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The existence of a phase transition to an excitonic state has been predicted theoretically
many years ago. E�orts to observe this transition were concentrated on semi-metals un-
der the e�ect of external pressure. These experiments could not con�rm the theoretical
predictions. Recently it has been claimed that an excitonic transition occurs in a doped
narrow-band-gap semiconductor at moderate pressures. We have studied the possibility of
an excitonic transition in the presence of hybridization in a two-band model. We show that
a true phase transition never occurs in the presence of hybridization since the one-body mix-
ing term acts as a conjugate �eld to the order parameter of the excitonic phase. We study
the dependence of the zero temperature order parameter on: i) the relation between the
e�ective masses of the two-bands, ii) the strength of the hybridization and iii) the intensity
of the electron-hole attraction.

I. Introduction

Recently Wachter and colaborators[1] have claimed

to observe a transition to an excitonic insulator in

a doped narrow-band-gap semiconductor at moderate

pressures. They detected the excitonic state at the

semimetal- semiconductor transition monitoring the re-

sistivity when the gap is continuously closed by ex-

ternal pressure. The resistivity at low temperatures

showed a huge peak as a function of applied pressure

which they attibuted to the long predicted excitonic

phase transition[2]. They also presented data of the Hall

constant which reveals that this resistivity anomaly is

caused by a condensation of free carriers, related to an

excitonic insulating ground state. An excitonic state

corresponds to a bound state formed when electrons in

the conduction band and holes in the valence band at-

tract each other, so that they cannot contribute to the

conductivity of the materials[3�7]. Knox[3] also argued

about this anomaly in the case of an indirect-band-gap

semiconductor: the di�erence between the energy gap

EG and the binding energy EB of an exciton corre-

sponds to the minimum energy necessary to create an

exciton in a semiconductor. In a process in which EG

is reduced by external pressure but retains the exci-

tonic energy EG; as soon as EG < EB the conventional

insulating ground state would be unstable against the

formation of excitons and excitonic insulator would re-

sult. Despite many e�orts to observe this transition,

mainly concentrated on semi-metals under pressure[6] ,

the existence of the excitonic insulator has never been

observed.
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With renewed interest in this subject and motivated

by recent challenging experiments[1], we investigate the

possibility of this excitonic transition in presence of hy-

bridization in a two-band model. We point out that no

sharp excitonic phase transition occurs when external

pressure is applied. The reason is that the hybridiza-

tion, which depends on pressure, acts as a conjugate

�eld to the order parameter of the excitonic phase and

destroys this transition[8]. The e�ect is similar to that

of a ferromagnetic system in the presence of an uni-

form external magnetic �eld which destroys the ferro-

magnetic transition.

In this paper we study the dependence of the zero

temperature order parameter of the excitonic phase as

function of: i) the relation between the e�ective masses

of the two-bands, ii) the strength of the hybridization

and iii) the intensity of the electron-hole attraction.

Some years ago N�unez-Regueiro and Avignon[9]

have studied the e�ect of excitonic terms in the renor-

malization of hybridization V close to a valence tran-

sition. In their work the most relevant interaction is

the Coulomb repulsion between the electrons in the lo-

calized f-level and those in the conduction d-band. In

our approach, we are interested in the metal-insulator

transition which occurs as function of pressure. For a

semi-metal with two- electrons per site we have shown

that in a two-band model such a transition requires a

critical value of hibridization Vc to occur
[10]. We are in-

terested in studying this problem close to Vc, where the

gap is small and therefore the dominant contribution of

the Coulomb interaction is the electron-hole attraction.

II. Hamiltonian and excitonic phase

The Hamiltonian which describes the dynamics of

our system is:

c

H =
X
k

�aka
y
kak +

X
k

�bkb
y
kbk +

X
k

Vk(a
y
kbk + bykak) �

X
k;k0;q

G(q)ayk+qakb
y
k0�qbk0 (1)

d

where �ak and �bk represent the energies for electrons in

the large conduction band and in the narrow localized

band which we from now on we refer to generically as

an a-band and b-band, respectively. The operators ayk,

ak create and destroy electrons in the wide band and b
y
k,

bk are creation and annihilation operators of electrons

in the narrow band. G is the e�ective attractive inter-

action between spinless electrons and holes and V is the

mixing term, which arises from the crystalline potential.

If it were not for the attractive term, the Hamiltonian

above could be exactly diagonalized giving rise to two

hybrid bands[11]. However the many-body term due

to the e�ective attractive interaction G makes this a

di�cult problem for which an approximation must be

introduced. We shall employ the equation of motion

method[12] to calculate the order parameter associated

with the excitonic phase written as hbykaki. For this

purpose we introduce initially the frequency-dependent

Green's function hhak; bykii!, which obeys the following

equation of motion

c

!hhak; bykii! = �akhhak; bykii! + Vkhhbk; bykii! �
X
k0;q

G(q)hhak�qbyk0�qbk0; bykii! (2)

In the equation above, new propagators were generated due to both the mixing term and the attractive interaction.

For the mixing generated propagator we have the following equation of motion

!hhbk; bykii! = 1 + �bkhhbk; bykii! + Vkhhak; bykii! �
X
k0;q

G(q)hhayk0+qak0bk+q; b
y

kii! (3)

For the second Green's function hhak�qbyk0�qbk0 ; bykii! which appears due to the many-body interaction, we use a

convenient mean-�eld approximation:
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hhak�qbyk0�qbk0 ; bykii! � hak�qbyk0�qihhbk0 ; bykii!

hhayk0+qak0bk0+q ; b
y
kii! � �hayk0+qbk+qihhak0 ; bkii! (4)

We have now a closed system of equations given by

(! � �ak)hhak; bykii! = Vkhhbk; bykii! �
X
k0;q

G(q)hak�qbyk0�qihhbk0 ; bykii! (5)

and

(! � �bk)hhbk; bykii! = 1 + Vkhhak; bykii! �
X
k0;q

G(q)hayk0+qbk+qihhak0 ; bykii! (6)

After solving this system of equations for q = 0 and, for simplicity, neglecting the k-dependence of V , we obtain

hhak; bykii! =
~Vk

[(! � �ak)(! � �bk)� ~V 2
k ]

(7)

where ~Vk = V +G�k; with �k = hbykaki: The new energies of excitation of the system are given by the poles of the

propagator above, which means they are the roots of the equation

(! � �ak)(! � �bk) � ~V 2
k = 0 (8)

so that

!1;2(k) =
1

2

�
�ak + �bk �

q
(�ak � �bk)

2 + 4~V 2
k

�
(9)

The excitonic propagator can be rewritten as:

hhak; bykii! =
~Vk

!1(k)� !2(k)

�
1

! � !1(k)
� 1

! � !2(k)

�
(10)

From which we obtain the following expression for the excitonic order parameter:

�k =
~Vk

j!1(k)� !2(k)j
Z
d!f(!)f�[! � !1(k)]� �[! � !2(k)]g (11)

In order to obtain explicit results for the excitonic order parameter we adopt the homothetic band model[13] which

consists in taking �
�bk = �k
�ak = ��k + �

The quantity �(� < 1) may be interpreted as taking into account the di�erent e�ective masses of the electrons in

the narrow a-band and the large b-band, i.e. (mb=ma) = �. The quantity � gives the shift of the narrow band with

respect to the large band.

Now we introduce two new functions g1(!) and g2(!) [10] through the following equation

[! � !1(k)][!� !2(k)] = �[g1(!) � �k][g2(!) � �k] (12)

from which we get

g2;1(!) =
1

2�

�
(1 + �)! � � �

q
[(�� 1)! + �]2 + 4�~V 2

�
(13)

The energies of the bottom of the hybrid bands correspond to g(Ei
B) = 0 with i = 1; 2

E2;1
B =

1

2
f� � [�2 + 4~V 2]1=2g (14)
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while the energies of the top are obtained when g(Ei
T ) = D, where D is the bandwidth of the large conduction

b-band,

E2;1
T =

D

2

8><
>:(1 + �) +

�

D
�
2
4�(�� 1) +

�

D

�2

+ 4

 
~V

D

!2
3
5
1=2
9>=
>; (15)

For ~V = 0, we have E1
B = 0, E1

T = D, E2
B = � and E2

T = �D + �, which are in agreement with the de�nitions

of � and �. Considering the new functions gi(!) we obtain the following equation for the excitonic order parameter

� =
1

�

Z
d!

~V

jg1(!) � g2(!)jf(!)fN [g1(!)]� N [g2(!)]g ; (16)

where

N (!) =
X
k

�(! � �k)

jg1(!)� g2(!)j = 1

�

h
(!(1 � �)� �)2 + 4�~V 2

i1=2
and f(!) is the Fermi function.

We also obtain an expression for the gap �G between the two bands as a function of the hybridization V and

the electron-hole interaction G. It corresponds to the di�erence in energy between the top of the �rst hybrid band

E1
T and the bottom of the second E2

B :

�G

D
=

1

2

8><
>:
2
4��� 1 +

�

D

�2

+ 4

 
~V

D

!2
3
5
1=2

+

2
4� �

D

�2

+ 4

 
~V

D

!2
3
5
1=2

� (1 + �)

9>=
>; (17)

Consequently for a two-band system the opening of a hybridization gap, contrary to what occurs for the Anderson

lattice model, requires a critical value of renormalized hybridization Vc given by

~Vc
D

=
1

2

8><
>:
h
2�� �

D (�� 1)
i2

(1 + �)2
�
�
�

D

�2

9>=
>;

1=2

: (18)

d

III. The divalent semi-metal

To study the possibility of an excitonic transition

in the presence of hybridization we �rst investigate the

case of two square symmetric bands with respect to the

Fermi level �xed at � = 3
4
D, such that � = 1 and

� = D=2. This corresponds to a divalent semi-metal

with two electrons per site, where � is at the cross-

ing of the bands[8]. In this case, we have the following

expression for the excitonic order parameter

� =
(~V =D)

2[(1=4)2 + (~V =D)2]1=2

(
1� 2

Z E1

T

0

N1(!)d!

)
;

(19)

where

E1
T = D

8<
:5

4
�
2
4�1

4

�2

+

 
~V

D

!2
3
5
9=
;

1=2

; (20)

so that we have a very simple analytical expression for

the excitonic order parameter at T = 0 :

� =
V

G� Gc
: (21)

We notice there is a critical value for the electron-

hole attraction Gc = D, for which the excitonic or-

der parameter is di�erent from zero in the absence of

hybridization. This is formally similar to an Stoner-

like criterion for the appearance of magnetic order in

a metallic system, where, in the present case, the hy-

bridization plays the role of magnetic �eld conjugate to
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the order parameter �. Consequently we do not expect

a sharp phase transition to an excitonic to occur in pres-

ence of hybridization in spite of what the mean- �eld

equation above suggests. Strictly there is no singular-

ity in any physical quantity when G approaches to Gc

whenever V 6= 0 and the order parameter should obey a

scaling relation as � = jgj�f [V=jgj�]; where g = G�Gc

and � and � are critical cxponents. At G = Gc, one

has � / V 1=� with � = �=�.

In practice however V and G vary with external

pressure di�erently from the magnetic case where the

magnetic �eld is completely independent of the param-

eters of the system as the density of states and Coulomb

repulsion. The only zero temperature phase transition

occuring in our model for the divalent semi-metal is a

metal-insulator transition associated with the opening

of a gap at the Fermi level for a critical value of the

hybridization given by

Vc
D

=

p
3

4
� G

D
� (22)

where due to the excitonic correlations this value is

renormalized with respect to that of the non-interacting

system[8]. Substituting equation (21) in (17) for the

symmetric case, we obtain the following expression for

the renormalized gap:

�G

D
=

�
1

4
+ 4�2

�1=2
� 1 : (23)

Let us now study the symmetric case for two

parabolic bands at T = 0. As before the Fermi level

is at 3
4D and the conduction band is centered at D=2:

In this case we obtain the following equation for the

excitonic order parameter

c

� =
1

2

~V =D

[(1=4)2 + (~V =D)2]1=2

8>><
>>:1� 2

�

8><
>:
3

4
�
2
4�1

4

�2

+

 
~V

D

!2
3
5
1=2
9>=
>;

1=2

�

�

8><
>:
3

2

2
4�1

4

�2

+

 
~V

D

!2
3
5
1=2

� 3

8
�
 
~V

D

!2
9>=
>;

1=2

+
1

2�
arcsin

8><
>:
3

2
� 2

2
4�1

4

�2

+

 
~V

D

!2
3
5
1=2
9>=
>;+

9

200�

9>=
>; : (24)

d
We solve this equation self-consistently and observe

that there is a critical value for the renormalized

electron-hole interaction, which also is independent of

the one-body mixing term V . We emphasize again that

there is no real phase transition or singularities at Gc

due to the presence of the hybridization.

IV. General case

Finally we investigate the case of two bands at T = 0

for which � and � do not have any particular values and

the Fermi level is at �. In this case we have

� =
1

�

(Z �

E1

B

d!
~V

[g1(!) � g2(!)]
N [g1(!)]

�
Z �

E2

B

d!
~V

[g2(!)� g2(!)]

)
(25)

where the bottoms of the two bands E1;2
B are given by

equation (14). For square bands the expression for the

excitonic order parameter �(�; �) is

c

�(�; �) =
V

D(1� �)
ln
A(�; �)
B(�; �)

�
1� G

D(1� �)
ln
A(�; �)
B(�; �)

��1

(26)
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where

A(�; �) = E2
B(1� �)� � + f[E2

B(1� �)� �]2 + 4�~V 2g1=2

and

B(�; �) = E1
B(1� �)� � + f[E1

B(1� �)� �]2 + 4�~V 2g1=2 (27)

d

with E1;2
B given before and

~V (�; �) = V +G�(�; �) :

We notice that �(�; �) is independent of � and for

� = D=2 and in the lim �! 1 this expression reduces

correctly to that for the symmetric case. It is interest-

ing to observe that the expression which gives �(�; �)

can be cast in a form which resembles the Stoner cri-

terion. The expression for the gap is given by equation

17.

The set of equations above can be used to treat a sit-

uation where for V = 0 one has a localized level (� = 0)

separated from a band of conduction states (� > D):

In this case, even for a �xed value of hybridization, it is

possible to drive a semiconductor-metal transition, i. e.

�G = 0; through a variation of G=D which in principle

can be accomplished through external pressure.

V. Conclusions

We have introduced a two-band model to investigate

the possibility of the existence of an excitonic phase

transition in presence of hybridization. The dominant

interaction was taken to be the electron-hole attrac-

tion. We found di�erently from the Anderson lattice

approach, that there is a critical value of the hybridiza-

tion parameter for a gap to appear. This value is renor-

malized by the presence of excitonic correlations. We

have argued however that a phase transition for an exci-

tonic phase never occurs, since the one-body hybridiza-

tion acts as a conjugate �eld to the order parameter of

this phase. We have shown that hybridization induces

the same correlations which characterize this excitonic

phase. Finally we have obtained a set of equations (Eq.

26-28) which can describe the physical situation of the

experiments of Wachter and colaborators[1]. Even in

the absence of an excitonic phase transition, excitonic

correlations should play a fundamental role on the in-

terpretation of their experiments.
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