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Optical properties of Quasi-1D excitons in a GaAs-AlGaAs quantum well and con�ned by
lateral �eld e�ect induced superlattice potentials are investigated. A variational approach is
used to calculate the binding energies Eex and absorption coe�cient �ex of these excitonic
transitions as functions of the applied voltage and period of the induced superlattice poten-
tial. A competition between con�nement and Coulomb attraction produce strong oscillations
on Eex and �ex which should be observed experimentally.

I. Introduction

Optical and electronic properties of arti�cial ma-

terials such as heterostructures and superlattices have

attracted the attention of many publications. Special

interest has been paid to the excitonic transitions in sin-

gle, double coupled and multiple quantum wells, both

theoretical and experimentally[1]. Quantum con�ne-

ment as well as the e�ects of the applied electric and

magnetic �elds have demostrated to signi�cantly a�ect

the binding energies and the absorption coe�cients of

excitons in these systems. On the other hand, very re-

cent experimental studies[2] of the optical properties of

quantum wells with a �eld-e�ect-induced lateral super-

lattice potential have shown that the luminescence and

luminescence excitation spectra exhibit a strong depen-

dence on the applied voltages. Further investigations

on these type of systems have demostrated[3] poten-

tial possibilities of applications in electro-optic devices.

Since it is experimentally possible to produce a peri-

odic electric-�eld modulation to con�ne laterally elec-

trons and holes we explore, in this report, the e�ects

of a periodic gate potential on excitonic transitions in

single quantum wells of the type I heterostructures (the

electrons and holes are con�ned within the same layer).

We use the variationalmethod and the tight binding ap-

proach to estimate the energies Eex and absorption coe-

�cient �ex of quasi-1D excitonic transitions as function

of the periodicity and the potential strength. To be pre-

cise, we model a quantum-well structure GaAs-AlGaAs

with a corresponding periodic gate potential. The exci-

tons are con�ned in the z-direction by a quanturn well

of width a3 (structural con�nement), in the x-direction

by a periodic gate potential (electrostatic con�nement)

and they are free to move in the y-direction.

We use the e�ective mass theory for the hamiltonian

of electrons and holes, the envelope function method

and a familiar variational approach[4;5] to solve the

Schroedinger equation and calculate Eex and �ex. The

variational exciton wave function is written as the prod-

uct of a function depending on the relative coordinates

of the system, and the single-particle wave functions

of the individual electron and hole appropriate for the

speci�c geometry of interest, taking into account the pe-

riodicity of the induced superlattice. The resulting gen-

eralized eigenvalue problem is then solved in the tight

binding approach. In the limit of strong electrostatic

con�nement, the situation studied here resembles the

excitons in type II superlattices[7] , where the electron
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and hole are con�ned in spatially separated wells. In

the e�ective mass theory and neglecting any band non-

parabolicity, as we deal with typically small excitonic

energies, the hamiltonian of the excitons in the periodic

potential under study can be written as

H = T �
e2

�j~re � ~rhj
+ U (ze; zh) + U (xe; xh); (1)

where T is the kinetic energy operator for the elec-

tron and hole, � is the static dielectric constant, ~re and

~rh are the electron and hole coordinates, U (ze; zh) =

Ue(ze) +Uh(zh) is the quantum structural con�nement

and U (xe; xh) = Ue(xe) + Uh(xh) = �Ve(xe � md) +

�0Vh(xh�sm) is the periodic electrostatic con�nement,

sm = m(1 � jmj=2)d; m 6= 0. To calculate Eex and

�ex with the above hamiltonian we follow a procedure

similar to that used by Dignam and Sipe for type II

superlattices[4] . Using the single-well hamiltonian H0
l ,

with the appropriate x-axis origin, we write the full

hamiltonian as

H = H0
l +�U0

l (xe; xh); (2)

where �Um
l = Ue(xe) + Uh(xh) � Ve(xe � sl � md) �

Vh(xh �md); with the potential

V�(x�) =

�
�v� ; jx�j � d�=2
0; otherwise:

(3)

This procedure allows one to deal with a single vari-

ational parameter, but with an overall wave func-

tion which is adapted well to the physical problem at

hand. The variational wave function is then written as

	(~re; ~rh) = eiKyY (�(r; ze; zh; xe; xh): Since � is peri-

odic on x, we may write the solution in terms of Wan-

nier functions Wn as

c

�(r; ze; zh; xe; xh) =
1

N1=2

X
eiqmdWn(r; ze; zh; xe �md; xh �md): (4)

d

Then we obtain the generalized eigenvalue equation

Hq
ijb

n
j = EnA

q
ijb

n
j ; (5)

where Aq
ij andH

q
ij are matrix elements given in Ref. [4].

Finally, we obtain the binding energy Eex = Efree �

En(q), with Efree being the energy of the noninteract-

ing particles but still con�ned, and the absorption coef-

�cient as �n =
P

q j
R
dXeikX�q

n(r = 0; z = 0; x = 0)j2

[4,6]. The parameters used for the actual calculations

correspond to a GaAs-AlGaAs heterostructure, so that

we take, me = 0:067m0, � = 12:2; and for the heavy

hole mass mH
h = 0:377m0 [1]. Here only heavy holes

are considered. To examine the e�ects of the lateral

electrostatic con�nement, we calculate the binding en-

ergies Eex [8] and the absorption coe�cient �ex of

the excitonic transitions as functions of the superlat-

tice period d = dw + db varying the well-width dw

for di�erent values of the barrier-width db. The su-

perlattice potential for electrons is given by Eq. (3)

and correspondingly, the e�ective potential for holes is

V h(xh) = �V e(xe ! xh); as the source of the mod-

ulation is electrostatic and only the sign is di�erent

for both carriers, and we consider V e = 10Ry�: Typ-

ical results for Eex and �ex versus the electron well-

width are shown in Fig. 1. As we deal with type I

heterostructures, the electron and hole coexist in the

same layer, but the lateral electrostatic con�nement re-

sembles a type II superlattice. Under this conditions,

the system exhibits stronger binding for smaller db and

diminishes as the width of the induced potential well

increases. Correspondingly, the absorption coe�cient

decreases rapidly for weaker binding in as much as an

order of magnitude. As the excitons are less con�ned

by the potential, negative binding energies may appear

as a result of an increase in the kinetic energy that over-

takes on the energies in the potential wells and that of

Coulomb interaction[4]. For completeness, we have also

studied the dispersion relation of the excitonic transi-

tions. The excitonic band width (not presented here)

shows a strong dependence on the con�nement, is larger

(� 0:06meV) for smaller superlattice periods and is
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drastically decreased as the electrostatic con�nement

decreases.

Figure 1. Binding energy Eex (upper panel) and absorp-
tion coe�cient �ex (lower panel) versus well-width dw for
various db values as shown (in units of a0).

In conclusion, we have studied the in
uence of the

induced lateral electrostatic superlattice on the opti-

cal properties of quasi-1D excitons in quantum wells.

We �nd that the energies and absorption coe�cient are

strongly modi�ed with respect to those of the free ex-

citons. As the barrier increases its width or size the

exciton polarizes, electron and hole separate, Eex and

�ex decrease signi�cantly. Moreover, for intermediate

values of the parameters, we �nd strong oscillations of

these quantities as dw is varied, which are consequence

of the competition between Coulomb interaction and

con�nement e�ects.
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