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Stability of a strained monolayer on a substrate as a function of lattice mismatch and
disorder is considered. Disorder arises from microscopic roughness of the substrate surface
resulting in local critical shear forces which are random. A simplified two-dimensional atomic
model with Lennard-Jones interactions and a diluted pining potential is used to model the
system. The stability of lattice registry is determined via molecular dynamics calculations.
An initially strained overlayer is found to always become unstable, with vanishing static
shear friction, for increasing dilution via an elastic breakdown due to disorder.

I. Introduction

A great deal of work has been devoted to the study
of coherently strained layered structures, which are par-
ticularly important for device a.pplications[ll. However,
the applicability of these systems is often limited by
a lattice mismatch between the layers which leads to
an instability with generation of interfacial defects in
the form of misfit dislocations®!. It is important then
to understand the limitations of the stability of these
structures in order to develop applications with well-
controlled parameters. Most of the analytical and nu-
merical work3B—% for these systems consider a perfect
substrate. For small lattice mismatch, the overlayer re-
mains in registry with the substrate but for larger mis-
match the system is unstable to the formation of misfit
dislocations at a critical value of the misfit parame-
ter §,. In practice however, overlayers are often grown
on substrates which are likely to have some degree of
disorder. While much work has been devoted to the
thickness dependencel®f] of 6., the effect of substrate
disorder on the stability of the system is a problem
much less understood.

In this work, we consider the stability of a single
monolayer on a substrate as a function of lattice mis-
match and disorderl. We consider a type of disor-

der that could result from microscopic roughness of the

substrate surfacel®. If the surface is relative rough on
the microscopic scale it is likely that different surface
areas of the interface between substrate and overlayer
experience different surface stresses or pinning poten-
tials. A simplified two- limensional atomic model with
Lennard-Jones interactions and a diluted pinning po-
tential is used to model this system. The dilution is
taken to represent a finite concentration of vanishing
pinning centers. The stability of lattice registry is de-
termined using molecular dynamics calculations. We
find that this kind of disorder have a strong effect on
the stability of the system. An strained overlayer which
is in registry on a perfect substrate is found to become
unstable, with vanishing static shear friction, for in-

creasing dilution.

The model system consists of a two-dimensional

monolayer of particles interacting with a pair potential

w(r) = e(ro/r)' = 2(ro/r)’] ey

were ¢ is the potential well depth and rq is related to
the particle separation, b, at the minimaof the potential
by b = 21/6ry. In addition, each particle also interact
with pinning centers, representing the substrate, with

a separable gaussian potential of the form -
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u(r) =Y Ajlexp(—(e—x;)*/20°)+exp(—y—y;)*)/207]

J

(2)
where A; is the strength of the pinning potential at
site j of a square lattice of lattice spacing a and o is
the effective range of the pinning center. Microscopic
roughness of the substrate on the length scale defined
by a leads to different local shear stresses of a pinned
overlayer which are proportional to A;. So, to take into
account this kind of disorder in the simplest possible
form, we assume that A; has only two values, U or

zero, given by the probability distribution

P(A4) = 26() + (1= 2)s(Ai = U)  (3)

where z is the concentration of diluted pinning centers.

We determine the response of the overlayer to an
applied external shear force using molecular dynamics
techniquesl®). The equation of motion for the particles

with coordinates 7;(t) is given by

ou Ov

e B O

mr; +mnr; = —

where F' is the external shear force, u and v are the in-
teracting potentials, 7 is a microscopic friction constant
and &; is a stochastically fluctuating force satisfying the

fluctuation-dissipation theorem

< & u(0)E ,(0) >= 2pmkT6;56,.,6(t) (5)

where m is the mass of the particles, 7" is the tem-
perature and v, g represent the components of &. We
use dimensionless variables r/a, t/7, kT /U where 7 =
(ma/U)? and a dimensionless force Fa/U. In the sim-
ulations, the time variable was discretized in time steps
of dt = 0.0017 and typically 2 x 10° time steps were
used to obtain averages. We used o/a = 0.005 and
¢/U = 1. The temperature, ¥T/U = 0.2, was chosen
small compared to the pinning strength so that collec-

tive diffusion of the overlayer 1s not a dominant effect.
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Figure 1. Static shear friction F. as a function of dilution
z. The vertical arrow indicates the percolation threshold,
pc for site dilution on a square lattice.

When F' = 0 the overlayer 1s either pinned or un-
pinned with zero drift velocity, depending on the mis-
fit parameter 6. The misfit parameter is defined by
8§ = (b—a)/a so that for § = 0 and without disorder the
particles are in registry with the substrate, forming a
square lattice, and a critical shear force F.(8), the static
friction, is required to depin the overlayer inducing an
average drift velocity P = ﬁ/mn The critical misfit, 6.,
for stability of the overlayer can be associated with the
lowest value of é at which F. vanishes. We extend this
criterion to study the disordered case. In Fig. 1, we
show the results of the calculation of F. as a function
of dilution # for small misfit 6 = 0.05 averaged over
different realizations of disorder. For x = 0, the over-
layer 1s in perfect registry with the substrate leading to
a finite F, but, as « increases, F, decreases significantly
even for small # and appears to vanishes at a value x,
close to p.. The quantity p. = 0.5927 is the known

191 for the forma-

value of the site percolation threshold
tion of an infinite cluster of diluted sites. Our data is
not precise enough do determine if ¥, vanishes before
or at p.. However, in simple models of percolation in
elastic networks!!® the onset of nonzero elastic constant
coincides with the percolation threshold which suggests
that similar behavior could result for F. as a function
of #. Since F\ is a measure of the stability of the pinned
overlayer, the decrease of F. can be associated with a
decrease 1n the critical misfit 6, as a function of disor-

der. This implies that an overlayer which has a misfit

6 < 6. on a perfect substrate could be out of registry on
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a substrate with surface disorder. The static friction F,
and the decrease of . as a function of dilution can be re-
garded as an elastic breakdown problem induced by the
presence of defects (unpinned particles) on an otherwise
pinned overlayer. In fact, current work on breakdown
in random medial'!l suggests that the dominant factor
limiting the elastic strength of these systems are de-
fects. In our model, since the local static, shear friction
at a diluted pinning center vanishes, it follows that the
particles close to this center will have an initial sliding
proportional to the external force which will in turn in-
crease the external force on neighbouring particles even
further leading to depinning. At F., breakdown occurs
producing an overall sliding of the overlayer, as more
and more particles are unpinned. It should be interest-
ing to study this phenomenon in detail and its effect on

adhesion of strained layers on disordered substrates.
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