eld, and BR is the magnetic �eld necessary to

reach the resonant condition with (�z)2 = (hzi2�hzi1)
2

and (�zn)
2 = hz2in � hzi2n. Since we are using �rst

order perturbation theory, we do not expect any inter-

action between the levels, i.e., we cannot observe any

anticrossing between them. This results in a lower value

for the resonant magnetic �eld as can be noted in the

Fig. 2.

Applying an electric �eld in the growth direction

we can vary the subband energy separation, �E, be-

tween the energy levels localized in the di�erent quan-

tum wells. Decreasing �E shifts the resonance to lower

magnetic �elds, as shown in Fig. 3. The solid line was

calculated with equation (1) where, for a given value

of electric �eld we determine the magnetic �eld neces-

sary to reach the resonance condition. The experimen-

tal results were obtained from the time resolved PL

spectroscopy[5] . In this reference the authors claimed

that the systematic di�erence observed between the ex-

perimental data and that obtained from the �rst order

perturbation theory originates from the excitonic inter-

action. We show here that this di�erence is in fact due

to the coupling between the levels, which is not take

into account by the perturbation theory. As can be ob-

served in Fig. 3, our results are in excellent agreement

with the experiment.

Figure 3. Subband energy separation (which is given by
the applied electric �eld), �E, for several applied magnetic
�elds in resonance condition. The experimental results were
obtained by time resolved luminescence spectroscopy[3] .
The dashed line was calculated using �rst order perturba-
tion theory (equation (4)) and the solid line was obtained
solving equation (1).

Figure 4. Resonant tunneling time as a function of the an-
ticrossing energy gap (a) and as function of the resonant
magnetic �eld (b). The dashed lines are a guide to the eye.
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In the Fig. 4 we present the dependence of the tun-

neling time, �� , on the applied magnetic �eld and on

the anticrossing energy gap, �". This results were ob-

tained using the temporal evolution (equation (2)) of

the states which satisfy the resonance condition. Fig.

4a shows that the dependence of the tunneling time on

�" follows the well known expression �� = �~=�" ob-

tained for a general two levels system. As can be noted

from Fig. 4b the tunneling time decreases as the mag-

netic �eld, necessary to reach the resonance condition,

increases. This is due to the coupling between the states

which becomes stronger as the magnetic �eld increases,

since the splitting between the levels also increases.

The values obtained for the tunneling time are in good

agreement with the experimental data measured using

time resolved degenerated four-wave-mixing and pump-

probe spectroscopy [2] and time resolved coherent de-

tection of the submillimeter-wave radiation [8].

In conclusion, we have presented theoretical results

on the resonant tunneling of electrons and the coherent

wave packet oscillations in the asymmetric double quan-

tum well structure under crossed electric and magnetic

�elds. The consistency between our results and the re-

ported experiments shows that the one band model and

the e�ective mass approximation gives us a good de-

scription of the electronic states. However, the approx-

imation of independent bands does not provide good

results to the hole states [9;10], since the inclusion of

valence band mixing is crucial to understand the hole

tunneling transfer.
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