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We investigate the local collective modes arising in a semiconductor superlattice with a defect
two-dimensional (2D) electron layer in the presence of an external static transversal magnetic
�eld. The dispersion relation of the local mode is derived. We investigate the homogeneous
(along the electron planes) low-frequency local modes considering retarded e�ects. It is
shown that in the retarded region of the spectrum there exists local magnetoplasmon modes
which have frequencies much lower than the electron cyclotron frequency of the 2D carriers.

Extensive work has been devoted to the theoreti-

cal and experimental study of the properties of low-

dimensional heterostructures (see e.g.[1]). In particu-

lar, the study of the collective excitations arising in

such structures has attracted the attention of many

researchers[2;3] . Most of the theoretical work in this

�eld is concerned with in�nite and semi-in�nite[5�6]

superlattices. In a series of papers Bloss considered

plasmon modes of an in
nite periodic array of quan-

tum wells, where all the wells are doped with the same

electron density except for one, doped with a di�er-

ent surface concentration. It was shown, that a local

plasmon mode arises due to the breaking of transla-

tional syrnmetry along the superlattice axis. In the

present communication we investigate the local collec-

tive modes which arise in a semiconductor superlattice

with a defect two-dimensional electron layer when an

external static magnetic �eld is apphed along the su-

perlattice axis (i.e., perpendicular to the electron layer

planes).

We consider a model, consisting of a one-

dimensional in�nite array of quantum wells with pe-

riodicity d. The z-direction is taken along the super-

lattice axis. We assume that all the quantum wells are

uniformly doped with a surface density �0, except for

the quantum well at z = 0, which is doped with a sur-

face density of carriers �d. An external static magnetic

�eld B0 is applied along the z direction. The wells are

so apart, that we can neglect wave function overlap.

Therefore, the quantum wells are coupled only by the

electromagnetic interaction associated with the dynam-

ics of the electron system. In order to describe the col-

lective excitations, we must solve Maxwell's equations

for the induced �elds at the j-th layer and take into

account the standard boundary conditions. To solve

for the local modes in the superlattice with the defect

electron layer, we assume a decaying solution

E�

�;j = E�

�;0e
��d ; (� = x; y) ; (1)

where � is a parameter characterizing the attenuation

of the �elds along the superlattice axis. We obtain the

following relation.
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Here !pl =
p
4�e2�0=(m�d) is the three-dimensional

plasmon frequency, S(�; �) is the superlattice structure

factor S(�; �) = sinh(�d)=(cosh(�d) � cosh(�d)), � is

related to the in-plane wave number k and the excita-

tion frequency ! by � =
p
k2 � !2�=c2 and !H is the

electron cyclotron frequency of the 2D carriers.

The local magnetoplasmon mode, associated with

the broken translational symmetry of the model con-

sidered here, must lie outside the bulk magnetoplasmon

band. In order to describe this mode, it is necessary to

consider the boundary conditions at the defect layer

(z = 0): We have
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where S0(�; �) = sinh(�d)=(exp(�d)� cosh(�d)) and � = �d=�0:

Relations (2,3) permit us to obtain x and !. They can be solved analytically in some important cases. Here we

shall consider the homogeneous (k = 0) oscillations in the retarded region. In this case the relations (2-3) transform

into
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Here we have introduced the function �(�) = �(��
1)� �(1��), where �(x) is the Heaviside step function.

We see that the magnitude x = ead shows a dependence

on the external magnetic �eld. This follows from the

fact that the modes described by (5) are due to the

retarded e�ects.

In the particular case when j1��j � 1 we �nd local-

ized modes with frequencies close to the center or the

edge of the Brillouin mini-zone. We obtain for these

frequencies the relation
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where !� is the frequency at which the local mode en-

ters the bulk band of the magnetoplasmon oscillations

of the wave-guided type existing in the ideal system[7].

For the parameter relation !H > c=d
p
� the frequency

!� satis�es the inequality !� < !H : This means, that

the local modes have frequencies lower than the elec-

tron cyclotron frequency. The above features are illus-

trated in Fig. 1, where we have plotted the dependence

! = !(�d) for di�erent values of the applied external

magnetic �eld.

Fig. (1a) displays the dependence ! = !(�d) for

the case �d < �0. When �d tends to zero, the local fre-

quency approaches the cyclotron frequency. This means

that the absence of carriers at the defect layer leads to

the appearance of a local mode with a frequency equal

to the cyclotron frequency of the carriers at the remain-

ing layers. We see also that for a �xed value of the

surface density of carriers �d in the defect layer, the lo-

cal frequency increases with the applied magnetic �eld.

On the other hand, for a given value of the external ap-

plied magnetic �eld B0, ! decreases with the increasing

of �d: Fig. (1b) displays the dependence ! = !(�d) for

the case �d > �0. As in the previous case, for a given

value of the external applied magnetic �eld B0 the fre-

quency ! is a decreasing function of the surface density

of carriers �d. But, for a �xed value of �d, the local

frequency decreases with the applied magnetic �eld.

Thus, we conclude that the account of the retarded

e�ects on the collective excitation magnetoplasmon
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Figure 1. Plot of the homogeneous (k = 0) low-lying local magnetoplasmon frequency vs the surface density of carriers

at the defect layer for �d < �0 and for di�erent values of the cyclotron frequency: We have chosen the parameter relation

!pld�
1=2=c = 1; (A) !H = !pl; (B) 0.75 !pl; (C) 0.5 !pl, (D) 0.25 !pl.

spectrum of the model considered here, leads to the

appearance of a localized mode whose frequency hes

below the electron cyclotron frequency.

Although there are so far no experimental results

on superlattices with a single defect layer, we consider

that the local modes described here must be detected

with the aid of scattering experiments. In this case it

is necessary to have a complete theory of the scatter-

ing experiment in order to predict the spectral width,

the line shape and the integrated density associated to

scattering from these local modes.
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