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The e�ects of interface optical-phonon and con�ned slab LO-phonon modes on the polaron
cyclotron resonance mass are investigated with considering the band non-parabolicity for
a GaAs/AlxGa1�xAs quantum well. The polaron cyclotron frequency has been obtained
from the peak positions in the magneto-optical absorption spectrum. The results of our
calculation are in good agreement with the experimental results of the cyclotron mass.

In the last decade, polaron e�ects in two-

dimensional (2D) semiconductor systems have received

considerable attention[1�9]. Theoretical studies have

shown that, only considering the con�nement to the

electrons and using bulk LO-phonon modes[1�6], the

behavior of polaron Landau levels and cyclotron reso-

nance (CR) mass in a 2D system is qualitatively simi-

lar to the 3D case. Recent studies[7�9] indicated that

in narrow GaAs/AlAs quantum wells (QW) the elec-

trons couple substantially to interface phonons and the

magneto-polaron resonance is inuenced considerably

near the LO- and TO-phonon frequencies of GaAs and

AlAs.

As far as we know, a detailed comparison of the

theoretical calculations with the experimental results

has not been reported in the literature even though

a large amount of theoretical work has been done on

the polaron e�ects due to the interface phonons in 2D

semiconductor systems. In a previous work[8], we in-

vestigated the e�ects of interface optical-phonon and

con�ned slab LO-phonon modes on the polaron cy-

clotron resonance (CR) frequency for a GaAs/AlAs

QW. Our study focused on the magnetopolaron reso-

nance e�ects due to the interface modes and the calcu-

lation based on a parabolic conduction band structure.

In this paper, we calculate the polaron cyclotron mass

obtained from the magneto-optical absorption spectra.

Our calculation is improved by taking into account the

band nonparabolicity of the 2D electron system and ex-

tended to GaAs/AlxGa1�xAs QW structures by con-

sidering the e�ective TO and LO phonon modes[7] in

AlxGa1�xAs for x 6= 1: In the present work, for the

�rst time, theoretical calculations of the polaron e�ects

coming from the interface-optical- phonon modes are

compared with the experimental results of the CRmass.

Our results show that the polaron cyclotron mass ob-

tained from the interface and the slab phonon modes

is in good agreement with the experimental results in

GaAs/AlxGa1�xAs QW.

In the presence of a magnetic �eld B applied in the

z-direction perpendicular to the interface, the energy

level of an electron is given by

E0
n;l = Ez

l + ~!c(n + 1=2) ; (1)

where Ez
l is the electric level (l = 1; 2; :::) correspond-

ing to the motion in the z-direction, !c = eB=mk is

the unperturbed cyclotron frequency, n is the Landau

level index, and mk is the electron band mass in the xy-

plane. To compare theoretical results of the cyclotron

mass with experiments, it is necessary to include the
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nonparabolicity of the conduction band in the calcula-

tion. Within three band k.p theory, the Landau level

of the present system is given by[4;5]

En;1 = �
Eg

2
+

Eg

2

 
1 + 4

E0
n;1

Eg

!1=2

(2)

where Eg = 1:52 eV is the energy gap of GaAs. The

cyclotron frequency with the correction of the non-

parabolicity is given by

!np
c = (E1;1 �E0;1)=~ : (3)

Theoretically there are two di�erent ways in calcu-

lating the polaron CR frequency. One, which is the

most often used because of its simplicity, is by start-

ing from the position of the polaron Landau levels, and

the CR frequency is given by the di�erence between

the Landau levels. The other is by calculating the

magneto-optical absorption spectrum itself, and the CR

frequency is determined by the position of the peaks in

the absorption spectrum which is the quantity experi-

mentallymeasured. Although the later procedure turns

the numerical calculations more di�cult, it is closer to

the experimental situation. The advantage of this ap-

proach is that shows the relative importance of the dif-

ferent absorption peaks. Also, the Landau level broad-

ening can be easily introduced. By considering the band

nonparabolicity, the calculation of the magneto-optical

absorption spectrum follows similar to that described in

Ref. [8]. We introduce !np
c as the unperturbed CR fre-

quency. Within the linear response theory, the polaron

magneto-optical absorption is proportional to

�Im�(!)

[! � !np
c �Re�(!)]2 + [Im�(!)]2

; (4)

where �(!) is the so-called memory function. The

memory function with the contributions of interface

and slab phonon modes as well as the e�ect of band

nonparabolicity is written as

�(!) =
1

!

Z 1

0

dt(1� ei!t)ImF (t) (5)

with

c
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d

where �j(qk; z) is the coupling function (see Ref. [7])

which describes the strength of the coupling of a single

electron at the position z with the j-th optical-phonon

mode with the dispersion relation !j(qk): There are

four types of optical-phonon modes interacting with the

electrons[7] in the present system, i.e., symmetric and

antisymmetric interface modes, con�ned slab modes in

the well, and half-space modes in the barrier layers. We

have found that, similarly to the case of the GaAs/AlAs

QW with a parabolic band, only the symmetric inter-

face modes and the con�ned slab modes are important

for the polaron CR. The contribution coming from the

other modes can be neglected.

The memory function has been calculated including

the Landau level broadening �. In the calculation, we

take � = 1:8 meV which is a typical level broadening

width in GaAs QW. Fig. 1 shows the magneto-optical

absorption spectrum at di�erent magnetic �elds for a

100 �A GaAs/AlAs QW. In order to see the e�ect of the

nonparabolicity on the polaron absorption spectrum,

we depict the results with and without the nonparabol-

icity e�ect represented by the thick and thin curves,

respectively. It is seen that, for a �xed magnetic �eld,

there are three di�erent absorption peaks. The �rst

one is located below the LO-phonon frequency !LO of

GaAs, The second one is between the LO-phonon fre-

quencies of GaAs and AlAs. And the third is above !LO
of AlAs. This result is very di�erent from the previous

results by using 3D LO-phonon modes where only two

absorption peaks are found around !LO of GaAs. The

dashed upward arrow indicates the cyclotron resonance

peak for !c = 0:8!LO which has zero linewidth. We also

observe that, due to the e�ect of the band nonparabol-

icity, all the three absorption peaks shift to lower fre-

quencies. However the absorption strength of the �rst

peak is enhanced while the other two become weaker.
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Figure 1. The magneto-optical absorption spectrum for a
100 �A GaAs/AlAs QW at di�erent magnetic �elds. The
thick and thin curves present the results with and without
the band non- parabolicity e�ect, respectively. The dashed,
solid and dotted curves refer to !=!LO = 0:8; 1:0 and 1.2,
respectively.

In a cyclotron resonance experiment, the CR fre-

quency !� is related to the transition between E0;1 and

E1;1. Consequently, the polaron CR massm� is de�ned

by

m�

mk
=

!c
!�

(7)

The CR frequency !� is determined by the peak posi-

tion in the absorption spectrum.

Fig. 2 shows the CR mass as a function of magnetic

�eld for di�erent GaAs/AlxGa1�xAs QW. The corre-

sponding CR frequency is obtained from the position

of the absorption peak with lowest frequency. Our cal-

culation demonstrates that, by including the band non-

parabolicity, the calculated polaron CR mass by taking

the interface and slab modes into account is in quite

good agreement with experimental results[10].

In summary, the polaron cyclotron mass has been

obtained from the absorption spectrum taking into ac-

count the interface and con�ned slab phonon modes

for GaAs/AlxGa1�xAs QW. The e�ect of the band

nonparabolicity was also included in the study of the

polaron e�ects due to the interface and slab phonon

modes. We showed that in order to compare the calcu-

lated CRmass with experimental results, the polaron as

well as the band nonparabolicity e�ects have to be con-

sidered on equal footing. Our calculation results are in

good agreement with experimental measured cyclotron

mass.

Figure 2. The magnetic �eld dependence of the CR mass in
GaAs/AlxGa1�xAs QW. Experimental results[10] for di�er-
ent QW are indicated by solid circles (W=58 �A, x=0.25),
solid squares (W=95 �A, x=0.26), solid triangles (W=144
�A, x=0.23), open circles (W=194 �A, 2=0.26), and open
squares (W=373 �A, x=0.26). The corresponding calcu-
lated results are given by the thin dashed curves (with non-
parabolicity only) and solid curves (with polaron e�ects).
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